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Abstract

A database was constructed consisting of 45,923 Salmonella pulsed-field gel electrophoresis (PFGE) patterns. The patterns,
randomly selected from all submissions to CDC PulseNet during 2005 to 2010, included the 20 most frequent serotypes and
12 less frequent serotypes. Meta-analysis was applied to all of the PFGE patterns in the database. In the range of 20 to
1100 kb, serotype Enteritidis averaged the fewest bands at 12 bands and Paratyphi A the most with 19, with most serotypes
in the 13215 range among the 32 serptypes. The 10 most frequent bands for each of the 32 serotypes were sorted and
distinguished, and the results were in concordance with those from distance matrix and two-way hierarchical cluster
analyses of the patterns in the database. The hierarchical cluster analysis divided the 32 serotypes into three major groups
according to dissimilarity measures, and revealed for the first time the similarities among the PFGE patterns of serotype
Saintpaul to serotypes Typhimurium, Typhimurium var. 5-, and I 4,[5],12:i:-; of serotype Hadar to serotype Infantis; and of
serotype Muenchen to serotype Newport. The results of the meta-analysis indicated that the pattern similarities/
dissimilarities determined the serotype discrimination of PFGE method, and that the possible PFGE markers may have utility
for serotype identification. The presence of distinct, serotype specific patterns may provide useful information to aid in the
distribution of serotypes in the population and potentially reduce the need for laborious analyses, such as traditional
serotyping.
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Introduction

Foodborne diseases are an important public health burden in

the United States. In 2011 the Centers for Disease Control and

Prevention (CDC) estimated that each year roughly 1 in 6

Americans (or 48 million people) gets sick, 128,000 are hospital-

ized, and 3,000 die due to foodborne illnesses, and nontyphoidal

Salmonella is one of the leading causes among the 31 known

foodborne pathogens [1]. The incidence of Salmonella infections

has changed considerably over time, including changes in the

frequency of antimicrobial-resistant Salmonella subtypes and the

frequency of different serotypes among isolates associated with

human infections [2]. Of the 2,541 Salmonella serotypes described

as of 2007, 1531 were classified as serotypes of Salmonella enterica

subsp. enterica, which causes more than 99% of Salmonella infections

in humans [2]. Contaminated foods have been identified as the

primary sources of human Salmonella infections [1]. To efficiently

detect and prevent human salmonellosis, the development of rapid

and sensitive Salmonella subtyping methods is of significant

importance.

Multiple phenotypic and genotypic methods have been

developed for Salmonella subtyping [3]. Traditional serotyping,

which is based on the Kauffmann-White Scheme [4], has served as

the basis for Salmonella serotype differentiation [5]. Pulsed field gel

electrophoresis (PFGE) was adopted for national Salmonella

surveillance and outbreak research in the 1990s, and has been

successfully used in typing Salmonella from human patients, foods,

and food animal sources because of its remarkable discriminatory

power and high reproducibility [3,6]. Amplified fragment length

polymorphisms (AFLP) is based on the selective amplification of

genomic restriction fragments by PCR, and has been successfully

used in bacterial taxonomy and typing schemes for the differen-

tiation of highly related pathogen bacterial strains [7211].

Additionally, DNA sequence-based subtyping methods, including

DNA microarray analysis [12,13], multi-locus sequence typing

(MLST) [14,15], multi-locus variable-number tandem repeat
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analysis (MLVA) [16,17] have been applied to the identification

and tracking of salmonellosis outbreaks [3]. Recently, next-

generation sequencing (NGS) has begun to be applied in Salmonella

outbreak strain identification and source tracking [18222]. This

approach is a powerful method for differentiating highly clonal

outbreak strains [18].

All the subtyping approaches have their own strengths and

weaknesses in terms of sensitivity, cost, speed, and robustness

[3,23,24]. Although PFGE is considered as time-consuming, labor

intensive, and provides less-detailed genetic information than NGS

methods [23], it is currently the most widely used molecular

subtyping method for Salmonella [25] and is routinely used in CDC

and state health labs in the United States. PulseNet (http://www.

cdc.gov/pulsenet), the CDC coordinated molecular surveillance

network used for foodborne infection in the United States, has the

largest and most valuable Salmonella database in the world. It has

collected more than 350,000 PFGE patterns, including outbreak

strains covering more than 500 serotypes, since 1996 [26]. Since

PulseNet has set up a standard protocol for obtaining and

processing the gel images, PFGE fingerprints from various

laboratories are reproducible and comparable [26]. The valuable

data in PulseNet provide the opportunity to study the global

ecology, epidemiology, transmission, and evolution of the

emerging Salmonella serotypes from PFGE profiles.

