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Abstract: Potential risks associated with releases of human pharmaceuticals into the environment
have become an increasingly important issue in environmental health. This concern has been
driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore,
22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups,
were selected to perform a review on their toxicity and environmental risk assessment (ERA) in
different aquatic compartments, important issues to tackle the water framework directive (WFD).
The toxicity data collected reported, with the exception of anxiolytics, at least one toxicity value
for concentrations below 1 µg L−1. The results obtained for the ERA revealed risk quotients (RQs)
higher than 1 in all the aquatic bodies and for the three trophic levels, algae, invertebrates and fish,
posing ecotoxicological pressure in all of these compartments. The therapeutic groups with higher
RQs were hormones, antiepileptics, anti-inflammatories and antibiotics. Unsurprisingly, RQs values
were highest in wastewaters, however, less contaminated water bodies such as groundwaters still
presented maximum values up to 91,150 regarding 17α-ethinylestradiol in fish. Overall, these results
present an important input for setting prioritizing measures and sustainable strategies, minimizing
their impact in the aquatic environment.

Keywords: environmental contaminants; pharmaceuticals; pharmaceuticals toxicity; environmental
risk assessment; aquatic compartments

1. Introduction

The environmental impact of medicinal products has been recognized worldwide, and as its use
cannot be avoided, a sound risk assessment of their presence in the environment is a key issue that
must be tackled to meet the European Union (EU) Water Framework Directive (WFD) [1]. The potential
of human pharmaceuticals for negative ecotoxicological effects, even at sublethal concentrations, in the
aquatic environment has been of concern since the issue was first brought to attention in 1985 [2].
Nonetheless, the ecotoxicological risks associated to the ubiquitous occurrence of pharmaceuticals in
aquatic ecosystems are far from being fully known [3].

According to the European Medicines Agency (EMA) legislation, and since 2006, before a
pharmaceutical obtains a marketing authorization approval, it must be demonstrated that it poses no
risk to the environment through an environmental risk assessment (ERA). ERA compares the predicted
environmental concentrations (PECs), with the predicted no effect concentrations (PNECs) of three
trophic levels of aquatic organisms [4,5]. When the pharmaceutical is already on the market, instead of
using the PEC, which predict the environmental concentration, we can use the measured environmental
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concentrations (MEC) reflecting the real concentration in the aquatic environment [6]. Therefore, for
marketed pharmaceuticals, high-quality monitoring data, along with data on ecotoxicological and
toxicological effects are crucial to perform the ERA, which associates the presence of pharmaceuticals
with their impact on the aquatic ecosystem and human health, supporting the selection of possible
new priority substances to be monitored [7–9].

Thus, a systematic review, in order to provide a clear insight on pharmaceuticals toxicology
and on ERA, should embrace, not only several parent compounds, but also, metabolites and
transformations products belonging to different therapeutic groups such as: the anxiolytics and
hypnotics, further referred only as anxiolytics, alprazolam (ALP), lorazepam (LOR) and zolpidem
(ZOL); the antibiotics azithromycin (AZI), ciprofloxacin (CIP), clarithromycin (CLA) and erythromycin
(ERY); the lipid regulators bezafibrate (BEZ), gemfibrozil (GEM) and simvastatin (SIM); the antiepileptic
carbamazepine (CAR); the selective serotonin reuptake inhibitors (SSRIs) citalopram (CIT) and its
main metabolite desmethylcitalopram (N-CIT), escitalopram (ESC), fluoxetine (FLU) and its main
metabolite norfluoxetine (Nor-FLU), paroxetine (PAR), sertraline (SER) and its main metabolite
desmethylsertraline (Nor-SER); the anti-inflammatories and/or analgesics and antipyretics, further
referred only as anti-inflammatories, diclofenac (DIC) and its main metabolite 4-hydroxydiclofenac
(4-OH-DIC), ibuprofen (IBU), naproxen (NAP), paracetamol (PARA) and its transformation product
4-aminophenol (4-PARA); and the hormones 17β-estradiol (E2) and its main metabolite estrone (E1)
and 17α-ethinylestradiol (EE2; Table 1).

Table 1. Selected pharmaceuticals.

Therapeutic Group Compound and Chemical Structure

Anxiolytics
(Anx)

Alprazolam (ALP) Lorazepam
(LOR)

Zolpidem
(ZOL)
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Table 1. Cont.

Therapeutic Group Compound and Chemical Structure

Selective serotonin
reuptake inhibitors

(SSRIs)

Citalopram (CIT) Desmethylcitalopram
(N-Cit) (metabolite) Escitalopram (ESC) Fluoxetine

(FLU)
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The pharmaceuticals in study, key representatives of major classes of pharmaceuticals, were 

selected based on the EU watch list, their high consumption, pharmacokinetics, physicochemical 

properties, persistence, previous studies on the occurrence on the aquatic environment, and their 

potential toxicological impact, both on humans and on the aquatic environment [10–14]. This review 

will provide a more realistic water quality assessment contributing for a more integrative approach 

to rank and prioritize pharmaceuticals, based on an integrated assessment of ERA and exposure in 

the aquatic environment. 

