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Abstract: This paper presents a recently developed variant of phase-resolved Optical Coherence
Elastography (OCE) enabling non-contact visualization of transient local strains of various origins
in biological tissues and other materials. In this work, we demonstrate the possibilities of this new
technique for studying dynamics of osmotically-induced strains in cartilaginous tissue impregnated
with optical clearing agents (OCA). For poroelastic water-containing biological tissues, application
of non-isotonic OCAs, various contrast additives, as well as drug solutions administration, may
excite transient spatially-inhomogeneous strain fields of high magnitude in the tissue bulk, initiating
mechanical and structural alterations. The range of the strain reliably observed by OCE varied
from ±10−3 to ±0.4 for diluted and pure glycerol, correspondingly. The OCE-technique used made
it possible to reveal previously inaccessible details of the complex spatio-temporal evolution of
alternating-sign osmotic strains at the initial stages of agent diffusion. Qualitatively different effects
produced by particular hydrophilic OCAs, such as glycerol and iohexol, are discussed, as well as
concentration-dependent differences. Overall, the work demonstrates the unique abilities of the
new OCE-modality in providing a deeper insight in real-time kinetics of osmotically-induced strains
relevant to a broad range of biomedical applications.

Keywords: optical coherence elastography; optical clearing; cartilage; osmotic strain

1. Introduction

In the last decades, elastographic imaging technologies that emerged in 1990s have
become widely used in various biomedical applications. Such elastographic modalities
are based on some methods enabling structural imaging; presently, these are first of all
medical ultrasound (US) [1] and magnetic resonance imaging (MRI) [2]. The main medical
application of elastographic techniques is characterization of tissue stiffness (i.e., shear
or Young’s moduli), for which the basic US or MRI-based imaging is supplemented by
some auxiliary mechanical action (either quasi-static or transient) applied to the studied
tissues/organs. The transient-type (shear-wave-based) elastography is implemented in
several US platforms, enabling ultrasonic visualization of the propagation of auxiliary
shear waves in the tissue. In these methods visualization of genuine local strains is not
required at all. For elastographic techniques based on quasi-static auxiliary loading, an
essential stage of elastographic characterization involves mapping of local slowly varying
strains in the studied region. This approach is often called “strain elastography”, so that
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methods of strain visualization are often called “elastography” even if strains are not
necessarily produced by mechanical loading. Visualization of strain requires a series
of structural scans of deformed materials/tissues to be obtained. The displacements of
particles in the compared images obtained are then recalculated into genuine strains by
finding local gradients of the interframe displacements. Due to inevitable measurement
errors at both stages (initial reconstruction of displacements and subsequent finding of
strains) the resolution of the resultant strain maps is at least several times (and even an
order of magnitude) lower than the initial resolution of structural images. Correspondingly,
for the conventional US-based and MRI-based elastographic imaging, the resolution is in
the order of several millimeters and even lower.

In this context, another visualization technique, Optical Coherence Tomography (OCT),
opens up new possibilities, occupying an intermediate niche between high-resolution opti-
cal microscopy and medical US in terms of resolution and size of the imaged area. OCT
scans represent the distribution of optical-backscattering strength; in their appearance, OCT-
scans are rather similar to US-scans, but enable much higher, micrometer-scale resolution.
In view of this similarity, by analogy with elastographic approaches that were proposed in
the beginning of the 1990s in medical US, utilization of OCT for studying microscopic de-
formations of biological tissues and assessing their biomechanical properties was proposed
~two decades ago in the seminal paper by J. Schmitt [3]. However, the practical realization
of these ideas appeared to be rather challenging, so that breakthroughs in these directions
were demonstrated only in the last 5–6 years. Quite often the above-mentioned applications
of OCT discussed in [3] are termed optical coherence elastography (OCE), although actually
this term is used to denote quite different particular extensions of OCT. Indeed, there are
significant differences between visualization of displacements of scatterers and mapping
of genuine local strains. There are also significant differences among different approaches
to OCT application for assessment of elastic moduli of biological tissues. In comparison
with US-based and MRI-based elastographic methods OCT-based elastographic techniques
opened a broad range of previously unavailable possibilities, due to the intrinsic much
higher resolution of OCE. Since OCT in recent decades has become a standard imaging
technique in ophthalmology [4], it is not surprising that OCT-based elastographic strain
imaging has also been tested in various ophthalmic applications [5–10], and presently is
actively studied for oncology-related applications as well [11–13].

