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a b s t r a c t 

Predicting biodiversity and dynamics of complex communities is a fundamental challenge in ecology. Leverag- 

ing bacterial microcosms with well-controlled laboratory conditions, Hu et al. recently performed a direct test 

of theory predicting that two community-level parameters (i.e., species pool size and inter-species interaction 

strength) dictate transitions between three dynamical phases: stable full coexistence, stable partial coexistence, 

and persistent fluctuations. Generally, communities experience species extinctions before they lose stability as 

either of the two parameters increases. 
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As we witness the deterioration of the planet’s environment and the

ecay in the services that natural ecosystems provide, the central prob-

em in ecology of understanding species coexistence and the rules that

egulate it has gained increasing importance. In particular, the study of

pecies coexistence in microbial communities is more relevant than ever

ue to technological advances that allow us to quantify their abundances

nd interactions and unveil their importance. From waste management

1-3] , to food production [ 4 , 5 ] and health regulation [ 6 , 7 ] microbial

ommunities have been found to play crucial roles in human daily ac-

ivities. 

In a recent paper published in Science [8] , Dr. Jiliang Hu and collab-

rators successfully manipulated the species pool size and the charac-

eristic inter-species interaction strength of bacterial microcosms (using

 library of 48 bacterial isolates from terrestrial environments). For the

rst time, they experimentally observed three distinct dynamical phases:

1) stable full coexistence; (2) stable partial coexistence; and (3) persis-

ent fluctuation ( Fig. 1 ). In particular, Hu et al. observed that commu-

ities with weak interactions and/or that have few species tend to have

 feasible and stable equilibrium and, as either parameter is increased

more species are added or interactions are strengthened), communities

rst lose species and then lose stability, giving way to persistent fluc-

uations. These observations conform with the trends predicted by the

nalytical calculations and computational simulations using the classi-

al generalized Lotka Volterra (GLV) model, which has been widely used

n modeling microbial communities [9-12] . 

The experimental and simulation results presented in this paper are

onsistent with previous theoretical results that predicted the loss of

tability as the community’s complexity increases [13] , proved the sta-

ility of feasible equilibria [14] , characterized the temporal fluctuations
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 15 , 16 ], and described the different dynamical behaviors and the tran-

itions between them [ 17 , 18 ]. Previous experimental works had repro-

uced some of these formalisms in communities with few species [19-

4] . Hu et al. took one step further and, for the first time, validated

hem in synthetic communities of several dozens of bacteria, control-

ing the characteristic inter-species and the initial species pool simul-

aneously and with great precision. Moreover, the authors used 16S ri-

osomal RNA to accurately sequence the communities’ composition at

he species level, advancing the observations at higher taxonomic levels

f previous studies [25-28] . These new results confirm the notions that

igher diversity can be achieved by allowing communities to fluctuate.

The experimental work presented in this paper has a very strong po-

ential to fuel new efforts that can enormously advance the field of mi-

robial ecology. For example, it sheds light on the problem of designing

nterventions aimed to control ecosystems’ behavior and prevent their

egradation, which has continually preoccupied not only the ecology

ommunity but also environmental protection groups and policy mak-

rs [29-31] . Other interesting directions in which this work will likely

erve as inspiration are to test and validate the extensibility of the results

o a larger ecological scale, to study their applicability to communities

nown to have a particular functional or interaction structure, or to ex-

and their scope to ecosystems with spatial heterogeneity [32] . 

This work serves as a shining example for the perfect combination

f ecological theory and experimental work. Its results will have pro-

ound implications for studies on the stability of complex ecosystems,

.g., the human microbiota — the collection of trillions of microbes that

ive in and on the human body. Many previous studies have reported the

ong-term stability of human gut, oral and skin microbiome [ 33 , 34 ]. In

articular, most of the variance in gut microbial time series is driven
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Fig. 1. Two community-level parameters (size of species pool 𝑆, and inter-species interaction strength 𝛼) can determine the dynamic phase in which a microbial 

community exists. a. With a small 𝑆 or 𝛼, all species can coexist in a stable equilibrium, i.e., stable full coexistence (phase 1). b. Increasing 𝑆 or 𝛼 leads to a loss of 

species (with abundances below the extinction threshold 10 −3 , indicated by the dashed line), and the survivors still coexist in a stable equilibrium, which characterizes 

the stable partial coexistence (phase 2). c. Further increasing 𝑆 or 𝛼 induces persistent fluctuations (phase 3), in which the system loses stability, and the surviving 

species display persistent fluctuations in their abundances. 
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y external day-to-day fluctuations in host and environmental factors

e.g., diet) with occasional internal dynamics as the system recovered

rom larger shocks (e.g., facultative anaerobe blooms) [35] . Overall, in

he absence of drastic interventions, e.g., repeated antibiotic treatments

r drastic diet changes, the human gut microbiota can be considered as

 dynamically stable system. But is the human gut microbiota in a phase

f stable coexistence of all species, or a phase of stable coexistence of

ome species? If the latter, how far is the human gut microbiota from the

ersistent oscillation phase described in this work? Note that the notion

f stability does not always apply to the microbiota of other body sites.

or example, it has been reported that the vaginal microbial composi-

ions of some healthy reproductive-age women changed markedly and

apidly over time, which has been associated with their menstrual cycle

36] . The notion of stability or equilibrium does not apply to this case.

hether the notion of persistent oscillation phase described in this work

pplies to this case warrants further studies. Addressing these fundamen-

al ecological questions will help us better understand the relationship

f the microbiome to human health. 
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