“Water is not a commercial product like any other but, rather, a heritage which must be 

protected, defended and treated as such”, the claim by the EU WFD contrasts with the poor ecological 

status of European freshwater bodies, where only 43% achieve a good ecological status. In addition, 

and despite the enormous efforts, the picture that emerges regarding ecological status is still 

incomplete, fragmented and with contradictory assessments of the situation. Therefore, it is 

important to obtain a better understanding of the regional and global context, concerning the 

environmental risk posed by pharmaceuticals in the aquatic environment. 

2. Toxicity 

Since pharmaceuticals are continuously introduced into the aquatic environment, they can 

promote toxic effects on living organisms, even when present at concentrations on the ng L−1 level 

[15]. This potential for negative effects of pharmaceuticals even at sublethal concentrations, namely 

for aquatic organisms, has been of concern since the issue was first brought to attention in 1985 [2]. 

Therefore, their presence poses a threat to the quality of water resources [5,16]. 

Pharmaceuticals have a relatively clear mode of action in target organisms, and given that fish 

and invertebrates share more drug targets with humans, it would be expected that they would also 

respond to pharmaceuticals in a similar way. However, when non-target-species are exposed, 

unknown effects and potential risks need to be assessed. One example is the impact of EE2 in the 

feminization of fish [17–19]. Nonetheless, all the ecotoxicological risks associated to the ubiquitous 

occurrence of pharmaceuticals in aquatic ecosystems are far from known [3]. 
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The pharmaceuticals in study, key representatives of major classes of pharmaceuticals, were
selected based on the EU watch list, their high consumption, pharmacokinetics, physicochemical
properties, persistence, previous studies on the occurrence on the aquatic environment, and their
potential toxicological impact, both on humans and on the aquatic environment [10–14]. This review
will provide a more realistic water quality assessment contributing for a more integrative approach to
rank and prioritize pharmaceuticals, based on an integrated assessment of ERA and exposure in the
aquatic environment.

“Water is not a commercial product like any other but, rather, a heritage which must be protected,
defended and treated as such”, the claim by the EU WFD contrasts with the poor ecological status
of European freshwater bodies, where only 43% achieve a good ecological status. In addition, and
despite the enormous efforts, the picture that emerges regarding ecological status is still incomplete,
fragmented and with contradictory assessments of the situation. Therefore, it is important to obtain a
better understanding of the regional and global context, concerning the environmental risk posed by
pharmaceuticals in the aquatic environment.

2. Toxicity

Since pharmaceuticals are continuously introduced into the aquatic environment, they can
promote toxic effects on living organisms, even when present at concentrations on the ng L−1 level [15].
This potential for negative effects of pharmaceuticals even at sublethal concentrations, namely for
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aquatic organisms, has been of concern since the issue was first brought to attention in 1985 [2].
Therefore, their presence poses a threat to the quality of water resources [5,16].

Pharmaceuticals have a relatively clear mode of action in target organisms, and given that fish and
invertebrates share more drug targets with humans, it would be expected that they would also respond
to pharmaceuticals in a similar way. However, when non-target-species are exposed, unknown effects
and potential risks need to be assessed. One example is the impact of EE2 in the feminization of
fish [17–19]. Nonetheless, all the ecotoxicological risks associated to the ubiquitous occurrence of
pharmaceuticals in aquatic ecosystems are far from known [3].

Sorption to sediments is one factor that influences toxicity of pharmaceuticals, although higher
sorption to sediments results in an apparent reduction of bioavailability and toxicity, the activity of
benthic invertebrate in sediments results in a higher exposure for these organisms [20].

Moreover, bioaccumulation and biomagnification should also be accounted for since they can
increase toxicity [17]. These parameters are also related to log Dow, since compounds with values
higher than 3 have a tendency for bioaccumulation [17,21], which means that the ionization state can
influence the toxicity of pharmaceuticals, and that the pH variability in surface water should also be
taken into account [17].

