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Abstract: Benzimidazole-based boranils were designed and synthesized in order to assess the influ-
ence of halogen substituents on their optoelectronic properties. All compounds are photoluminescent
in solution and solid state. Compared to the free ligands, the new boranils emit at a lower wavelength,
by elimination of the excited-state intramolecular proton transfer observed with the ligands. In the
solid state, some of the boranils exhibit a deep blue emission, presenting Commission Internationale
de l’Éclairage (CIE) coordinates with an x-component of less than 0.16 and a y-component smaller
than 0.04, highly desired values for the development of blue emitting materials.

Keywords: fluorescence; benzimidazole; boranil

1. Introduction

Benzimidazole and other azole derivatives raise much interest due to their lumi-
nescence properties, and as promising candidates for the development of sensors and
solar cells [1–5]. They are receiving increasing attention due to their non-linear optical
properties [6,7] and excellent thermal stability [8,9]. Widely reported in the literature,
these compounds are also of interest because of their intense emission via excited-state
intramolecular proton transfer (ESIPT) [10–12]. Due to their optical properties, fully con-
jugated core, and possibility of functionalization of the aromatic ring, benzimidazole
derivatives are privileged ligands to develop materials with bright blue emissions [7,13].
Another advantage of these compounds is that they have an excellent coordination abil-
ity with a wide range of transition metals, and may present interesting selectivity and
sensitivity toward different metal cations [14].

Complexation with boron is widely used in the synthesis of luminescent dyes. Boron
is a nontoxic alternative to transition metals, and boron complexes have been studied
for their excellent photoluminescent properties [15–19]. The latter are cheaper than cer-
tain transition metals, and because of the strong covalent bonds with the ligand, they
may allow the synthesis of more stable luminescent materials [20–22]. For example, di-
fluoroboron complexation enabled thermally activated delayed fluorescence, which find
interesting applications in organic light-emitting diodes [23]. Benzimidazoles bearing
an ortho-hydroxy aromatic substituent are interesting fluorescent molecules (Figure 1)
because of their large Stokes shifts due to their ESIPT [24,25]. This mechanism can be
inhibited by binding a boron atom to the hydroxy group and the nitrogen atom of the
azole unit: longer emission wavelengths are lost, resulting in a hypsochromic shift [26].
Derivatives of 2-(2-hydroxyphenyl)benzothiazole 1 and 2-(2-hydroxyphenyl)benzoxazole
2 are examples of compounds explored for blue emission [27–29]. Recently, boron com-
plexes 3 incorporating imidazo[1,5-a]pyridine as a N,O-type ligand were reported [30], as
well as tetraaryl substituted imidazole boron difluoride complexes 4 [31]. Examples of re-
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ported boron complexes based on bidentate 2-(2-pyridyl)imidazole 5, and N-alkylated 2-(2-
hydroxyphenyl)benzimidazole 6, showed emissions in both solution and solid state [32,33].
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2.1. Materials and Methods 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used 
without any further purification. The final compounds were purified by crystallization. 
1H, 19F and 13C NMR spectra were recorded on Bruker 300 or 500 [300.13 MHz (1H), 282.41 
(19F), 75.47 MHz (13C) or 500.13 MHz (1H)]. Unequivocal 13C assignments were made on 
the basis of 2D Heteronuclear Single Quantum Coherence (HSQC) (1H/13C) and Hetero-
nuclear Multiple Bond Correlation (HMBC) experiments. DMSO-d6 was used as the sol-
vent and tetramethylsilane (TMS) as the internal standard. Chemical shifts δ are reported 
in parts per million (ppm) relative to TMS (δ = 0), and the values of coupling constants (J) 
are given in Hertz (Hz). High-resolution mass spectra (HRMS-ESI+) were recorded on an 

Figure 1. Azole-based organoboron compounds suitable for optoelectronic applications.