In this study, we have surveyed the data in PulseNet and created

a database of PFGE patterns of the most frequent serotypes

isolated from human sources. The constructed PFGE database

was stored in the Intranet of the US Food and Drug Adminis-

tration’s (US/FDA) National Center for Toxicological Research.

The primary objective of this study is to present a meta-analysis of

this large database to systematically investigate and characterize

the phylogenetic relationships between PFGE patterns of Salmonella

serotypes. For each of the 32 most frequent serotypes associated

with outbreaks, we proposed that there would be predominant

bands or band combinations that when examined using meta-

analysis of a large data set would be useful as predictive markers

for the particular serotypes. We investigated the diversity of PFGE

patterns within each serotype and distinguished the relationships

between various Salmonella serotypes. The results provide a better

understanding of Salmonella genetic diversity and epidemiology,

and can help in the application of PFGE-based characterization

and surveillance of Salmonella isolates in outbreak source tracking.

Materials and Methods

Database construction of PFGE fingerprints
A total of 45,923 XbaI-PFGE patterns of Salmonella enterica

isolates were collected for the database (Table 1). These patterns

were randomly selected to include each of the 32 most frequent

serotypes from all the submissions from human sources to

PulseNet from 2005 to 2010. More than 99% of the isolates were

collected from stool, blood, urine or unknown sites of human

sources in the US. Less than 1% of the isolates came from other

countries.

To store the patterns in the database, the gel images were

processed and analyzed by BioNumerics software (Applied Maths,

Inc., Austin, TX, Version 6.0) according to the PulseNet protocol

[27]. The band matching was performed at a trace-to-trace

optimization value of 1.56% and a band position tolerance set at

1%. Because the BioNumerics software can process a maximum of

20,000 PFGE patterns simultaneously, the data were randomly

split into three groups. Since the band classes for the three groups

were created separately, a standardization procedure was needed

before the combination of the three groups. Two methods, the

BioNumerics fixed band method and NCTR fixed band method,

were developed to standardize the band classes for cross-group

analysis [28]. Subsequent to the normalization procedure, the

three groups were combined.

Characterization of patterns and serotypes of the
database

The normalized band matching for 45,923 PFGE patterns was

exhibited in a single Excel file with band presence or absence at

each band location coded as 1 or 0, respectively. The band

number for each pattern and the mean band number of each

serotype, between 20 to 1100 kb were calculated. For each

serotype, the proportion of band occurrences at each designated

location was measured, and the 10 most frequent bands were

sorted by frequency.

Distance Matrix Development
To identify the differences and relationships among the various

Salmonella patterns and among the 32 serotypes in the database, the

distance matrix for 32 serotypes was computed. The normalized

database consisting of 45,923 patterns from 32 serotypes was

applied. The distance matrix presented the dissimilarities for any

two patterns in the entire database. The dissimilarity of PFGE

patterns inter- or intra-serotypes was calculated by Jaccard

Distance [29], and the values ranged from 0 (green) to 1 (red).

Hierarchical cluster analysis
The characteristic parameters of each serotype were obtained

by calculating the proportions of the bands present at every

designated band location with values ranging from 0 to 1. The

hierarchical cluster analysis was applied based on the dissimilarity

measures of any two serotypes calculated by the Euclidean

distance [30] of the characteristic parameters. In this study, two-

way clustering analysis was applied, in which both serotypes and

band locations were clustered according to dissimilarity measures

to identify the associations between serotypes and band locations

simultaneously.

Results

Construction of the database of PFGE fingerprints
Based on the statistics of the Salmonella Annual Report 2006 [2]

and Salmonella Annual Summary Tables 2009 from CDC [31], we

calculated the frequencies of the serotypes and decided to include

the 20 most frequently occurring serotypes and another 12

serotypes ranking between the top 21 and the top 35 in our

database (Table 1). The three right hand columns in Table 1 list

the total numbers of patterns, ranks and percentages of the 32

serotypes over 14 years, from 1996 to 2009 [2,31]. All together,

the isolates of the 32 serotypes comprised 80.6% of all isolates

reported within 14 years nationwide, within which the 20 most

common serotypes covered 74.9% and the 12 less common

serotypes only 5.7%.