A bibliographic search of the scientific literature was conducted on Google Scholar using the
search terms “ecotoxicology” and each of the selected compounds. All the publications that presented
ecotoxicological studies on the selected compounds, referring to the concentrations, were included.
Below, the ecotoxicological data in the aquatic biota was reviewed, presenting the toxicity data obtained
from 120 exposure studies of three trophic levels of non-target organisms, algae (Figure 1), invertebrates
(Figure 2) and fish (Figure 3), Table S1 (Supporting information). The data was divided by the
different endpoints found in the literature: no observed effect concentrations (NOEC), lowest observed
effect concentrations (LOEC), effective concentration (EC50) and lethal concentration (LC50). These
endpoints are expected to have increasing concentrations, since they were organized from the more
susceptible endpoint (NOEC) to the less one (LC50). However, each endpoint encloses various species
of the same trophic level and different toxicological tests like immobilization, growth, luminescence,
reproduction, morphology, behavior, etc. When no experimental data was available, L(E)C50 values
were estimated with ECOSAR 2.0. This program estimates data on acute toxicity through the molecule
structure, sometimes underestimating toxic effects. The data was also divided in acute and chronic
toxicity, depending on the time of exposure and trophic level. For algae, acute toxicity was considered
when the toxicity tests lasted until 4 days (96 h), longer exposures were considered chronic toxicity.
Regarding invertebrates, with the exception of Brachionus calyciflorus (were 2 days was considered
chronic data, since it has a shorter life cycle), acute toxicity was accounted when the exposure took
place until 2 days (48 h) and chronic toxicity when it was equal or longer than 7 days. For fish, tests
until 4 days (96 h) were included in acute toxicity data and exposures equal or above 7 days entered
the chronic toxicity data. These criteria were based on OECD tests for each trophic level [22].
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Figure 1. Median, maximum and minimum concentration values reported for acute (A) and chronic (B) toxicity concerning algae. (Anx—anxiolytics; Antib—antibiotics;
Lip reg—lipid regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake inhibitors; Anti-inf—anti-inflammatories; Horm—hormones) [23–52].
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Figure 2. Median, maximum and minimum concentration values reported for acute (A) and chronic (B) toxicity data concerning invertebrates.
(Anx—anxiolytics; Antib—antibiotics; Lip reg—lipid regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake inhibitors; Anti-inf—anti-inflammatories;
Horm—hormones) [23,27–32,35,36,40–42,44,46,51–84].
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Although, as expected, some therapeutic groups presented higher toxicity, such as hormones, which
can promote endocrine modifications, all therapeutic groups presented toxicity at low concentrations,
highlighting the ecotoxicity of the selected pharmaceuticals [138]. Overall, considering all trophic
levels, all therapeutic groups with the exception of anxiolytics, had at least one toxicity report for
concentrations below 1 µg L−1, near the concentrations found in the aquatic environment.

Considering the toxicity of the selected pharmaceuticals in all trophic levels, we could observe
that the most sensitive one, with the lowest concentrations promoting toxic effects was fish, followed
by invertebrates and algae. The limitation of this analysis is that, regarding fish, there were also
toxicity data obtained through cell line or tissue testing, which can be difficult to extrapolate to the
entire organism. The therapeutic group with higher toxicity, mainly chronic toxicity in fish and
invertebrates, are hormones. Additionally, the pharmaceutical that presented higher toxicity, with the
lowest concentration promoting toxic effects, was EE2 at 0.1 ng L−1 in fish (NOEC, chronic toxicity) [123].
The highest concentrations promoting toxicity were detected in fish (LC50, acute toxicity), for CLA,
CIP and ERY (1 g L−1), [23,123,126].

Ecotoxicological chronic studies on pharmaceuticals are lacking, meaning that many questions
about the threat to the environment of pharmaceuticals remain unanswered. Additionally, the actual
exposure scenario regards multiple pharmaceuticals, posing uncertainty regarding toxicology in
long-term exposure. If many pharmaceuticals are present and share the same mode of action, then
the toxicity of this mixture could be higher than if only one pharmaceutical is present, being usually
considered the concept of concentration addition, although antagonistic and synergistic effects may
also occur. This could result in risk underestimation, as the typical exposure is toward multicomponent
chemicals [139–142].

One example of mixture effects was observed when using a mixture of anti-inflammatories (DIC,
IBU and NAP). In this case, the acute toxicity was detected at concentrations where little or no effect
was observed for the chemicals individually [20]. Even in mixtures with pharmaceuticals belonging
to different therapeutic groups, additive and synergistic effects were reported. A mixture with E2
and FLU promoted a decrease in the reproductive success of D. magna more significantly than either
chemical compounds alone [143]. Another example was provided by exposing D. magna to a mixture
of CAR and a lipid lowering agent, which exhibited stronger effects during immobilization tests than
the single compounds at the same concentration [20].

Taking into account mixture effects, some research has already been developed focusing on toxic
effects, and not on specific pharmaceuticals. This was already used to evaluate wastewater treatment
plants (WWTPs) removal efficiencies, by evaluating and comparing the toxicity (androgenecity,
cytotoxicity, anti-estrogenicity and L. variegatus decrease in reproduction and biomass) both in
wastewater influents (WWIs) and efluents (WWEs) [144,145].

Additionally to the active compounds of pharmaceuticals, excipients and additives are also
present in medicines, that may contain endocrine disrupting chemical excipients and additives [138].

The measured concentrations of some of the selected pharmaceuticals reported for surface water
all over the world surpassed the concentrations here described for toxicity, which suggests that the
aquatic biota could be vulnerable to the presence of pharmaceuticals in their environment, and that
toxic effects are expected to occur with unexpected outcomes [146].

It is unlikely that pharmaceuticals present in drinking water may pose a risk to the human health
through chronic exposure, however, the toxicological implications are not clear [147]. Furthermore,
studies have shown that infants may have difficulty in metabolizing drugs therefore, being more
vulnerable to the toxic effects of these compounds [17].

As referred, many pharmaceuticals have the potential for bioaccumulation and biomagnification,
and chronic effects on ecosystems cannot be ignored for animals at the higher end of the food web [148].
Thus, the health hazard of human exposure by ingestion of contaminated foods should also be taken
into account [17].
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2.1. Anxiolytics

No ecotoxicological data was found in literature for ALP, LOR and ZOL, and for that reason, all the
results for this therapeutic group were obtained from ECOSAR 2.0 [18]. In decreasing order, the more
toxic was ZOL, followed by ALP and LOR. The trophic level with the lowest reported concentrations
producing toxicity was algae (from 0.211 to 6.07 mg L−1), followed by fish (from 0.248 to 43.1 mg L−1)
and invertebrates (from 1.55 to 39.4 mg L−1).