Although imidazole-phenol complexes have been studied for application in elec-
tronic materials [34], the nitrogen atom not involved in the complexation usually bears a
substituent, and if 2-(1H-benzo[d]imidazol-2-yl)phenol has been studied for boron com-
plexation [35], to the best of our knowledge no studies of their photophysical properties
have been performed.

The introduction of halogen atoms on the backbone of fluorophores is a strategy
used to promote their phosphorescence. Indeed, the heavy atom effect can promote
intersystem crossing between the excited singlet and triplet states. If a halogen bond is
formed in the solid state, the effect can be even more pronounced, allowing the observation
of phosphorescence in purely organic solids at room temperature [36]. This may find
applications in the development of organic light emitting devices.

Here, we wish to report the synthesis and characterization of boron complexes 8 based
on halogenated 2-(1H-benzo[d]imidazol-2-yl)phenol 7 (Figure 2), and the study of their
optoelectronic properties. In the design of the fluorophores, the nitrogen not involved in
the complexation was kept unsubstituted to minimize the conjugation of the backbone, in
order to produce a blue emission. Halogen atoms have been introduced on one aromatic
ring, in an attempt to promote intersystem crossing and therefore phosphorescent dyes.
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this work.

2. Materials and Methods
2.1. Materials and Methods

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and used
without any further purification. The final compounds were purified by crystallization.
1H, 19F and 13C NMR spectra were recorded on Bruker 300 or 500 [300.13 MHz (1H),
282.41 (19F), 75.47 MHz (13C) or 500.13 MHz (1H)]. Unequivocal 13C assignments were
made on the basis of 2D Heteronuclear Single Quantum Coherence (HSQC) (1H/13C) and
Heteronuclear Multiple Bond Correlation (HMBC) experiments. DMSO-d6 was used as the
solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts δ are reported
in parts per million (ppm) relative to TMS (δ = 0), and the values of coupling constants
(J) are given in Hertz (Hz). High-resolution mass spectra (HRMS-ESI+) were recorded
on an LTQ Orbitrap™ XL hybrid mass spectrometer (Thermo Fischer Scientific, Bremen,
Germany) controlled by LTQ Tune Plus 2.5.5 and Xcalibur 2.1.0. The capillary voltage of
the electrospray ionization source (ESI) was set to 3.1 kV. Melting points were determined



Materials 2021, 14, 4298 3 of 11

on a BUCHI Melting point apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) and
are uncorrected. The ultraviolet-visible (UV-Vis) spectra in dimethyl sulfoxide solutions
were obtained on a Shimadzu UV-2501 PC spectrophotometer (1 cm path length quartz
cell, Shimatzu, Nakagyō-ku, Japan) and the UV-Vis absorption spectra of the solids were
measured at room temperature on a JASCO V-560 instrument (JASCO Inc., Easton, MD,
USA). The excitation and emission spectra, also in dimethyl sulfoxide solutions, were
recorded on a Jobin Yvon FluoroMax-3 spectrofluorometer (Horiba, Lier, Belgium) and a
JASCO spectrofluorometer (JASCO Inc., Easton, MD, USA). Fluorescence quantum yields
ϕF were determined using fluorescein in 0.1 M NaOH water solution as a fluorescence
standard. The absolute emission quantum yields in the solid state were measured at room
temperature using a system (Quantaurus-QY Plus C13534, Hamamatsu, Shizuoka, Japan)
with a 150 W xenon lamp coupled to a monochromator for wavelength discrimination, an
integrating sphere as the sample chamber, and a multichannel analyzer for signal detection.
The method is accurate to within 10%.

2.2. Synthesis
2.2.1. General Procedure for the Synthesis of Ligands 7a–d

The general procedure is described here for 7a: salicylaldehyde (1.0 equiv., 1.0 mL,
9.6 mmol) and o-phenylenediamine (1.5 equiv., 1.6 g, 14.4 mmol) were mixed in methanol
(2 mL). After everything dissolved, a red solid immediately formed. Acetic acid (20 mL) was
added and the reaction mixture was stirred at room temperature for 4 h. The reaction was
quenched by adding water (60 mL), the solid was collected by filtration and washed with
methanol (3 × 20 mL). The solid obtained was purified by flash column chromatography
over silica gel, eluent hexane/ethyl acetate (2:1 v/v), to afford the product 7a as off-white
crystals after crystallization in chloroform.

