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Abstract

Deep learning (DL) is a recently proposed subset of machine learning methods that has gained extensive atten-
tion in the academic world, breaking benchmark records in areas such as visual recognition and natural lan-
guage processing. Different from conventional machine learning algorithm, DL is able to learn useful representa-
tions and features directly from raw data through hierarchical nonlinear transformations. Because of its ability
to detect abstract and complex patterns, DL has been used in neuroimaging studies of psychiatric disorders,
which are characterized by subtle and diffuse alterations. Here, we provide a brief review of recent advances
and associated challenges in neuroimaging studies of DL applied to psychiatric disorders. The results of these
studies indicate that DL could be a powerful tool in assisting the diagnosis of psychiatric diseases. We con-
clude our review by clarifying the main promises and challenges of DL application in psychiatric disorders, and
possible directions for future research.

Key words: deep learning; machine learning; neuroimaging; autoencoders; convolutional neural networks;
deep belief networks; mental disorders; psychiatric disorders

Introduction

Despite the increase in imaging studies on psychiatric
disorders over the past decades,1 the impact of imag-
ing evidences on clinical practice remains limited. Most
recently released DSM-5, the diagnostic manual for men-
tal illness, does not incorporate the results of imaging
studies.2 The main reason for this is that most previ-
ous imaging studies adopted case-control comparison
strategy, which compares the imaging features between
patients with a disease of interest and individuals with-
out, to see if statistically significant differences can
be derived.3,4 However, this research strategy has a

number of limitations that hampered the translation of
imaging findings to clinical applications. (1) Inter-group
comparisons assume that the tested variables are nor-
mally distributed and the variance is consistent within
each group, yet many studies show highly heterogeneity
exists in the patient population.5 (2) Case-control com-
parison can only reveal differences between groups, not
allowing statistical inferences at the level of the individ-
ual.

Converting group differences into imaging biomark-
ers that can be used to assist diagnosis or progno-
sis requires estimating the inter-group and intra-group
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Figure 1. Three variables with varying degrees of inter-group variation (A, B, C). A possible joint distribution of two variables with small intra-
group difference in their independent distribution (D).

variance of the imaging feature between the two groups.
For example, three variables shown on the left side of
Fig. 1 are all statistically different between groups, but
only the variable shown in Fig. 1A is optimal for an
imaging biomarker as intra-group difference is large and
inter-group variance is small. In contrast, the variable
shown in Fig. 1C with small intra-group difference and
large inter-group variance will lead to poor diagnostic
specificity and sensitivity if used as an imaging marker.
Also case-control comparisons tend to be massive uni-
variable statistical comparisons, thus leaving out the
interaction between features. It may be the case that
the distribution of one individual feature does not dif-
fer between two groups, but the joint distribution of two
or more features does. As shown in Fig. 1D, the inde-
pendent distributions of variables X1 and X2 are basi-
cally of no difference or slight difference between two
groups, but a much better separation can be obtained if
joint distribution of both variables is considered. All of
these problems are not solved by traditional uni-variate
case-control comparative research strategy.

Machine learning (ML) algorithms that have been
widely used in email filtering, merchandise recommen-
dation, and speech recognition are expected to solve the
above mentioned problems. In general, ML can be classi-
fied into supervised learning and unsupervised learning.
Supervised learning algorithms tend to summarize rules
or patterns from already labeled data and form discrim-
inatory models that can make predictions on new data;
unsupervised learning algorithms explore possible struc-
tures in a data set based on the distribution of data points

in unlabeled data. However, traditional ML was unable to
work on raw image data and requires the use of expert
design techniques to extract and construct informative
features (a step known as “feature engineering”). In pre-
vious studies, researchers defined a variety of features
from neuroimages and fed them into machine learning
algorithms to construct disease classification or predic-
tive models.6

The input features can be extracted from gray matter,
such as cortical thickness7 or gray matter density mea-
sured by brain mophometry8 or white matter measured
by diffusion MRI, such as anisotropy fraction (FA), mean
diffusivity (MD).9 Others have used brain network con-
structed from diffusion MRI or task/resting-state func-
tional MRI or derived network parameters for disease
discrimination models.10–12 Unlike case-control compar-
ative studies, the performance of machine learning stud-
ies is assessed primarily by their ability to predict new
data samples, with commonly used metrics including
accuracy, sensitivity, specificity, and area under the ROC
curve (AUC).13