2.2. Antibiotics

Observing the acute toxicity for antibiotics, since there is little data on chronic endpoints, the
pattern for the three trophic levels was similar for all antibiotics, with algae being more susceptible at
lower concentrations (from 0.0018 to 20.6 mg L−1), followed by invertebrates (from 0.22 to 120 mg L−1)
and fish (from 84 to 1000 mg L−1). If we compare each antibiotic, concerning invertebrates, it can
be observed that CLA and CIP presented similar results, but when compared with ERY, lower
concentrations (220 µg L−1) of this antibiotic can produce the same toxic effects, in this case growth
inhibition [23].

In this therapeutic class, in addition to direct toxicological risks, concern has been raised about the
potential for the antibiotic residues in water, since they are typically found in the aquatic environment
at subtherapeutic concentrations, promoting the emergence of resistant bacteria and subsequent
development of more resistant and virulent pathogens [149]. These bacterial resistances, through
horizontal gene transfer, may end up in human pathogens, raising questions on human health and the
stability of the ecosystem [150–154].

This emergence of bacterial resistance presents one of the major emerging threats to human health
and is by far the highest risk for humans of having medicinal products residues in the environment [155].
Furthermore, historical evidence appears to indicate that in the aquatic environment resistance might
be acquired faster than in the terrestrial environment [156].

Corroborating the effects on bacteria, changes in biomass and growth rate were reported at
concentrations above 5.7 µg L−1 [47]. This therapeutic class can also induce immunotoxicity in the
freshwater mussel at low concentrations, between 2 ng L−1 and 1100 ng L−1 [157].

2.3. Lipid Regulators

In this group, the pattern observed with both previous therapeutic groups was not so clear,
with median concentrations similar in all trophic levels for acute toxicity. Observing these data, SIM
was clearly the pharmaceutical, which promoted toxicity at lower concentrations for invertebrates
(160 ng L−1) and fish (765 µg L−1) [26,56]. However, data on chronic toxicity, only available for GEM in
two trophic levels, showed that the highest toxicity regarded fish (1.5 µg L−1), followed by invertebrates
(78.0 µg L−1) [51,85].

2.4. Antiepileptics

For CAR, once again, the pattern of acute data, was similar to that registered for anxiolytics
and antibiotics, with the lowest concentrations promoting toxicity at 10.0 µg L−1, 20 000 µg L−1 and
0.01 µg L−1 for algae, fish and invertebrates, respectively [27,44,57]. Considering the chronic data,
similar concentrations were found to produce toxicity in invertebrates and fish trophic levels, ranging
from 25 to 25,000 µg L−1 [27,29].

2.5. SSRIs

This therapeutic group has the peculiarity that the phylogenetically ancient and highly conserved
neurotransmitter and neurohormone serotonin has been found in invertebrates and vertebrates,
although its specific physiological role and mode of action is unknown for many species [158]. Many
biological functions within invertebrates, such as reproduction, metabolism, molting and behavior,
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are under the control of serotonin [159]. Therefore, the pharmaceuticals in this therapeutic group
could have tremendous effects on these and other organisms [160]. These facts are in agreement
with those found in acute toxicity data found, since for all trophic levels this group had globally the
lowest concentrations, which promoted toxic effects, being some of these on reproduction, survival
and behavior [161].

When observing these data, the most sensitive trophic level was the invertebrates (0.1 µg L−1),
followed by algae (12.1 µg L−1) and fish (72.0 µg L−1) [33,57,92]. In invertebrates, the pharmaceuticals
with higher toxicity were FLU (100 ng L−1) and its metabolite Nor-FLU (300 µg L−1) and SER
(100 µg L−1). On the other side, PAR was the one with lower toxicity [33,36,57,69]. In algae, the
pharmaceutical with highest toxicity was SER, however, in invertebrates, FLU surpassed SER toxicity.

The only metabolite referred in the literature concerning toxicity studies was Nor-FLU, with data
for algae and invertebrates. When comparing with FLU (algae and invertebrates), it is clear that the
median concentrations inducing toxicity were always lower [162].

Studies performed on SER and FLU demonstrated the influence of pH on toxicity, since the
uncharged drug can pass easier through the membrane and act inside the cells, showing a tenfold
increased toxicity when shifting the pH closest to their pKa, increasing the nonionized form, from 6.5 to
8.5 and from 7.8 to 9, respectively [17,89,92].

2.6. Anti-Inflammatories

Most anti-inflammatories induce the nonspecific inhibition of prostaglandins. This, in turn,
means that there is the potential for effects on any of the normal physiological functions mediated by
prostaglandins. In fish, for instance, prostaglandins influence mechanisms of behavior and reproduction
and, therefore, they can act as endocrine disruptors or modulators, because they can exert their effects
by mimicking or antagonizing the effects of hormones, alter their pattern of synthesis and metabolism
and modify hormone receptor levels, leading to possible adverse effects [7,163–165]. However, different
and unexpected toxicity effects were also observed. One of the first was reported in Pakistan, where
a catastrophic decline in the Oriental White-backed Vulture population (95%) originated from the
exposure to DIC contaminated live-stock carcasses, which promoted fatal renal disease [98,138].