2-(1H-benzo[d]imidazol-2-yl)phenol 7a [37]

The compound 7a was obtained as colorless microcrystals (1.25 g, 5.94 mmol, 62%).
M.P.: 242–243 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 13.17 (br s, 2H, OH and NH), 8.05 (dd,
3JH-H 7.8, 4JH-H 1.4 Hz, 1H, Harom), 7.66 (br s, 2H, Harom), 7.38 (ddd, 3JH-H 8.6, 3JH-H 7.1,
4JH-H 1.6 Hz, 1H, Harom), 7.30–7.27 (m, 2H, Harom), 7.05–6.99 (m, 2H, Harom). HRMS-ESI+

m/z for [C13H10N2O + H]+ calcd 211.0866, found 221.0868.

2-(1H-benzo[d]imidazol-2-yl)-4-chlorophenol 7b [37]

The compound 7b was obtained as colorless microcrystals (90 mg, 0.36 mmol, 60%).
M.P.: 306–307 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 13.27 (br s, 2H, OH and NH), 8.17
(d, 4JH-H 2.6 Hz, 1H, Harom), 7.68 (br s, 2H, Harom), 7.42 (dd, 3JH-H 8.8, 4JH-H 2.6 Hz,
1H, Harom), 7.31 (br s, 2H, Harom), 7.08 (d, 3JH-H 8.8, 1H, Harom). HRMS-ESI+ m/z for
[C13H9ClN2O + H]+ calcd 245.0476, found 245.0479.

2-(1H-benzo[d]imidazol-2-yl)-4-bromophenol 7c

The compound 7c was obtained as a brown solid (90 mg, 0.32 mmol, 63%). M.P.:
311–312 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 13.30 (br s, 2H, OH and NH), 8.29 (d, 4JH-H
2.5 Hz, 1H, Harom), 7.68 (dd, 3JH-H 5.9 Hz, 4JH-H 3.2 Hz, 2H, Harom), 7.52 (dd, 3JH-H 8.8,
4JH-H 2.5 Hz, 1H, Harom), 7.30 (dd, 3JH-H 5.9 Hz, 4JH-H 3.2 Hz, 2H, Harom), 7.02 (d, 3JH-H
8.8, 1H, Harom). 13C NMR (75 MHz, DMSO-d6) δ 157.2 (1C, C-O), 150.3 (1C, C = N), 134.0
(1C, CHarom), 128.5 (1C, CHarom), 123.2 (4C, CHarom), 119.6 (1C, CHarom), 114.7 (1C,
C-Br), 112.4 (2C, Carom) 110.2 (1C, Carom). HRMS-ESI+ m/z for [C13H9BrN2O + H]+ calcd
288.9971, found 288.9975.

2-(1H-benzo[d]imidazol-2-yl)-4-iodophenol 7d

The compound 7d was obtained as a brown solid (95 mg, 0.2 mmol, 68%). M.P.:
254–255 ◦C; 1H NMR (300 MHz, DMSO-d6) δ 13.28 (br s, 2H, OH and NH), 8.42 (d, 4JH-H
2.2 Hz, 1H, Harom), 7.67 (br s, 2H, Harom), 7.65 (dd, 3JH-H 8.7, 4JH-H 2.2 Hz, 1H, Harom),
7.30 (dd, 3JH-H 6.1 Hz, 4JH-H 2.4 Hz, 2H, Harom), 6.89 (d, 3JH-H 8.7 Hz, 1H, Harom). 13C
NMR (75 MHz, DMSO -d6) δ 157.7 (1C, C-O), 150.2 (1C, C = N), 139.7 (1C, CHarom), 134.2
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(1C, CHarom), 123.1 (4C, CHarom), 119.9 (1C, CHarom), 115.3 (1C, C-I), 110.4 (2C, Carom),
80.9 (1C, Carom). HRMS-ESI+ m/z for [C13H9IN2O + H]+ calcd 336.9832, found 336.9833.