While feature engineer-based ML is still popular in
the neuroimaging community, the recently proposed
deep learning (DL)14 has gained considerable attention in
academia and industry. With significant improvement in
various areas such as image classification, object detec-
tion, speech recognition and natural language process-
ing, DL is superior to traditional machine learning in
two aspects. First, compared with traditional machine
learning algorithm, DL replaces artificial feature engi-
neering with unsupervised or semi-supervised feature
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learning and hierarchical feature extraction algorithms
to identify the optimal representation automatically.
This important capability overcomes the subjectivity
in feature extraction and selection, especially in cases
with extremely high feature dimension or when prior
knowledge in feature selection is not conclusive. Another
important characteristic of DL is the depth of models. By
applying a hierarchy of non-linear transforms, DL is able
to model very complex data patterns compared to tradi-
tional shallow models, which makes DL more suited for
learning complicated patterns and subtle differences in
data, especially the image data of human brain.

Overview

Due to limited ability to model complex data patterns
and the need for complex and subjective feature engi-
neer steps, conventional machine learning is experienc-
ing bottlenecks in neuroimaging community. Given the
advantages of DL,14 researchers have begun to turn to
this newly proposed method and have made numerous
attempts at publicly available datasets.

The common workflow of DL in the application to
neuroimaging involves data acquisition and labeling,
model training and testing. First, the whole dataset is
split into a training set and a test set according to a cer-
tain ratio (usually 5:1 to 4:1). The training set is used
to optimize the weights of each node, aiming to cap-
ture characteristic pattern in the data. Next, the test set
is fed into the trained model to evaluate whether the
model can correctly predict the labels of the test set.
In most neuroimaging studies, the available of sample
size is limited, and model performance can be evalu-
ated using a cross-validation approach in addition to the
hold-out validation described above. In cross-validation,
training and test run several times with different data
partition scheme to get the average performance of the
model. Information from each sample was fully utilized
by participating both training and test phase. In the
neuroimaging community there are currently two main
types of DL application, depending on the type of input:
(1) artificially constructed features, with the traditional
ML algorithm being replaced by deep neural networks,
such as deep belief network; (2) raw image data, fed into
image-specific deep neural networks, such as convolu-
tional neural network.

Commonly used architecture of deep neural
networks

According to our review, we found the following three
types of deep neural network and their variants to be the
most widely used in the field of neuroimaging of psychi-
atric disorders.

Autoencoder
Due to the inherent high-dimensional nature of brain
image data, a feature simplification approach is needed
before model training. This is the essential work of

autoencoder. Autoencoder is a specific deep neural net-
work comprised of two main components.15 One half is
the encoder, which learns to generate low-dimensional
representation of original input, while the other half
is the decoder, which learns to use low-dimensional
representations to reconstruct the data as close to the
original input as possible (Fig. 2A). Meaningful features
are extracted during the training process. With varia-
tions in loss function, variants of autoencoder can be
obtained by changing the loss function, typically sparse
autoencoders and denoising autoencoders.16 The sparse
autoencoder adds a regularization term in the loss func-
tion that constrains the node in hidden layer to out-
put mostly zeros and a small number of non-zeros. The
denoising autoencoder artificially adds noise to the input
data and then tries to reconstruct the original input to
improve the robustness to noise. Moreover, higher level
of abstraction of original input can be learned by hier-
archically stacking multiple autoencoders. The learned
low-dimensional feature vector is then used as input for
the classification layers, such as fully connected layers,
for supervised learning.

Deep belief networks
Deep belief networks (DBNs) is the first model that suc-
cessfully solve the optimization problem of deep neural
networks.17 The shallow neural network called restricted
Boltzmann machine (RBM) is the building block of DBN.18

A typical RBM is consist of a visible layer and a hidden
layer, with full connections between the layers but no
connections between the nodes within the layers. The
hidden layer is trained to capture the stochastic repre-
sentation from the visible layer. Several RBMs are con-
catenated together to form a DBN, where the hidden
layer of the previous RBM is the visible layer of the next
RBM, and the output of the previous RBM is the input
of the next RBM (Fig. 2B). DBN is trained by a “layer-by-
layer” approach, starting from the input layer by treat-
ing two adjacent layers of the network as an RBM for
unsupervised training, after which the hidden layer of
the previous RBM is treated as the visible layer of the
next RBM. Once the layer-by-layer unsupervised training
is complete, the model will be fine-tuned with back prop-
agation training.