Overall, excepting anxiolytics, anti-inflammatories were less toxic than the other therapeutic
groups. Regarding the lowest concentrations that produced acute toxicity in the three trophic levels,
invertebrates had the lowest value (10 ng L−1), followed by algae (10 µg L−1) and fish (90 µg L−1),
however, when using median values, the differences become less clear [37,44,57,96]. As for chronic
data, higher toxicity was observed in fish (500 ng L−1) and invertebrates (200 µg L−1), when compared
with algae (4.01 mg L−1), which is in line with the already referred anti-inflammatories mode of
action [70,95].

Data for each anti-inflammatory showed no clear pattern, nonetheless, except for invertebrates,
NAP and PARA seemed to have lower toxicity than DIC and IBU. When performing a comparison
between DIC and its metabolite (4-OH-DIC) in invertebrates and fish, one could observe that they
have similar toxicities. Conversely, PARA transformation product (4-PARA) presented higher toxicity
than the parent molecule in all three trophic levels.

2.7. Hormones

Although hormones like E1, E2 and EE2 are mainly used for contraception purposes,
the physiological effects are not restricted to effects on reproductive and sexual development, and can
target mitochondrial function, energy metabolism and cell cycle control [165].

For acute toxicity, there is only data on algae and invertebrates, and algae presented higher
toxicity since the lowest concentration promoting toxic effects was at 162 µg L−1, lower than the
1500 µg L−1 observed in invertebrates [43,78]. Nonetheless, the toxicity promoted by this therapeutic
group is mainly expected to be detected through chronic toxicity, however, these data could only be
obtained for invertebrates and fish. Considering chronic data, in these two trophic levels, hormones
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presented higher toxicity than the other therapeutic groups, since the lowest concentrations reported
were of 100 ng L−1 and 0.1 ng L−1, for invertebrates and fish, respectively [81,82,123]. It should also
be noted that, the highest concentration found that promoted toxicity for fish was also very low
(1188 ng L−1) [102].

Individually, there were no differences observed between E1 and E2 toxicity, while EE2 seems
the most toxic compound regarding chronic toxicity in invertebrates and especially in fish, where the
36 results available presented concentrations below 44 ng L−1 [135]. Namely, when two different fish
species were exposed to EE2 at 3 ng L−1 and 4 ng L−1 they suffered sex gender reversal, from male to
female, which can strongly unbalance the aquatic ecosystem [130,136,138].

3. Environmental Risk Assessment

The data regarding occurrence and toxicity already presented is crucial in order to perform the
ERA, and can be used to select the pharmaceuticals that are more prone to induce toxic effects in
aquatic biota [166]. The risk assessment, mentioned in the EMA guideline on the ERA of medicinal
products for human use [4], is performed through the risk quotient (RQ) calculation, dividing the PEC
by the PNEC for each pharmaceutical, observing three different trophic levels (algae, invertebrates and
fish). If RQ is equal or above 1, there is a potential environmental risk situation, whereas when values
are lower than 1, no risk is expected. However, a certain risk could be expected for the substances with
a RQ between 0.1 and 1 [167,168]. However, this guideline is only applied for marketing authorizations
and for pharmaceuticals marketed after 2006. Additionally, it does not constitute a valid criterion upon
which to base the refusal of a market authorization of medicinal products for human use in the EU [6].
Our evaluation of the potential ecotoxicological risk posed for the aquatic compartment was based on
a dual approach: one using the worst case scenario, as stated by the EMA guideline on the ERA [4],
where the maximum individual concentrations of pharmaceuticals found in the respective aquatic
compartment were used as MEC [15,169,170], and another using the median concentrations for each
pharmaceutical as MEC [171]. This evaluation can also be an important tool to suggest the inclusion or
removal of pharmaceuticals in the watch list of the Directive 2013/39/EU.

As discussed, some concentrations compiled in surface water are higher than the levels that
induce toxicity, not applying any uncertainty factor (UF) for the PNEC calculation. Additionally,
some studies have indicated that concentrations of several pharmaceuticals belonging to different
therapeutic groups can promote toxic effects on negatively impacted aquatic biota, presenting RQ
higher than 1 [11,18,139,157,172,173].

As referred, aquatic biota inhabiting the receiving environment are unintentionally exposed
throughout their lifetime to a complex mixture of residual pharmaceuticals and these mixtures can
exhibit a greater effect than individual compounds [20,174,175]. Therefore, it is a challenge to address
the concerns related to the chronic effect, low-level exposure to these compounds, including exposure
of sensitive subpopulations to pharmaceutical mixtures [17,174].