2.2.2. General Procedure for the Synthesis of Complexes 8a–d

The typical synthetic procedure of benzimidazole-based N,O-chelated boron com-
plexes is described as following for 8a: BF3·OEt2 (3 equiv., 0.06 mL, 0.6 mmol) was added
dropwise at room temperature to a stirred mixture of ligand 7a (0.2 mmol) in anhydrous
tetrahydrofuran (2 mL), and the reaction mixture was stirred overnight. The solvent was
removed under reduced pressure and the solid obtained was washed with anhydrous
diethyl ether several times to obtain the complex.

6,6-difluoro-6,12-dihydrobenzo[e]benzo[4,5]imidazo[1,2-c][1,3,2]oxazaborinin-7-ium-
6-uide 8a [35]

The compound 8a was obtained as a white solid (62 mg, 0.2 mmol, 100%). M.P.:
348–350 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 14.65 (b s, 1H, NH), 8.05 (dd, 3JH-H 8.1 Hz,
4JH-H 1.5 Hz, 1H, Harom), 7.85 (dd, 3JH-H 6.2 Hz, 4JH-H 2.4 Hz, 2H, Harom), 7.59 (ddd,
3JH-H 7.8 Hz, 3JH-H 6.4 Hz, 4JH-H 1.3 Hz, 1H, Harom), 7.55 (dd, 3JH-H 6.2 Hz, 4JH-H 2.4 Hz,
2H, Harom), 7.21 (dd, 3JH-H 9.0 Hz, 4JH-H 0.7 Hz, 1H, Harom), 7.15 (ddd, 3JH-H 7.5 Hz,
3JH-H 6.2 Hz, 4JH-H 0.9 Hz, 1H, Harom). 13C NMR (75 MHz, DMSO d-6) δ 157.1 (1C, C-O),
146.8 (1C, C = N), 135.2 (1C, CHarom), 131.2 (2C, Carom), 129.3 (1C, CHarom), 125.9
(2C, CHarom), 120.0 (1C, CHarom), 117.3 (1C, CHarom), 114.1 (2C, CHarom), 109.2 (1C,
Carom).19F NMR (282 MHz, DMSO-d6) δ -132.2 (dd, J 27.7 Hz, J 10.7 Hz, 2F). HRMS-ESI+
m/z for [C13H9BF2N2O + H] + calcd 259.0854, found 259.0853.

2-Chloro-6,6-difluoro-6,12-dihydrobenzo[e]benzo[4,5]imidazo[1,2-c][1,3,2]oxazaborinin-7-
ium-6-uide 8b

The compound 8b was obtained as a white solid (29 mg, 0.099 mmol, 46%), M.P.:
308–309 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 14.71 (s, 1H, NH), 8.21 (d, 4JH-H 2.6 Hz,
1H, Harom), 7.85–7.78 (m, 2H, Harom), 7.61 (dd, 3JH-H 8.9 Hz, 4JH-H 2.6 Hz, 1H, Harom),
7.49–7.57 (m, 2H, Harom), 7.16 (d, 3JH-H 8.9 Hz, 1H, Harom). 13C NMR (75 MHz, DMSO
d-6) δ 155.3 (1C, C-O), 146.1 (1C, C = N), 134.5 (1C, CHarom), 132.2 (2C, Carom), 125.8 (1C,
CHarom), 125.2 (1C, CHarom), 124.9 (1C, CHarom), 123.3 (1C, C-Cl), 121.2 (1C, CHarom),
115.1 (1C, CHarom), 113.4 (1C, CHarom), 110.0 (1C, Carom). 19F NMR (282 MHz, DMSO-d6)
δ -132.1 (dd, J 25.4 Hz, J 8.7 Hz, 2F). HRMS-ESI+ m/z for [C13H8B37ClF2N2O + H] + calcd
293,0465, found 293,0466.