Convolutional neural networks
Early deep neural networks are not suitable for han-
dling image or vision-related tasks, as spatial informa-
tion is lost by stretching the image into a vector, and
too many parameters are inefficient and difficult to train.
Inspired by the human visual nervous system, convolu-
tional neural networks (CNNs) are proposed for vision
related learning task.19 A CNN contains two special lay-
ers: convolutional layer and pooling layer (Fig. 2C). Within
the convolutional layer, the convolutional kernels work
like visual neurons, sliding sequentially across the image
responding a restricted area in the image each time. Mul-
tiple convolution kernels are often used simultaneously
to perceive different types of information in an image.
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Figure 2. Commonly used architecture of deep neural Network: autoencoder (A), deep belief networks (B), and convolutional neural networks (C).

Weights in convolutional kernels are learned during the
training process. The pooling comes after convolution.
The essence of pooling is down sampling, which takes
the input feature map and compresses it in some way.
One of the more commonly used pooling processes is
called max pooling which sends the maximum in the
restricted area to the next level. With convolution and
pooling operation, CNN gains the ability to effectively
reduce large image to small image while preserving the
characteristics of the image. More abstract features can
be learned from image by alternating stacking of convo-
lution and pooling layers.

DL studies of psychiatric disorders

In order to identify previous applications of DL in neu-
roimaging studies of psychiatric disorders, a search was
conducted on 15 July 2020 across several databases
(PubMed, IEEE Xplore, Science Citation Index, and Google
Scholar) using the following search strategy: (“deep
learning” OR “deep neural network” OR “convolutional
neural network” OR “deep belief network”) AND (psychi-
atry OR psychiatric OR “mental disorder” OR schizophre-
nia OR psychosis OR bipolar OR depression OR autism OR
“Attention-deficit/hyperactive disorder” OR ADHD) AND
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(neuroimaging OR MRI OR “Magnetic Resonance Imag-
ing” OR fMRI OR “functional Magnetic Resonance Imag-
ing”). This review mainly focuses on MRI research as it
is a routine clinical examination without ionizing radia-
tion. The initial search yielded a total of 54 articles. Then,
we screened these articles for studies that had applied a
deep learning method to neuroimaging data to investi-
gate a psychiatric condition. We finally identified a total
of 13 articles relevant to the current review.

All the identified articles are diagnostic studies to
discriminate patients from healthy controls or discrim-
inate between patient subtypes (Table 1). Most of them
used a neuroimaging modality of resting-state functional
MRI (rs-fMRI), followed by high-resolution structural MRI
(sMRI); a few studies used a combination of the two
modalities. The vast majority of studies were carried out
in schizophrenia, ADHD and autism, diseases with chal-
lenge in diagnosis and public available dataset.

Schizophrenia

Schizophrenia is a chronic and serious mental disorder
of unknown etiology with varying symptoms, includ-
ing auditory and/or visual hallucination, disorganized
speech or behavior. Some patients may experience cogni-
tive impairment during the course of the illness. As there
are no specific symptoms or clinical tests for schizophre-
nia, early diagnosis and intervention of schizophrenia
are extremely difficult. Therefore, the objective diagno-
sis of schizophrenia through brain imaging has attracted
considerable attention.

By utilizing structural MRI data, Pinaya et al. applied
deep belief network (DBN) to features extracted from
brain morphometry data for discriminating between
healthy controls (N = 83) and patients with schizophrenia
(N = 143).20 The DBN achieved a classification accuracy
of 73.6% within study cohort, but the accuracy reduced
to 56.3% on an external data set consisted of 32 cases
of first-episode psychosis, indicating that the patterns
learned from patients with chronic schizophrenia and
healthy controls were not suitable to classify patients
with first episode psychosis. Therefore, it cannot be
determined whether the features learned by deep neural
networks are caused by disease or by the long-term med-
ication. In another local structural MRI study, Latha et al.
applied DBN only to ventricle region of a public data base
which contains structural images from 72 patients with
schizophrenia and 74 controls.21 Finally, their proposed
method achieved classification accuracy of 90% and area
under ROC curve of 0.899.