To meet the differences of the occurring frequencies of the 32

serotypes, we randomly selected approximately 2000 PFGE

patterns for each of the 20 most frequent serotypes, and between

400 to 500 patterns for each of the 12 less frequent serotypes (with

the exception of serovars Paratyphi A, Schwarzengrund, and

Senftenberg due to shortage of pattern data) from PulseNet. The

entire database consisted of 45,923 randomly selected PFGE

patterns for the 32 Salmonella serotypes. We assumed that our

database constructed in this study had similar coverage and

representation of Salmonella serotypes and patterns occurred from

1996 to 2009.

PFGE Meta-Analysis and Database Construction
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Database Characterization
The normalized band matching of 45,923 PFGE patterns were

displayed in one Excel file (data not shown). A total of 60 band

locations were identified, ranging from 20 to 1100 kb for all the

patterns in the database. The number of bands for each pattern

and the overall mean of band numbers for each serotype were

calculated (Figure 1). In the range of 20 to 1100 kb, most of the 32

serotypes (,81%) had 13 to 15 bands; serotype Enteritidis had 12

bands; Paratyphi A had 19 bands; serotypes Heidelberg and

Typhimurium var. 5- had 16 bands; and Typhi and Stanley had

17 bands.

For each serotype, the percentage of patterns containing bands

of a particular size were determined to identify the most common

bands associated with the patterns of the respective serotype. The

10 most frequent detected bands for each serotype were sorted and

listed in Table 2 (for the 20 most common serotypes) and Table 3

(for the 12 less common serotypes). Within a particular serotype,

the 10 most commonly detected bands were present in more than

50% of the analyzed patterns, with the exception of serotypes

Mississippi (45%), Muenchen (49%) and Bareilly (49%). The top

five bands were seen in more than 75% of the patterns for each of

the serotypes, with the exception of the Mississippi (68%),

Table 1. The composition of the database of Salmonella PFGE fingerprints.

Serotypes
Number of
patterns Ranks* Total/199622009*

Percent/
199622009*

Agona 1954 14 7376 1.4

Braenderup 2008 13 7807 1.5

Enteritidis 2338 2 90328 17.4

Hadar 1981 19 5263 1.0

Heidelberg 2114 4 24819 4.8

I 4,[5],12:i:- 2281 11 7912 1.5

Infantis 2078 12 7857 1.5

Javiana 2102 5 19170 3.7

Mississippi 1999 16 5430 1.0

Montevideo 2041 6 12855 2.5

Muenchen 1970 8 10652 2.1

Newport 2005 3 44483 8.6

Oranienburg 1951 10 9042 1.7

Paratyphi B var. L(+) tartrate+ 2011 18 5305 1.0

Poona 1956 20 4101 0.8

Saintpaul 2252 9 9606 1.9

Thompson 2045 15 7208 1.4

Typhi 1941 17 5371 1.0

Typhimurium 2064 1 91028 17.6

Typhimurium var. 5- 2146 7 12688 2.4

Sub Total 388301 74.9

Anatum 478 23 2863 0.6

Bareilly 426 24 2829 0.5

Berta 502 21 3059 0.6

Derby 393 30 2080 0.4

Hartford 531 27 2431 0.5

Litchfield 401 28 2424 0.5

Mbandaka 432 25 2727 0.5

Panama 516 29 2206 0.4

Paratyphi A 135 35 1678 0.3

Schwarzengrund 225 26 2544 0.5

Senftenberg 189 32 1989 0.4

Stanley 460 22 2914 0.6

Sub Total 418045 80.6

Total 45923 Total/199622009 518419 100.0

*: The table shows the information on Salmonella isolates from human sources during 199622009, which was derived and calculated from the Salmonella Annual
Summary of 2006
(http://www.cdc.gov/ncidod/dbmd/phlisdata/salmtab/2006/SalmonellaTable1_2006.pdf) and the Salmonella Annual Summary Tables 2009 (http://www.cdc.gov/
ncezid/dfwed/PDFs/SalmonellaAnnualSummaryTables2009.pdf)
doi:10.1371/journal.pone.0059224.t001
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Paratyphi B var. L(+) Tartrate+(74%), Poona (74%), and

Senftenberg (68%). Several serotypes, including Hadar, Heidel-

berg, I 4, [5], 12:i:-, Thompson, Typhimurium, and Stanley, had

more than 90% of the patterns containing the same top five bands

and for serotypes I 4,[5],12:i:- and Thompson, 90% of the isolates

shared the same top eight bands. The concordance of Tables 2

and 3 with Figures 2 and 3 is described in the Discussion.