3.1. Predicted No-Effect Concentration (PNECs)

Based on the toxicity data (Figures 4–7), Table 2 presents the PNECs for the selected pharmaceuticals.
These values were calculated by applying an UF of 100 and 10 to the long-term EC50 and NOEC values,
and an UF of 50 and 1000 to the short-term LOEC and L(E)C50 values, respectively, available in the
literature. The UF is an expression of the degree of uncertainty in the extrapolation from the test data
on a limited number of species to the actual environment [4]. As referred, when no experimental data
are available, L(E)C50 values were estimated through ECOSAR 2.0.
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Table 2. Predicted no-effect concentrations of the selected pharmaceuticals for algae, invertebrates and
fish for the studied pharmaceuticals.

Therapeutic Group Pharmaceutical PNEC (ng L−1)
Algae

PNEC (ng L−1)
Invertebrates

PNEC (ng L−1)
Fish

Anx ALP 892 a,b 3590 b,c 2540 b,c

LOR 6070 a,b 39,400 b,c 43,100 b,c

ZOL 211 a,b 1550 b,c 248 b,c

Antib AZI 1.8 b [176] 440 e,g [83] 84,000 b

CLA 2 b [23] 8160 b [23] 1,000,000 b [23]
CIP 5 b [35] 10,000 b [44] 1,000,000 b [44]
ERY 20 b [23] 220 b [23] 1,000,000 b [23]

Lip reg BEZ 4870 a,b 1300 e,f [51] 17,600 b,c

GEM 15,190 b [51] 1180 b [53] 150 e,g [85]
SIM 22,800 b [26] 3.2 d [56] 765 b,c

Antiepi CAR 31.6 b [27] 0.2 d [57] 20,000 b [44]

SSRIs CIT 1600 b [30] 3900 b [58] 4470 b,c

FLU 44.99 b [33] 2 d [57] 2.8 e,g [177]
Nor-FLU (M) 189 b [34] 300 b [61] n.a
PAR 140 b [30] 580 b [58] 3290 b,c

SER 12.10 b [33] 120 b [58] 72 b [92]

Anti-inf DIC 200 d [37] 20,000 e,g [70] 50 e,g [95]
4-OH-DIC (M) 660,300 e,f [38] 48,200 b,c 65,200 b,c

IBU 40,100 e,f [39] 0.2 d [57] 180 e,g

NAP 31,820 b [40] 2620 b [53] 115,200 b [99]
PARA 134,000 b [59] 2040 b [73] 378,000 b [42]
4-PARA (TP) 11,300 a,b 240 b [77] 1430 b [100]

Horm E1 (NH/M) 355 a,b 3160 b,c 3.4 e,g [103]
E2 162 a,b 1500 b [78] 0.29 e,g [113]
EE2 730 b [43] 10 e,g [81,82] 0.01 e,g [123]

M—metabolite; TP—transformation product; NH—natural hormone. a: EC50 was estimated with ECOSAR.
b: UF = 1000. c: LC50 was estimated with ECOSAR. d: UF = 50 (uncertainty factor used for lowest observed
effect concentrations (LOEC) and no observed effect concentrations (NOEC) in acute toxicity). e: long-term data.
f: UF = 100. g: UF = 10 (uncertainty factor used for LOEC and NOEC in chronic toxicity).

It should be taken into account that the choice of toxicity data can obviously affect the outcome [15].
However, the results obtained for the PNECs were directly related to the toxicity data, and a similar
pattern to the toxicity data was observed, with the therapeutic groups and pharmaceuticals with higher
toxicity presenting the lowest PNEC values.

3.2. Risk Assessment

Using the occurrence data obtained from Part I of this review (Table S2, Supporting information)
and the PNECs previously calculated (Table 2), RQs were deemed for all the selected pharmaceuticals
in the different aquatic compartments and are presented in Figures 4–7 [146].

In general, the results revealed that RQs higher than 1 could be observed for all the aquatic bodies,
posing ecotoxicological pressure in all of these compartments.

3.2.1. Wastewater Influents

The RQs observed in WWIs were the highest from all the aquatic compartments, as well as the
concentrations of the selected pharmaceuticals (Figure 4). The highest value (274,816) and median
(13,400) were observed for IBU in invertebrates. Anti-inflammatories were the therapeutic group
with the highest RQs median, both for the maximum and median values, followed by antiepileptic
and hormones.
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Figure 4. Median and maximum risk quotients of pharmaceuticals in WWIs for the three trophic levels. (Anx—anxiolytics; Antib—antibiotics; Lip reg—lipid
regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake inhibitors; Anti-inf—anti-inflammatories; Horm—hormones).



Molecules 2020, 25, 1796 14 of 31

With the exception of anxiolytics, all the other therapeutic groups presented RQs > 1 for at least
two trophic levels, being SSRIs and anxiolytics the only groups that did not present risk RQs > 1 for
all pharmaceuticals.

For the anxiolytics and antibiotics, the algae were clearly the most susceptible trophic level,
presenting higher RQs. Another clear pattern was observed for the hormones, where for fish all the
RQs (median and maximum) were higher than 1 and with the maximum values between 129 and
17 271

These results demonstrated that the concentrations reaching the WWTPs could clearly endanger
all the trophic levels that might be exposed to this aquatic matrix.