Abnormalities of functional connectivity at resting
state in patients with schizophrenia were reported
in massive literatures, thus showing its potential as
biomarker of clinical diagnosis. Han et al. applied autoen-
coder to resting-state connection matrix from 39 early-
onset schizophrenia patients and 31 healthy controls.22

The classification accuracy reached 79.3% (87.4% for sen-
sitivity and 82.2% for specificity).

However, DL study on small sample is susceptible to
over-fitting and poor generalizability. Zeng et al. applied
a similar research strategy to a multi-site resting state
fMRI data set from seven sites, which contains 357
schizophrenic patients and 377 controls.23 Accuracy of
85% was achieved in multi-site pooling classification and
81% in leave-site-out transfer classification, respectively.
The learned functional connectivity features reveal the
dysregulation of the cortical-striatal-cerebellar circuit in
patients with schizophrenia.

Most DL studies on schizophrenia used numerical
features calculated from certain predefined proce-
dures. This approach has the advantage of allowing
easily control dimensionality of input features, but
inevitably lead to the loss of potentially important
information. Convolutional neural networks can
automatically learn to discriminate features from
image data. It can thus overcome the limitation of
using human engineered numerical features as input.
Qureshi et al. applied 3D CNN to maps of resting-state
networks generated from independent component
analysis (ICA) of public available 72 patients with
schizophrenia and 72 healthy controls.24 Their approach
achieved a classification accuracy of 98.09% ± 1.01%
ten-fold cross-validated, and the AUC of 0.9982 ±
0.015.

Attention-deficit/hyperactive disorder

ADHD is a neurodevelopmental disorder character-
ized by age-inappropriate inattention, hyperactivity, and
impulsivity. Due to the complexity of its pathological
mechanism, there is a lack of objective diagnostic meth-
ods up to now. Imaging-based parameters may provide
a useful objective adjunct to clinical psychiatric evalua-
tion for diagnosing and subtyping ADHD. All four stud-
ies included here used imaging data from the ADHD-
200 Consortium, a data-sharing design to understand the
neural basis of ADHD.25

A fully connected deep neural network was applied to
functional connectivity to identify children with ADHD
from healthy controls.26 The model successfully dis-
criminated ADHD patients from healthy controls with
an accuracy of 90%, while the two subtypes (ADHD-
inattentive and ADHD-combined) were discriminated
with an accuracy of 95%. The connection between frontal
areas and the cerebellum is considered the most discrim-
inating feature. To take full advantage of the functional
and structural information in the ADHD-200 database,
Zou et al. designed a multi-modality CNN architecture to
combine fMRI and sMRI features and achieved an accu-
racy of 69.15%.27 In contrast with artificially constructed
features, Mao et al. constructed a spatio-temporal DL
method called 4-D CNN based on granular comput-
ing which was trained based on derivative changes in
entropy, and could be used to calculate the granularity
at a coarse level by stacking layers.28 The evaluations
showed that the proposed method was superior to the
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traditional methods on the ADHD-200 dataset (accuracy:
71.3%, AUC: 0.80).

Novel architecture of deep neural network was
designed specificly for ADHD-200 data. Riaz et al. pro-
posed an end-to-end deep learning architecture to diag-
nose ADHD.29 The model takes pre-processed fMRI time
series as input and outputs a diagnosis, and is trained
end-to-end using back-propagation and achieves classi-
fication accuracy of 73.1% (specificity 91.6%, sensitivity
65.5%). The model also suggests that the frontal lobe car-
ries most discriminant power in classifying ADHD.

Although the abnormalities in patients are subtle,
these studies show that DL can extract meaningful infor-
mation from brain images to classify ADHD from con-
trols, and more notably, to distinguish ADHD subtypes.
However, it is worth noting that the samples in ADHD-
200 are highly imbalanced, especially in terms of sub-
types. With the exception of Riaz et al. who reported
sensitivity and specificity,29 all other studies reported
model performance using the overall accuracy. This met-
ric is simply the proportion of samples correctly clas-
sified, and therefore the classes imbalance is not con-
sidered. Given the highly imbalance in study popu-
lation, the results reported in these studies may be
exaggerated.