Distance matrix of the 32 serotypes
The heatmap of the distance matrix of 45,923 PFGE patterns

for the 32 serotypes in the database is shown in Figure 2. Distances

of the patterns were shown by large squares for the 20 most

frequent serotypes, consisting of approximately 2,000 PFGE

patterns for each serotype, and by small squares for patterns of

the 12 less frequent serotypes, with approximately 200 to 500

Figure 1. Band numbers of various Salmonella serotypes in the database. The number under each bar indicates the number of the bands,
and the number on top of each bar shows the number of serotypes.
doi:10.1371/journal.pone.0059224.g001

Figure 2. Distance matrix of 32 serotypes. The heatmap shows the distances matrix presenting the dissimilarities for any two patterns in the
entire database. The dissimilarity of PFGE patterns inter- or intra-serotypes was calculated by Jaccard Distance, and the values ranged from 0 (green)
to 1 (red) (shown in the index).
doi:10.1371/journal.pone.0059224.g002
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PFGE patterns for each. The squares in the diagonal show the

distances of the various patterns within the same serotype, while

the other squares show the distances between the patterns of their

corresponding horizontal and vertical serotypes. The squares on

the diagonal of all 32 serotypes were distinguishable from other

squares in the heatmap, except for the Typhimurium and

Typhimurium var. 5-, and less distinguishable in I 4,[5],12:i:-.

According to the CDC’s annual report, [2], I 4,[5],12:i:- is the

monophasic variant of Typhimurium (formula I 4,[5],12:i:1,2) and

lacks the second phase H antigen 1,2. In surveillance reports,

Typhimurium var. 5- has been considered an O:5-negative variant

of Typhimurium or reported as Typhimurium [2]. No genetic

differences were detected between these two variants [4].

Therefore, results of our study indicated that 29 out of 32

serotypes in the constructed database had patterns distinguishable

from the others. The patterns for Typhimurium, Typhimurium

var. 5-, and I 4,[5],12:i:- were similar and it was difficult to

distinguish any differences.

The squares on the diagonal show various colors from green to

black (Figure 2), indicating various degrees of similarities of

patterns within the same serotypes. The bright green square of

serotype Thompson indicated that 2045 patterns of this serotype

were similar to each other; while the pale black square of serotype

Mississippi shows that 1999 patterns of Mississippi in the database

were distinctly different from each other, although relatively more

similar compared to patterns in other serotypes.

Hierarchical cluster analysis
To further characterize the PFGE patterns in the database,

hierarchical cluster analysis was applied to the dissimilarity

measures of any pair of serotypes calculated by the Euclidean

distance of the characteristic parameters. At each column of

designated band location, the color of each of the squares from

green to red represented the various proportions (between 0 and 1)

of band occurrences for each of the 32 serotypes. Figure 3 shows

the result of two-way clustering analysis where both serotypes and

band locations were grouped to identify the associations between

serotypes and bands simultaneously. The 32 serotypes could be

divided into 3 major groups (A, B, and C) with subgroups based on

the dissimilarity measures of patterns of serotypes. Group A

consisted of 15 serotypes (9 most frequent serotypes and 6 less

frequent serotypes) and was sub-grouped into a1 and a2; Group B

was composed of 6 serotypes (3 most frequent serotypes and 3 less

frequent serotypes) and was sub-grouped into b1 and b2; and

Group C had 11 serotypes (9 most frequent serotypes and 2 less

frequent serotypes) and was sub-grouped into c1 and c2.

Figure 3. Two-way hierarchical clustering analysis of the 32 serotypes in the database. The color histogram shows the proportions of the
bands present at every designated band location with values ranging from 0 to 1. The hierarchical cluster analysis was applied based on the
dissimilarity measures of any two serotypes calculated by the Euclidean distance of the characteristic parameters. Both serotypes and band locations
were clustered according to dissimilarity measures. The numbers 1, 2, and 3 and the letters A (a1, a2), B (b1, b2), and C (c1, c2) stand for the groups
(and sub-groups) of band locations and serotypes.
doi:10.1371/journal.pone.0059224.g003
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The 60 bands generated by band matching with BioNumerics