3.2.2. Wastewater Effluents

This aquatic compartment presents lower RQs than the WWIs (Figure 5). Antibiotics along with
antiepileptic, anti-inflammatories and hormones were the therapeutic groups with highest RQs values.
When considering median values alone, antibiotics have lower RQs than the other three therapeutic
groups. The values observed for antibiotics can promote an even bigger problem than the direct
toxicity to aquatic organism: the emergence of bacterial resistance. Nonetheless, the ERA approach
does not address this issue [155].
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Figure 5. Median and maximum risk quotients of pharmaceuticals in WWEs for the three trophic levels. (Anx—anxiolytics; Antib—antibiotics; Lip reg—lipid
regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake inhibitors; Anti-inf—anti-inflammatories; Horm—hormones).



Molecules 2020, 25, 1796 16 of 31

Anxiolytics continued to present RQs values lower than 1. Antibiotics, on the other hand, had the
highest value observed for CIP in algae (100,258). As in WWI, antiepileptic continued to present the
highest median RQs.

In WWI, some metabolites of the SSRIs presented similar or slightly higher RQs than the parent
compounds (N-CIT and Nor-SER), in WWE a similar pattern was observed. These results highlight the
fact that parent compounds and metabolites reached WWEs, and that the concentrations found in this
matrix were able to promote toxic effects in the aquatic biota. This fact suggests that metabolites and
transformation products should also be monitored in the environment.

Regarding the anti-inflammatories therapeutic group, DIC and IBU stand out from the other
pharmaceuticals presenting clearly higher median and maximum RQs. As for hormones and observing
the fish trophic level, as in the WWI, all RQs were higher than one.

3.2.3. Surface Waters

This aquatic body was clearly more problematic to the environment when compared to WWIs
and WWEs since here is where most of aquatic life inhabits. However, like in the previous water
compartments, RQs higher than 1 were observed for all trophic levels and therapeutic groups, with the
exception of the anxiolytics. Antiepileptic, anti-inflammatories, antibiotics and hormones remained
the therapeutic groups with the highest RQs (Figure 6).
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Figure 6. Median and maximum risk quotients of pharmaceuticals in surface waters for the three trophic levels. (Anx—anxiolytics; Antib—antibiotics; Lip reg—lipid
regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake inhibitors; Anti-inf—anti-inflammatories; Horm—hormones).
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The highest maximum and median values regarded IBU (16,327) and CAR (138) in invertebrates.
There were still eighteen pharmaceuticals (AZI, CLA, CIP, ERY, BEZ, GEM, SIM, CAR, CIT, FLU, SER,
DIC, IBU, PARA, E1, E2, αE2 and EE2) with RQs above 1.

Antibiotics still presented all of their maximum RQs higher than 1 for algae, whereas lipid
regulators presented the same pattern for invertebrates. As for the antiepileptic, their maximum
values were above one for algae and invertebrates. In SSRIs therapeutic group, CIT, FLU and SER
were the ones that presented RQs higher than 1, contributing to the possible risk posed by this group.
The hormones, regarding fish, still presented all median RQs higher than 1, with the exception of E1,
with the EE2 obtaining the highest RQs for this trophic level.

As already mentioned, this water body, encompassing rivers and lakes, should be free from risk.
Nonetheless, from the 28 detected pharmaceuticals, 18 presented maximum RQs above 1 and even 8
had median RQs superior to 1, posing a threat to all the aquatic organisms.

3.2.4. Other Water Bodies

The results obtained for the RQs of other water bodies are presented in Figure 7. The RQs,
in decreasing order, were groundwater, seawater, mineral water and drinking water. Since drinking
water is usually obtained through surface and groundwaters, these results suggest that the sources
used to produce drinking water were the ones with lower pharmaceutical contaminations or that water
treatment plants were removing the selected pharmaceuticals. The results obtained in seawater can be
biased, since fresh water organisms were used to evaluate the risk and there are reports that marine
organism can be more vulnerable, increasing the risk in this water matrix [178,179].
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Figure 7. Median and maximum risk quotients of pharmaceuticals in other water bodies for the three trophic levels. (DW—drinking water; GW groundwater;
SeaW—seawater; MinW—mineral water; Anx—anxiolytics; Antib—antibiotics; Lip reg—lipid regulators; Antiepi—antiepileptics; SSRIs—Selective serotonin reuptake
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All of these compartments presented values above 1 for all trophic levels, with the exception of
mineral water in algae, highlighting, once again, the pressure sustained by the aquatic organisms
in all the aquatic compartments. This indicates that there is also a possible risk for humans.
The therapeutic groups with higher maximum and median RQs are hormones, antiepileptic, antibiotics
and anti-inflammatories, being the same groups as in WWIs.

With the exception of anxiolytics, all therapeutic groups still present RQ medians above 1, with 12
pharmaceuticals with maximum values above 1, and 11 with medians also higher than 1. If we use
the threshold of 0.1, where some risk might be expected, we can find 16 of these compounds. Some
RQs are still extremely high, with EE2 presenting values up to 91,150 and a median of 6091 for fish in
groundwater. The higher RQs observed in these compartments were for CAR and IBU in invertebrates,
and for hormones in fish.