Autism spectrum disorder (ASD)

With regards to autism spectrum disorder, most DL stud-
ies carried on the publicly available Autism Brain Imag-
ing Data Exchange (ABIDE) dataset.30 Using resting-state
fMRI data of 505 ADS patients and 530 matched controls
from ABIDE, Heinsfel et al. applied autoencoder to flat-
ted lower triangle of functional connectivity matrix gen-
erated using CC200 functional parcellation atlas.31 Com-
pared with the control group in the dataset, this study
achieved 70% accuracy in diagnosing ASD versus control
patients in the dataset. The patterns emerging from the
classification show an inverse correlation of brain func-
tion between anterior and posterior areas of the brain,
consistent with the evidence of anterior-posterior dis-
ruption in brain connectivity in ASD.32

Also using resting-state fMRI but from a single site
(55 ASD patients and 55 TD controls) of ABIDE I, Guo
et al. proposed deep neural network architecture with
two stacked sparse autoencoder for feature extraction
and selection as well as a softmax layer for classifica-
tion.33 In addition to the proposed DNN, a feature selec-
tion network based on stacked autoencoder was inserted
before classification network. Results show that the best
classification accuracy of 86.36% is generated by the DNN
with feature selection network consisting of 3 hidden
layers and 150 hidden nodes.

Some studies used structural image to construct the
brain network as DL input. In the study carried by Kong
et al., the T1w images from ABIDE I were segmented by
FreeSurfer software. The gray matter volume of each seg-
mented region is defined as the node of the network, the
differences between each pair of segmented regions is

defined as the edge. Then, the “edges” were ranked and
the first 3000 were fed into the same DNN proposed by
Guo et al. The method they proposed has an accuracy of
90.39% and the AUC of 0.9738 for ASD/HC classification.34

However, the results are over-optimistic as the feature
selection was conducted on the whole dataset, which
would cause information leak from test data to the train-
ing process.35

Another study combined both structural and func-
tional MRI to discriminate ASD in young children. With
185 individuals (116 ASD and 69 HC), aged between
5 and 10 years old from ABIDE, the best combina-
tion comprised rs-fMRI, GM, and WM for DBN of depth
3 with 65.56% accuracy (sensitivity = 84%, specificity
= 32.96%, F1 score = 74.76%) obtained via 10-fold
cross-validation.36 However, the result may be unreli-
able as the features are mean intensity of weighted
images, which may be affected by many factors, such
as field strength, coil configuration even the weight of
participant.

Challenge
Small sample size and risk of overfitting

Deep learning models have millions of weights to be
learned during training phase, thus require a large
amount of samples to learn complex patterns compared
to traditional machine learning methods. But how many
samples are meaningful for DL in neuroimaging studies
remains inconclusive, possibly due to the limited stud-
ies currently available. If a deep network is trained on
very limited samples, especially image data with high
dimension, it is possible that the trained model works
perfectly on training set but poorly in test set, a prob-
lem known as “overfitting”.37 The best solution to over-
fitting is collecting more training samples. Large image
datasets of psychiatric disorder are not easy to obtain
for reasons. Firstly, high-resolution structural imaging
and functional MRI are not included in routine clinical
scans. The purpose of routine clinical scans is to check
whether there are organic lesions in patients with psy-
chiatric disorder. Limited in modality and resolution, the
images from routine scan may not carry sufficient infor-
mation for disease discrimination. Hence, prospective
studies with designed scanning protocol can only pro-
vide small datasets. Secondly, sharing medical data has
become increasingly difficult over the past few years due
to increasingly strict laws on patient privacy. Institu-
tions therefore have to take a longer time to accumulate
enough data for applying DL analysis.

Overfitting can also be avoided by using regulariza-
tion methods such as Drop-out, which is achieved by
modifying the neural network structure in real time dur-
ing training.38 Each node of the neural network is given
a probability to be temporarily ignored during training.
In each training epoch, the ignored nodes are randomly
selected based on the preset probability. As a result, mul-
tiple smaller neural networks are actually trained. This
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mechanism will ensure that the neural network does
not “over-match” the training samples, which will help
mitigate the overfitting problem. Another approach that
can mitigate overfitting is data augmentation, which can
generate more equivalent data based on limited real
data according to certain transform.39 For conventional
vision task, geometric transformations, including flip-
ping, rotating, cropping and scaling, are the main imple-
mentation of data augmentation. However, it has been
reported that geometric transformation is not suitable
for medical imaging.40 Several studies have attempted to
use generative adversarial network based methods for
medical image augmentation and have been success-
fully applied to skin lesions41 and liver cancer.42 However,
whether this method is applicable to brain images of psy-
chiatric disorders remains to be investigated. While data
augmentation does not add substantive information, it
allows the trained deep neural network to be robustness
to body positioning and individual differences. Trans-
fer learning is also a way to mitigate small sample size
problem.43 Two stages of model training are involved in
transfer learning. First the model was pre-trained on a
large-scale benchmark dataset, and then fine-tuned on a
small but study specific dataset. However, the application
of transfer learning in medical imaging remains limited,
mainly because there is currently no widely recognized
benchmark dataset for medical imaging.