software were divided into 3 major groups (Figure 3). Group 1

consisted of 6 bands with multiple red squares in the rows,

indicating that these bands were commonly shared by the majority

of patterns and serotypes. These bands are also listed in Tables 2

and 3 among the top 10 bands for various serotypes. Band

21.33 kb is a typical example. It appeared in all 32 serotypes at

percentages from 70% to 89%, and was one of the top 10 bands

for 30 of the 32 serotypes, the exceptions being Hadar and

Paratyphi A. Group 2 was composed of 13 bands, which had fewer

red squares in the rows and were distributed in fewer serotypes

than group 1. These bands are also found in Tables 2 and 3

among the top 10 bands of the serotypes. For example, the column

for band 373.92 kb has three bright red squares for serotypes

Typhimurium var. 5- (0.97), Typhimurium (0.97), and I

4,[5],12:i:- (0.95), and one dark red square for serotype Saintpaul

(0.64) (Figure 3). The rest of the squares in this column are all

green, indicating that the rest of the serotypes had low percentages

at this location. This band was ranked as the top band for both

serotypes Typhimurium and Typhimurium var. 5-, as the 2nd most

frequent band for serotype I 4,[5],12:i:-; and as the 10th most

frequent band for serotype Saintpaul (Table 2). The rest of the 41

bands belonged to group 3. In this group, the red squares are

fewer and distributed more sporadically among the serotypes than

in groups 1 and 2. This group could be further divided into several

sub-groups. The bright red squares are distributed more in the left

half of the bands and only a few in the right half. For example, at

location 118.78 kb, 84% of the patterns of serotype Derby showed

bands, and this band was ranked as the 3rd most frequent (Table 3).

Limited patterns of fewer serotypes show bands at locations of

603.67, 890.84, 979.00, 497.20, and 438.72 kb in the right sub-

groups of Figure 3, and the proportions were less than 50%.

Table 2. Top 10 most frequent bands and the percentages of 20 most frequent serotypes in the database.

Top 10 bands (kb) 1 2 3 4 5 6 7 8 9 10

Agona 290.79
(93%)

21.33
(89%)

103.77
(88%)

247.23
(86%)

334.37
(75%)

357.52
(73%)

256.7
(70%)

710.89
(65%)

322.42
(64%)

538.28
(63%)

Braenderup 103.77
(97%)

75.75
(97%)

666.12
(89%)

308.85
(89%)

334.37
(87%)

21.33
(85%)

247.2
(81%)

32.79
(81%)

168.29
(79%)

459.88
(77%)

Enteritidis 308.85
(98%)

666.12
(90%)

110.39
(86%)

53.56
(86%)

21.33
(86%)

247.23
(77%)

37.2
(77%)

1037
(74%)

290.79
(73%)

175.00
(70%)

Hadar 84.87
(98%)

75.75
(97%)

308.85
(93%)

211.97
(92%)

256.74
(90%)

237.54
(89%)

103.77
(89%)

30.88
(84%)

66.11
(83%)

334.37
(76%)

Heidelberg 459.88
(98%)

411.77
(98%)

103.77
(95%)

666.12
(94%)

70.79
(94%)

61.22
(90%)

357.52
(89%)

21.33
(89%)

42.79
(87%)

25.36
(83%)

I 4,[5],12:i:- 70.79
(96%)

373.92
(95%)

97.28
(94%)

84.87
(94%)

42.79
(93%)

223.18
(92%)

66.11
(92%)

710.89
(90%)

21.33
(89%)

247.23
(68%)

Infantis 290.79
(97%)

84.87
(95%)

103.77
(88%)

21.33
(87%)

66.11
(85%)

308.85
(81%)

392.06
(79%)

168.29
(78%)

75.75
(74%)

211.97
(68%)

Javiana 183.39
(95%)

66.11
(92%)

21.33
(88%)

256.74
(83%)

223.18
(81%)

481.15
(79%)

290.79
(74%)

168.29
(71%)

275.55
(68%)

645.62
(57%)

Mississippi 21.33
(89%)

70.79
(77%)

411.77
(70%)

103.77
(70%)

183.39
(68%)

290.79
(60%)

97.28
(48%)

342.77
(46%)

247.23
(46%)

75.75
(45%)

Montevideo 290.79
(95%)

21.33
(88%)

42.79
(87%)

127.24
(81%)

247.23
(77%)

66.11
(74%)

322.42
(63%)