2-Bromo-6,6-difluoro-6,12-dihydrobenzo[e]benzo[4,5]imidazo[1,2-c][1,3,2]oxazaborinin-
7-ium-6-uide 8c

The compound 8c was obtained as a white solid (34 mg, 0.10 mmol, 81%). M.P.:
395–396 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 14.75 (s, 1H, NH), 8.34 (d, 4JH-H 2.5 Hz,
1H, Harom), 7.78–784 (m, 2H, Harom), 7.72 (dd, 3JH-H 8.9 Hz, 4JH-H 2.5 Hz, 1H, Harom),
7.49–7.58 (m, 2H, Harom), 7.10 (d, 3JH-H 8.9 Hz, 1H, Harom). 13C NMR (75 MHz, DMSO
d-6) δ 155.6 (1C, C-O), 146.0 (1C, C = N), 137.2 (1C, CHarom), 132.3 (2C, Carom), 127.8 (1C,
CHarom), 125.8 (1C, CHarom), 125.2 (1C, Charom), 123.3 (1C, C-Br), 121.6 (1C, CHarom),
115.1 (1C, CHarom), 113.4 (1C, CHarom), 110.7 (1C, Carom). 19F NMR (282 MHz, DMSO-d6)
δ -132.1 (dd, J 25.4 Hz, J 8.7 Hz, 2F). MS-ESI+ m/z for [C13H8BBrFN2O] + 317.0 (79Br), 319.0
(81Br). HRMS-ESI- m/z for [C13H8BBrF2N2O-H]-calcd 334.9808, found 334.9827.

6,6-difluoro-2-iodo-6,12-dihydrobenzo[e]benzo[4,5]imidazo[1,2-c][1,3,2]oxazaborinin-
7-ium-6-uide 8d

The compound 8d was obtained as a brown solid (0.200 g, 0.5 mmol, 79%). M.P.:
379–380 ◦C. 1H NMR (300 MHz, DMSO-d6) δ 14.68 (s, 1H, NH), 8.48 (d, 4JH-H 2.2 Hz,
1H, Harom), 7.86 (dd, 3JH-H 8.7 Hz, 4JH-H 2.2 Hz, 1H, Harom), 7.78–7.81 (m, 2H, Harom),
7.49–7.58 (m, 2H, Harom), 6.97 (d, 3JH-H 8.7, 1H, Harom). 13C NMR (75 MHz, DMSO-
d6) δ 156.1 (1C, C-O), 142.8 (1C, C = N), 142.8 (1C, CHarom), 133.6 (1C, CHarom), 123.2
(1C, Carom), 132.0 (1C, Carom), 121.7 (1C, CHarom), 125.8 (1C, CHarom), 125.2 (1C,
CHarom), 115.1 (1C, CHarom), 113.3 (1C, CHarom), 108.2 (1C, Carom), 81.6 (1C, C-I). 19F
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NMR (282 MHz, DMSO-d6) δ -132.0 (dd, J 25.4 Hz, J 8.7 Hz, 2F). HRMS-ESI+ m/z for
[C13H8BF2IN2O + Na]+, calcd 406,9640, found 406,9639.

3. Results and Discussion
3.1. Synthesis

The synthetic procedure for the synthesis of fluoroborates complexes 8a–d is described
in Scheme 1.
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Scheme 1. Synthetic procedure for the synthesis of fluoroborates complexes 8a–d.