Viewing these results, it is possible to observe not only high risk for aquatic organism in
wastewaters but, despite the RQ reduction, several pharmaceuticals still promote risk in other
supposedly cleaner aquatic matrices. Additionally, additive or even synergistic effects can occur,
especially in the pharmaceuticals with the same mechanism of action [139–142].

3.3. Mitigation Measures

The RQs obtained for all the water compartments, particularly the RQs higher than 1 in surface
waters and in the other water bodies, raise not only the issue of toxicity for the aquatic environment
but also for humans using these aquatic bodies as a source of drinking water and also for whom
eating animals living in these contaminated environments. Therefore, mitigation measures should
be implemented to prevent high RQs in these important water resources. These measures should
begin through the awareness of the problem. For example, in Sweden, an environmental classification
system for drugs has been established through collaboration between producers, authorities and the
public health care. This system assesses the environmental risk of pharmaceuticals being publicly
available, therefore, the market can demand for medicines with less environmental impact, stimulating
producers to design more environmentally friendly medicines [17]. This includes the concept of green
pharmacy, where the design of pharmaceutical products focus also on their high metabolization and
environmental degradation, reducing the environmental burden and improving environmental safety
and health impacts [138].

Additionally, the ERA guideline on human pharmaceuticals should be revised in order to: enter
the risk benefit analysis; impose its revision every five years with the new available data; incorporate
the pharmaceuticals marketed before 2006 and include metabolites and transformation products [6].

Another issue already referred is the possible improvement of WWTPs removal efficiencies and
the improvement of toxicity studies. The main challenges regarding the assessment of ecotoxicity
are the scarce information available for some of the selected pharmaceuticals, namely chronic data
and effects on multiple life stages or even multiple generations, which mimics the environmental
exposure. Behavior studies are also lacking, before death and other major toxicity effects there can be
diminished sexual interest, fear or activity, increased curiosity, etc. Although this seems like small
behavior changes, it can be enough to unbalance an ecosystem eliminating one or more species by
being unable to escape from predators or by lack of reproduction. This leads to another point that
ecotoxicity studies should also be performed in ecosystems, because some effects previously referred
are more evident in this type of studies. It should also be considered the increase of species tested
and mixture effects, not only between different pharmaceuticals of the same therapeutic group but
also from different groups and with other substances, like heavy metals. Given the pharmaceutical
environmental presence in mixtures and with other substances, additive or even synergistic effects
occur; therefore, the real hazard may be greater than that calculated [24,33,180,181]. Another issue
that is neglected with the traditional ecotoxicity studies is the emergence of bacterial resistance. We
are testing antibiotics in algae, invertebrates and fish but probably the biggest impact will be on
bacteria, namely on the emergence of resistant bacteria that can reach not only aquatic animals but also
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humans. Additionally, the emergence of bacterial resistance is a major concern involving the presence
of pharmaceuticals in the aquatic compartment, which is more prone in this environment [6,182].

This could generate benefits in water resource management, by providing the means for
cross-compliance measures in environmental regulation and providing an adequate risk assessment
for pharmaceuticals mixtures [183]. In this way, the complete scenario of the contamination of
pharmaceuticals in the aquatic environment and their risk could be performed, contributing to future
improvements in minimization measures and legislation.

4. Final Remarks

A literature review was conducted in order to understand the toxicity and ERA of pharmaceuticals
in the aquatic environment. In this context, a broad and specialized background was obtained, enabling
an overview of the state of the art in these subjects.

Regarding the toxicity data, although the differences observed between different therapeutic groups
and within each therapeutic group, all therapeutic groups with the exception of anxiolytics, had at least
one toxicity report for concentrations below 1 µg L−1. The trophic level with the lowest concentrations
promoting toxic effects was fish, followed by invertebrates and algae, emphasizing that fish, the trophic
level closer to humans, are more prone to toxicity effects from the selected pharmaceuticals.

The results also show that pharmaceuticals with higher RQs are not the ones with higher occurrence
and that proper toxicity data is important to a correct evaluation of the ERA.

The ERA performed for the pharmaceuticals in the different aquatic compartments revealed, with
the exception of anxiolytics, RQs higher than 1, not only for WWIs but also for all aquatic compartments,
for all trophic levels and therapeutic groups.

The therapeutic groups with the highest RQs in all aquatic compartments are hormones,
antiepileptics, anti-inflammatories and antibiotics and the pharmaceuticals with the highest values are
the EE2, CAR, IBU, CIP and AZI in all aquatic compartments. Highlighting threat to all the aquatic
organisms exposed, namely on the feminization of fish by EE2 and its impact on aquatic ecosystems.
Additionally, two antibiotics are among the pharmaceuticals with higher RQs and the ERA does not
evaluate the emergence of bacterial resistance. If this issue was also evaluated it would probably
confirm why they are considered the therapeutic group with the highest risk for humans, regarding
the residues of medicinal products in the environment.

Unfortunately, the pressure of pharmaceuticals on aquatic bodies will continue to rise, and,
therefore, mitigation measures and changes in legislation must be implemented.

Supplementary Materials: The following are available online: Table S1: Ecotoxicological data on the selected
pharmaceuticals, Table S2: Occurrence data from the different aquatic compartments for environmental risk
assessment evaluation.
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