256.74
(60%)

334.37
(56%)

308.85
(54%)

Muenchen 103.77
(93%)

21.33
(86%)

75.75
(85%)

308.85
(79%)

290.79
(76%)

97.28
(70%)

513.42
(63%)

66.11
(54%)

168.29
(53%)

247.23
(49%)

Newport 21.33
(89%)

290.79
(85%)

97.28
(85%)

308.85
(78%)

75.75
(78%)

223.18
(76%)

175.00
(73%)

42.79
(71%)

183.39
(67%)

168.29
(61%)

Oranienburg 290.79
(98%)

308.85
(95%)

42.79
(94%)

481.15
(90%)

127.24
(89%)

110.39
(89%)

21.33
(89%)

136.07
(88%)

411.77
(86%)

256.74
(85%)

Paratyphi B var. L(+)Tartrate+ 308.85
(89%)

21.33
(87%)

290.79
(81%)

247.23
(75%)

75.75
(74%)

103.77
(68%)

42.79
(62%)

66.11
(56%)

168.29
(55%)

194.6
(52%)

Poona 275.55
(88%)

256.74
(83%)

66.11
(81%)

21.33
(78%)

223.18
(74%)

194.6
(74%)

308.85
(59%)

237.54
(59%)

32.79
(59%)

373.92
(54%)

Saintpaul 290.79
(98%)

21.33
(84%)

459.88
(83%)

42.79
(82%)

710.89
(80%)

247.23
(79%)

790.7
(75%)

103.77
(69%)

223.18
(67%)

373.92
(64%)

Thompson 75.75
(97%)

459.88
(95%)

290.79
(95%)

168.29
(95%)

66.11
(95%)

61.22
(95%)

481.15
(94%)

103.77
(93%)

21.33
(89%)

322.42
(82%)

Typhi 75.75
(95%)

32.79
(95%)

61.22
(92%)

160.06
(89%)

136.07
(89%)

211.97
(88%)

70.79
(87%)

21.33
(85%)

275.55
(83%)

53.56
(79%)

Typhimurium 373.92
(97%)

70.79
(97%)

42.79
(94%)

290.79
(92%)

223.18
(90%)

97.28
(87%)

21.33
(84%)

666.12
(78%)

66.11
(78%)

25.36
(75%)

Typhimurium var. 5- 373.92
(97%)

70.79
(96%)

42.79
(93%)

223.18
(91%)

290.79
(84%)

21.33
(83%)

247.23
(74%)

84.87
(73%)

97.28
(72%)

25.36
(72%)

doi:10.1371/journal.pone.0059224.t002
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Discussion

Since PulseNet has established a standardized PFGE protocol

and an extensive quality assurance system to enhance data

comparability and interpretation [27], PFGE results have high

reproducibility between laboratories following the standard

protocol and guidance from CDC. The present work included

as many frequently occurring serotypes and PFGE profiles as

possible in our database to reflect the trends identified in Salmonella

surveillance programs in the US during the years 199622009.

The database should make it easier to systematically evaluate the

performance of PFGE for subtype discrimination, and to enable

more accurate meta-analyses based on a sufficient data set size.

Our research group has applied this database on developing a

system for rapid prediction of Salmonella serotypes based on the

PFGE fingerprints [28,32].

Although PFGE has been applied extensively in the epidemi-

ological investigation and surveillance of Salmonella for the last two

decades, only a few systematic investigations have been pursued on

the phylogenetic relationships among PFGE patterns and Salmo-

nella serotypes [6,28,32234]. Liebana et al. compared several

methods for discriminating Salmonella isolates of five serovars,

inferring that certain serotypes could be deduced solely by their

PFGE patterns [33]. The correlation of serotypes to PFGE

patterns was further described by Gaul et al.[34] based on an

analysis of 674 isolates from 12 Salmonella serotypes, concluding

that PFGE fingerprints could potentially provide an alternative

method for screening and identifying Salmonella serotypes. In 2007,

Kerouanton et al. set up a database of 1128 PFGE patterns of 31

Salmonella serotypes, and evaluated the subtype discrimination of

the PFGE method according to the standard PulseNet protocol

[6]. Cluster analysis was used on the PFGE patterns to confirm

that serotype and PFGE genotype were closely linked in the three

studies. The serotypes and number of PFGE patterns included in

these studies were limited. In this work, we applied the meta-

analysis on the PFGE patterns in the large database, and used

bioinformatics methods to identify both the inter- and intra-

serotypes relationships of 32 frequently occurring serotypes for the

first time.