Because benzimidazole rings are important building blocks for therapeutic drugs and
optoelectronic materials, several strategies for their synthesis are reported in the literature [38].
The most common procedures call for the cyclocondensation of o-phenylenediamine deriva-
tives with carboxylic acids under strongly acidic conditions, or with aldehydes under
oxidative conditions. Although several oxidative and catalytic reagents have been em-
ployed in the synthesis of benzimidazoles from aldehydes [39], some of these methods
have certain disadvantages, such as requiring large quantities of reagent, the high cost
of the catalysts, prolonged reaction times, occurrence of side reactions, the harsh reac-
tion conditions used, strong oxidizing nature of the reagents, or the use of toxic metal
salts. For the synthesis of ligands 7a–d we have chosen the classical cyclocondensation of
o-phenylenediamine with the corresponding salicylaldehydes 9a–d under oxidative condi-
tions, using the atmospheric oxygen as the oxidant, and promoting the cyclization reaction
by adding acetic acid. The reaction starts with the formation of a red solid (the intermediate
Schiff base), which disappears after the addition of acetic acid. The reaction solution then
became strongly photoluminescent, indicating the formation of the benzimidazole ring.

The synthesis of the fluoroborates complexes 8b–d followed the conditions described
for 8a. Because this compound was obtained with a good yield, the conditions were
maintained for the other complexes. Briefly, the ligands 7a–d were dissolved in THF and
three equivalents of boron trifluoride diethyl etherate were added at room temperature.
The complexes were obtained as off-white solids after evaporation of the reaction mixture
under reduced pressure and after several wash cycles with diethyl ether. The instability
of the complexes, which are sensitive to hydrolysis, made their isolation difficult, and
their purification should be done as quickly as possible. Attempts to purify the com-
plexes using silica gel column chromatography were unsuccessful, and a mixture of the
complex and the ligand was systematically recovered. Additionally, the hydrolysis of
the complexes was also observed during NMR characterization, if the spectrum was not
recorded just after the preparation of the solution. All compounds were fully characterized
(see Supplementary Materials).

3.2. Photophysical Properties

The absorption and emission spectra of benzimidazoles 7a–d were recorded in anhy-
drous DMSO solution and are shown in Figure 3. DMSO was selected to maximize the
solubility of both the free ligands and the boron complexes. The solutions were freshly pre-
pared and used immediately, to prevent the hydrolysis of the complexes. The photophysical
properties of compounds 7a–d are summarized in Table 1.
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1 × 10−5 mol L−1).

Table 1. Optical properties of compounds 7a–d and 8a–d.

Dye λabs (nm) 1 ε (M−1 cm−1) 2 λem (nm) 3 δλst ϕf
4 (%) Solvent

7a
333 65,600 460 127 93 DMSO
325 - 455 130 39 Solid

7b
341 76,500 466 125 95 DMSO
325 - 466 141 18 Solid

7c
341 55,700 467 126 33 DMSO
325 - 466 141 5 Solid

7d
343 46,800 470 127 4 DMSO
325 - 500 175 <1 Solid

8a
336 55,300 360 24 75 DMSO
325 - 380 55 12 Solid

8b
344 83,900 370 26 26 DMSO
325 - 420 95 2 Solid

8c
345 82,300 361 16 1 DMSO
325 - 395 70 2 Solid

8d
345 91,300 370 25 <1 DMSO
325 - 500 175 <1 Solid

1 Absorption maximum. 2 Molar absorption coefficients. 3 Fluorescence maximum. 4 In solution: determined by
comparison with fluorescein (ϕf = 0.90 in water with NaOH 0.1 mol L−1) [39] at room temperature; in the solid
state: measured using an integrating sphere, the excitation wavelength was 375 nm.

The ligand 7a exhibits a maximum absorption peak at 333 nm, which is ascribed to
the π → π * transition (Figure 3). For the halogenated derivatives 7b–d, the maximum
absorption wavelength is slightly red shifted, by ca. 10 nm. This small shift can be
related to the presence of electron withdrawing groups (–Cl, –Br and I) that decreases
the Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-
LUMO) energy gap of substituted derivatives [40,41]. In these kind of compounds, ESIPT
is strongly influenced by the nature and position of the substituents, which adjust the
strength of the hydrogen bond [42–44].