Lack of standardization in data acquisition and
uneven data quality

Most studies in current review used public available
datasets, such as ADIBE and ADHD-200. Although the
sample size in these datasets is relatively large, the data
are quite heterogeneous as they are from multiple sites.
Each site is different in terms of field strength, coil con-
figuration and imaging sequences. It has been proved
that the performance of machine learning models can be
affected by imaging parameters. Moreover, echo planar
imaging (EPI) sequence, which is widely used in diffusion
and functional MRI, tends to be sensitive to magnetic
field inhomogeneity and highly susceptible to image dis-
tortion and signal loss at the junction of tissues and air,
such as the frontal and temporal lobes,44 which are the
very brain regions that psychiatric research focuses on.
Although many correction methods have been proposed
in the field of MR physics and medical imaging,45 the
need for additional scans and complex calculations has
prevented these corrective methods from being widely
used in clinical oriented research. In addition, the anal-
ysis of diffusion MR data has special requirements for
image acquisition, and many previous studies have used
diffusion tensor imaging (DTI) technique to investigate
the structural connectivity in patients with psychiatric
disorders.46 But the limitation of the tensor model is
the inability to resolve fiber crossing,47 so the connec-
tom constructed based on tensor model may miss a
large number of possible connections. Meanwhile, it has
been suggested that the functional connectivity not only

based on correlations of low-frequency signals but also
on high-frequency correlations.48 The resting-state fMRI
acquisition protocol with repetition time (TR) equal or
greater than 2 seconds used in most previous studies
cannot reconstruct such high-frequency functional con-
nectivity.

Perspective

In view of the above-mentioned challenges and pitfalls,
the future development of imaging studies of psychiatric
disorders can be carried out in the following directions.

Establishment of standard image database of
psychiatric disorders

The image is not only the picture but also the data
that can be mined.49 The establishment of a high qual-
ity database is an important work for the further devel-
opment of DL based imaging research of psychiatric
disorders. A predictive model with satisfactory perfor-
mance must be built on high quality data, so stan-
dardized data acquisition protocols and databases are
the primary guarantee for the translation of imaging
research to clinic practice. Researchers all over the world
have worked extensively to establish standard MRI brain
image acquisition protocols, the most influential one is
the protocols recommended by the Human Connectome
Project (HCP).50 The HCP is the state-of-art large-scale
research program funded by the National Institutes of
Health (NIH) with the participation of more than 100
researchers from 10 research institutions. This project
aims to understand the principles of how the human
brain works via structural and functional connectiv-
ity. The HCP recommends scanning protocols including
structural diffusion MRI, resting-state fMRI, task fMRI, as
well as a set of tools for processing the raw images, like
tissue segmentation, distortion correction and model fit-
ting.51,52

The HCP recommends high resolution anatomical
T2w scans, using the T1w/T2w ratio to map myelin con-
tent across the cortical surface, thereby non-invasively
distinguishing many architectonic areas (Fig. 3A, B, C).
For diffusion MR, HCP recommends to perform multi-
ple diffusion weighted directions and multiple shells
acquisition with reversed phase encoding directions for
both distortion correction45 and constrained spherical
deconvolution model fitting, which is able to resolve
“fiber crossing” (Fig. 3D, E).53 Also, diffusion acquisi-
tion can be accelerated by deep learning methods to
significantly reduce the total scan time.54,55 With the
advance of pulse sequence, the multi-band technique
can significantly increase the spatial and temporal res-
olution of functional MRI.56 HCP recommends to use this
technique to capture high-frequency connectivity in the
brain. In addition, for multi-center studies, data harmo-
nization across sites and devices should be performed to
remove non-diseases related confounders before pooling
together.57,58
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Figure 3. Images acquired by HCP recommended protocols. High-resolution T1 weighted (A) and T2 weighted (B) volume. Myelin map generated
by T1w/T2w ratio (C). Fiber tractography generated from tensor (D) and constrained spherical deconvolution (E) model, “fiber crossing” can be
solved by CSD model correctly.