Salmonella serotypes can be closely related in terms of virulence,

prevalence and antimicrobial resistance [12,13,26,35,36] and

PFGE has been successfully used for the characterization of

several serotypes [6,28]. However, the discrimination of PFGE

varies with serotype [28,33]. The meta-analysis of the band

numbers of the 32 serotypes in our database revealed that

Enteritidis and Paratyphi A had unique band numbers (Figure 1).

In the range of 20 to 1100 kb, most of the 32 serotypes had 13 to

15 bands on the average, while only Enteritidis had 12 bands and

only Paratyphi A had 19 bands on the average (Figure 1). These

deviating band numbers could be used as a marker to distinguish

these two serotypes from the other 30.

This study is the first report providing comprehensive summary

of the 10 most frequent bands present in each serotype and their

occurrence for each of the 32 most frequent serotypes (Tables 2

and 3). Most of the bands showed up in more than one serotype,

but with different frequencies and rank orders. This result could be

visually confirmed by hierarchical clustering analysis of the

dissimilarity measures of any two serotypes, calculated by the

Euclidean distance of the characteristic parameters (Figure 3). The

six bands of group 1 in Figure 3 were shared by most of the 32

serotypes as the top 10 bands (Tables 2 and 3), especially the band

of 21.33 kb. It was the only band that was shared by high

percentages of patterns in all of the 32 serotypes. The other five

bands in group 1, although well distributed in most of the patterns

of most of the serotypes, were absent from some of the serotypes

(shown as bright green squares, Figure 3). For example, four

Table 3. Top 10 most frequent bands and the percentages of 12 less frequent serotypes in the database.

Top 10 bands (kb) 1 2 3 4 5 6 7 8 9 10

Anatum 97.28
(95%)

411.77
(90%)

75.75
(88%)

194.6
(87%)

275.55
(84%)

66.11
(84%)

42.79
(80%)

21.33
(73%)

666.12
(72%)

61.22
(72%)

Bareilly 84.87
(87%)

42.79
(87%)

21.33
(85%)

290.79
(80%)

308.85
(79%)

223.18
(67%)

247.23
(63%)

97.28
(54%)

256.74
(51%)

160.06
(49%)

Berta 211.97
(98%)

308.85
(97%)

103.77
(96%)

175.00
(91%)

247.23
(89%)

21.33
(87%)

70.79
(86%)

666.12
(81%)

560.06
(74%)

710.89
(72%)

Derby 275.55
(91%)

256.74
(89%)

118.78
(84%)

223.18
(81%)

32.79
(81%)

308.85
(80%)

21.33
(80%)

247.23
(74%)

61.22
(71%)

1037
(69%)

Hartford 290.79
(98%)

84.87
(98%)

75.75
(94%)

136.07
(90%)

21.33
(89%)

513.42
(87%)

334.37
(86%)

145.81
(83%)

183.39
(82%)

168.29
(82%)

Litchfield 127.24
(97%)

308.85
(93%)

75.75
(93%)

21.33
(89%)

168.29
(86%)

175.00
(81%)

290.79
(79%)

183.39
(79%)

850.72
(77%)

790.7
(64%)

Mbandaka 145.81
(98%)

103.77
(95%)

459.88
(94%)

357.52
(92%)

175.00
(87%)

21.33
(87%)

247.23
(84%)

256.74
(77%)

42.79
(71%)

136.07
(60%)

Panama 256.74
(94%)

290.79
(93%)

275.55
(88%)

308.85
(86%)

84.87
(85%)

194.6
(78%)

223.18
(76%)

183.39
(72%)

21.33
(71%)

645.62
(59%)

Paratyphi A 275.55
(89%)

290.79
(87%)

32.79
(83%)

127.24
(82%)

666.12
(81%)

136.07
(81%)

28.82
(81%)

308.85
(79%)

25.36
(76%)

75.75
(75%)

Schwarzengrund 194.6
(88%)

75.75
(87%)

21.33
(86%)

47.45
(80%)

103.77
(77%)

322.42
(75%)

290.79
(72%)

30.88
(68%)

1101
(56%)

183.39
(56%)

Senftenberg 247.23
(85%)

710.89
(80%)

97.28
(73%)

21.33
(72%)

70.79
(68%)

160.06
(65%)

61.22
(65%)

168.29
(63%)

290.79
(62%)

322.42
(58%)

Stanley 75.75
(97%)

136.07
(93%)

308.85
(92%)

97.28
(92%)

168.29
(91%)

21.33
(87%)

183.39
(85%)

582.12
(81%)

790.7
(73%)

237.54
(73%)

doi:10.1371/journal.pone.0059224.t003
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serotypes in group c2 (Figure 3) lacked bands at 75.75 kb and

308.85 kb, which differentiated these serotypes from the others.