All compounds are fluorescent in DMSO solution and show large Stokes’ shifts of ca.
125 nm, characteristic of fluorophores presenting ESIPT [43,45,46]. The maximum emission
wavelength of 7b–d is also slightly red shifted (5–10 nm) moving down the halogen series
(Figure 3). The quantum yields are, however, very different, and for 7a and 7b they are
very good, 93% and 95%, respectively. The quenching observed for 7c (quantum yield
33%) and 7d (quantum yield 4%) results from the expected internal heavy atom effect [47],
which is stronger with the iodine than with the bromine substituents. All ligands 7a–d
exhibit a bright blue fluorescence under irradiation at 254 or 365 nm (Table 2).
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Table 2. Photographs of the ligands 7a–d and fluoroborates complexes 8a–d in solid state under UV
lamp.

Compound Day Light 254 nm 365 nm
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quenching of fluorescence for compounds 8a–d, and the halogen atoms may promote the 
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promotion of phosphorescence. 
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imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
emission profile is dramatically altered. Here, the halogen atoms have a more significant 
effect on the emission properties: the quantum yields of 8b–d decrease significantly 
relatively to 8a. The small Stokes’ shifts and the spectral overlap may lead to the self-
quenching of fluorescence for compounds 8a–d, and the halogen atoms may promote the 
intersystem crossing, leading to a quenching of the fluorescence instead of the expected 
promotion of phosphorescence. 
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large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
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The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the 
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
emission profile is dramatically altered. Here, the halogen atoms have a more significant 
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are displayed in Figure 3. Their maximum absorption energy is also ascribed to the π → 
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The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the 
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
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The absorption and emission spectra of boron complexes 8a–d in anhydrous DMSO 
are displayed in Figure 3. Their maximum absorption energy is also ascribed to the π → 
π * transition [48]. The emission and absorption spectra of the complexes are mirror 
images and display a small Stokes shift between 16 and 26 nm, indicating the absence of 
major internal conversions. 

The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the 
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
emission profile is dramatically altered. Here, the halogen atoms have a more significant 
effect on the emission properties: the quantum yields of 8b–d decrease significantly 
relatively to 8a. The small Stokes’ shifts and the spectral overlap may lead to the self-
quenching of fluorescence for compounds 8a–d, and the halogen atoms may promote the 
intersystem crossing, leading to a quenching of the fluorescence instead of the expected 
promotion of phosphorescence. 
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The absorption and emission spectra of boron complexes 8a–d in anhydrous DMSO 
are displayed in Figure 3. Their maximum absorption energy is also ascribed to the π → 
π * transition [48]. The emission and absorption spectra of the complexes are mirror 
images and display a small Stokes shift between 16 and 26 nm, indicating the absence of 
major internal conversions. 

The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the 
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
emission profile is dramatically altered. Here, the halogen atoms have a more significant 
effect on the emission properties: the quantum yields of 8b–d decrease significantly 
relatively to 8a. The small Stokes’ shifts and the spectral overlap may lead to the self-
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promotion of phosphorescence. 
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The absorption and emission spectra of boron complexes 8a–d in anhydrous DMSO 
are displayed in Figure 3. Their maximum absorption energy is also ascribed to the π → 
π * transition [48]. The emission and absorption spectra of the complexes are mirror 
images and display a small Stokes shift between 16 and 26 nm, indicating the absence of 
major internal conversions. 

The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the 
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the 
large Stokes’ shift observed for the ligands. The complexation of boron supresses this 
phenomenon, as the hydrogen atom is no longer present and, as a consequence, the 
emission profile is dramatically altered. Here, the halogen atoms have a more significant 
effect on the emission properties: the quantum yields of 8b–d decrease significantly 
relatively to 8a. The small Stokes’ shifts and the spectral overlap may lead to the self-
quenching of fluorescence for compounds 8a–d, and the halogen atoms may promote the 
intersystem crossing, leading to a quenching of the fluorescence instead of the expected 
promotion of phosphorescence. 