However, these recommended scanning protocols are
designed for healthy individuals with considerable long
scan time. Patients with psychiatric disorder may have
a much lower tolerance level than healthy people, and
therefore the scanning protocol needs to be simplified or
set break point at appropriate locus, while ensuring that
sufficient information for analysis is captured.

Automated deep learning (autoDL)

The development and implementation of DL methodol-
ogy into medical imaging research still faces a main chal-
lenge. Although there are well-established deep learn-
ing frameworks, such as TensorFlow and Pytorch, apply-
ing these frameworks still requires researchers to input
code to call functions in these libraries. We also find that
most studies included in this review were done by com-
puter experts but not clinical researchers. The successful
application of deep neural network to a given problem
crucially relies on artificial intervention in many steps,
such as data preparation, architecture selection, param-
eter tuning. Especially, the optimal architecture of deep
neural network is not estimated as part of the learning
process but is defined as a priori. As the complexity of
these tasks is often beyond non-DL-experts, autoDL was
recently proposed in the field of computer science that
has the potential to help non-experts use deep learning
off-the-shelf.59

For classification tasks, autoDL automatically
matches generic neural network architectures with
a given imaging dataset, fine-tunes the network with
the goal of optimizing discriminative performance,
and creates a prediction model as output. Clinical
researchers without coding experience can quickly

implement an appropriate DL workflow to their data
and estimate the performance of the generated model.
With few medical imaging studies using this technique,
autoDL is still an active research field with no fixed rules
currently.

Graph/geometry deep learning

DL has been successfully applied to several types of
input, like feature vectors or images, however, all these
data are Euclidean data. In the field of neuroimaging
research, there are also a large amount of non-Euclidean
data. The most common non-Euclidean data are con-
nectom and brain surface. Connectom is essentially a
graph. In most of the previous studies, connectom was
first converted into binary network by predefined thresh-
olds, then a series of characteristic parameters were cal-
culated as the subsequent input features according to the
graph theory. This kind of feature construction, which
relies on manual intervention, will inevitably result in
information loss and bias.

The brain surface is indeed a graphic, an extension
of the graph, consisting of a large number of polygonal
meshes. Compared with image volume, mesh is a more
superior data structure to represent the shape of objects
without the interference of noise in images (Fig. 4). The
previous brain surface based analysis only performed
univariate statistical analysis at each vertex of the mesh,
which did not fully exploit the advantages of mesh data
in shape representation.60

The previous DL techniques are unable to input non-
Euclidean space data directly. Recently, a substantial
amount of research has been devoted to the application
of DL methods to graphs, resulting in beneficial advances
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Figure 4. Image volume (A) and mesh of brain surface (B).

in graph deep neural network.61 This new technology
successfully redefines important operations such as con-
volution and pooling in non-Euclidean space, so that the
graph or mesh can be used directly as the input and
output the prediction results, avoiding loss of informa-
tion in the data preparation stage to the greatest possi-
ble extent. Although this technique has not been widely
implemented in the field of neuroimaging, with the sup-
port of large datasets, it is expected to replace the con-
ventional voxel-based morphometry and graph theory
analysis in classification research.

Summary

Although DL techniques have been explored extensively
in various aspects of medical imaging, they are still in
a relatively early stage, and most applications are still
simple two- or three-classification problems. In the clin-
ical practice of psychiatric disorders, clinicians are often
faced with more complex situations. Therefore, for a long
time in the future, DL cannot replace the physician’s
position in diagnosis or treatment decision-making. But
the combination of imaging examination and DL will
gradually develop into a laboratory test to assist the diag-
nosis of psychiatric disorders, providing clinicians with a
solid basis for precise and efficient diagnosis.

Despite many challenges, the rapid development of
DL algorithms and computer hardware, the establish-
ment of standardized medical image databases, and
the formation of multi-center data sharing mechanisms,
make it possible to study more complex clinical problems
and obtain models with better generalization perfor-
mance. The combined development of psychiatric imag-
ing and machine learning will be the trend, and will
become an indispensable tool for clinical diagnosis and
treatment of psychiatric diseases in the future.
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