The bands in groups 2 and 3 (Figure 3) seemed to be more

serotype-specific. In particular, the bands in the right half of group

3 showed uniqueness for serotypes, which may possibly be used as

marker bands to rapidly distinguish serotypes. Since the charac-

teristic parameters of serotype dissimilarity originated from the

45,923 patterns in the database (,2000 patterns for the 20 most

frequent serotypes and ,2002500 for the 12 less frequent

serotypes), the image of each row in Figure 3, including the band

location and frequency, could be considered the reference

fingerprint for each serotype. Considering that PFGE fingerprints

were obtained from various laboratories and slight variations may

occur when band matching of BioNumerics software is applied to

different combinations of PFGE patterns, the band sizes may vary

to a small extent.

The distance matrix (Figure 2) presented the similarities/

dissimilarities of any two patterns in the database. Figure 3

illustrated further the groups of the serotypes derived from the

dissimilarity measures of any of two serotypes, based on the

distance calculations of the serotype characteristic parameters.

These results were concordant with each other and with the results

shown in Tables 2 and 3. For example, serotypes Typhimurium,

Typhimurium var. 5-, I 4,[5],12:i:-, and Saintpaul were grouped in

group c2 (Figure 3) because they demonstrated less dissimilarity

with each other than with the other serotypes. These four

serotypes shared five to seven of their top 10 most frequent bands

(Tables 2 and 3), and showed the close distances in black to dark

green squares, corresponding to the four serotypes, horizontally

and vertically (Figure 2). I 4,[5], 12:i:- lacks the second phase H

antigen 1, 2 and is the monophasic variant of serotype

Typhimurium due to antigenic and genotypic similarities between

the two serovars [37,38]. The serotype Typhimurium var. 5-,

whose previous name was Typhimurium var. Copenhagen, was

considered as an O:5-negative variant of serotype Typhimurium a

few years ago [2,4]. The close relationships and similar PFGE

patterns of Saintpaul to Typhimurium, Typhimurium var. 5-, and

I 4,[5],12:i:- was concordant with that of Didelot et al. [39], in

which 12 strains of Typhimurium and Saintpaul were grouped in

the same ancestral population by applying the linkage model on

enhanced MLST sequencing data. Based on the results in the

current study, we first reported the close relationship of PFGE

patterns between serotypes Hadar to Infantis and Muenchen to

Newport (Figures 2 and 3, Tables 2 and 3). The high percentages

of the top 10 bands (Tables 2 and 3) resulted from the high

similarities among the patterns within the particular serotypes

(green squares diagonally displayed in Figure 2). For example,

isolates of I 4,[5],12:i:- and Thompson each had 90% of their

isolates harboring the same top eight bands. However, Mississippi

showed relatively lower proportions for the top 10 bands, reflected

as the pale black square in the heatmap of the distance matrix

(Figure 2).

This study has highlighted the use of meta-analysis on the

constructed large database of 45,923 PFGE profiles of 32

Salmonella serotypes from human sources. The constructed

database provided a platform to study the relationships between

phenotypes and genotypes of Salmonella isolates. From our data, we

conclude that certain serotypes have higher degrees of diversities

of their PFGE patterns compared with the majority of other

serotypes. The results of the meta-analysis indicated that the

pattern similarities/dissimilarities determined the serotype dis-

crimination of PFGE method, and that the possible PFGE markers

may have utility for serotype identification. The presence of

distinct, serotype specific patterns may provide useful information

to aid in the distribution of serotypes in the population and

potentially reduce the need for laborious analyses, such as

traditional serotyping. Future studies combined with the Salmonella

genome sequencing data will be critical to match PFGE patterns to

NGS data. The connection between PFGE ‘gold standard’ and the

new NGS technology will be very helpful for PFGE data retrieval

and interpretation, and will greatly improve and accelerate the

rapid detection and identification of pathogens and source

tracking in the ‘‘-omics’’ era.
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