The absorption and emission spectra of boron complexes 8a–d in anhydrous DMSO
are displayed in Figure 3. Their maximum absorption energy is also ascribed to the π→ π

* transition [48]. The emission and absorption spectra of the complexes are mirror images
and display a small Stokes shift between 16 and 26 nm, indicating the absence of major
internal conversions.

The ESIPT (Figure 4) witnesses the transfer of the proton from the hydroxy to the
imidazole-N moiety through a pre-existing hydrogen bond, and is responsible for the
large Stokes’ shift observed for the ligands. The complexation of boron supresses this phe-
nomenon, as the hydrogen atom is no longer present and, as a consequence, the emission
profile is dramatically altered. Here, the halogen atoms have a more significant effect on
the emission properties: the quantum yields of 8b–d decrease significantly relatively to
8a. The small Stokes’ shifts and the spectral overlap may lead to the self-quenching of
fluorescence for compounds 8a–d, and the halogen atoms may promote the intersystem
crossing, leading to a quenching of the fluorescence instead of the expected promotion of
phosphorescence.
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spectra of the ligands present the same profile, the complexes do not. The emission 
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possible intermolecular interactions in the solid state, such as π···π stacking, which may 
be responsible for both the red shift and the quenching observed. 

 
Figure 5. Emission spectra of ligands (red) and complexes (blue), in DMSO solutions (1.0 × 10−5 M, 
full line) and solid state (dotted line). 

All compounds exhibit a blue emission in solution and solid state (Figures 6 and 7). 
In solution, 8b, with a moderate quantum yield of 26%, exhibits a deep blue emission with 
CIE coordinates of (0.16, 0.02) with a y-component smaller than 0.04, that is highly 
desirable and follows the specifications of the European Broadcast Union (EBU) television 
(0.15, 0.06) [49,50]. In the solid state, all complexes emit a blue color under a UV lamp 
(Table 2). Both 8a (0.16, 0.04) and 8b (0.16, 0.08) present a deep blue color in the solid state. 

Figure 4. ESIPT fluorescence of benzimidazol derivatives.

Figure 5 depicts the emission spectra of complexes and ligands in the solid state and
in DMSO solution. The emissions of the complexes are mirror images of their absorption,
with structured emission bands, which is not the case for the ligands. This has been
observed before for similar fluorophores [32]. While the solid state and solution emission
spectra of the ligands present the same profile, the complexes do not. The emission
maxima of the latter are red shifted in the solid state relatively to solution. This indicates
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possible intermolecular interactions in the solid state, such as π···π stacking, which may be
responsible for both the red shift and the quenching observed.
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All compounds exhibit a blue emission in solution and solid state (Figures 6 and 7).
In solution, 8b, with a moderate quantum yield of 26%, exhibits a deep blue emission
with CIE coordinates of (0.16, 0.02) with a y-component smaller than 0.04, that is highly
desirable and follows the specifications of the European Broadcast Union (EBU) television
(0.15, 0.06) [49,50]. In the solid state, all complexes emit a blue color under a UV lamp
(Table 2). Both 8a (0.16, 0.04) and 8b (0.16, 0.08) present a deep blue color in the solid state.
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4. Conclusions

Boron complexes based on halogenated 2-(1H-benzo[d]imidazol-2-yl)phenol were
synthesized and characterized. All the halogenated benzimidazole complexes exhibit a
blue emission in both DMSO solution and solid state, with moderate quantum yields,
demonstrating that keeping the conjugation minimal is an adequate strategy to tune the
emission color. On the other hand, the introduction of halogen substituents lowered their
quantum yields, and did not promote their phosphorescence in the solid state, making
these compounds less promising for electroluminescence. Unfortunately, the instability
of the complexes, which are sensitive to hydrolysis, may prevent their applications as
emissive materials. Nevertheless, some of them present a deep blue emission, making
them interesting starting points for the development of emissive materials.
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