Some OCE-related works, starting from the pioneering paper by J. Schmitt, by anal-
ogy with US-based strain elastography were oriented on utilization of OCT for mapping
displacements of scatterers using correlational techniques in various forms, e.g., [14,15]. It
was supposed that the initially reconstructed spatial distribution of displacements could
then be used for determining local strains by estimating the spatial gradients of the dis-
placements [16–19]; in other variants strain was mapped in a non-quantitative manner
directly using the strain-induced decorrelation [20,21]. An even larger group of works in
OCT-based studies of local strains has been stimulated by paper [22] in which utilization of
the phase-resolved approach to estimating local strains was proposed. In the present study,
we use an advanced realization of phase-resolved OCT-based strain mapping. The method
used is termed “vector” because it operates with the OCT-signals represented as vectors in
the complex-valued plane. The phased-resolved realization of mapping of local strains and
the features/advantages intrinsic to its vector form are explained in more detail in the “Ma-
terials and Methods” section. The main point is that OCT-based mapping of local strains
enables much higher spatial resolution than that of conventional medical elastography
methods (US-based and MRI-based). Thus, OCE opens previously unavailable prospects
to quantitatively visualize in real time the osmotic-strain dynamics accompanying pen-
etration of diffusion fronts with a spatial resolution of several tens of micrometers with
total observation time of hundreds of seconds and, if necessarily, hours. The characteristic
sizes of the imaged area in OCE are the same as in structural OCT imaging, in the order of
several millimeters laterally and ~millimeter in the tissue bulk.
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Since OCT-based strain imaging may be used to visualize more than just mechanically
produced strains, it has been tested to visualize some other types of deformation processes,
e.g., tissue drying, heating, etc. [23]. An important class of processes accompanied by
mechanical deformations is related to various osmotic phenomena. In particular, such
deformations of osmotic origin develop in biological tissues subjected to application of
non-isotonic solutions. Among substances demonstrating osmotic activity, much attention
is paid to the so-called optical clearing agents (OCAs). Impregnation of biological tissues
with such agents is widely used (both in vitro and vivo) to reduce optical scattering in
the tissue and thus to increase the penetration depth for optical waves used in various
method of optical diagnostics (optical microscopy, OCT, generation of harmonics, etc.) [24].
Substances used as clearing agents may be either isotonic or non-isotonic in comparison
with the natural interstitial liquids in the tissue. The same chemical agents (such as glycerol),
depending on the concentration, may demonstrate strongly different osmotic properties.
Spatially-resolved quantitative characterization of osmotically-induced deformations is
a challenging problem, in the context of which the application of the recently developed
OCT-based methods of strain mapping opens rich, previously unavailable possibilities.

In this paper we report the first systematic application of OCT-enabled strain map-
ping for studying osmotic deformations in cartilaginous samples for various types and
concentrations of OCAs.

2. Materials and Methods
2.1. Phase-Resolved Strain Imaging Technique

Since the direct transfer of correlation-based approaches from medical US strain
elastography to OCE appeared to be not very efficient, paper [22] proposed an alternative,
phase-resolved approach to the realization of OCT-based strain mapping. The approach
is based on the well-known relationship between the axial interframe displacement U of
scatterers and the resultant variation Φ = φ2 − φ1 in the OCT-signal phase:

U =
λ0Φ
4πn

(1)

In this equation, λ0 is the central wavelength of the illuminating OCT signal in vacuum,
and n is the refractive index of the examined tissue.

The OCT signal characterized by amplitude A and phase φ can be represented as the
complex-valued quantity a:

a = A exp(iφ) = A cos(φ) + iA sin(φ) (2)

The compared reference and deformed pixelated OCT scans can be represented as a complex-
valued matrices a1(m, j) = A1(m, j) exp[iφ1(m, j)] and a2(m, j) = A2(m, j) exp[iφ2(m, j)],
respectively. The interframe phase variation Φ(m, j) = φ2(m, j) − φ1(m, j) can then be
found as:

Φ(m, j) = arg{a2 · a∗1} (3)

Here, the asterisk * denotes phase conjugation; the matrices are multiplied in the
element-by-element sense. The interframe phase variations Φ(m, j) found in this way
correspond to the local axial displacements U(m, j) = λ0Φ(m, j)/(4πn).

An important limitation of this approach is that the unambiguous relationship be-
tween phase variation and scatterer displacement takes place only for sufficiently small
displacements, below 1/2 of the wavelength λ0/n in the tissue. For larger displacements,
phase wrapping occurs, so that the displacement based on the observed phase variations
yield can be reconstructed only with an uncertainly proportional to an integer number of
λ0/2n. To exclude this uncertainty, it is necessary to perform procedures of phase unwrap-
ping. To reconstruct axial strains ∂U/∂z based on the displacements estimated in this way,
in [20] it was proposed to estimate the axial gradients ∂Φ/∂z ∝ ∂U/∂z of phase variations
using the least squares method for determining the slope of the dependence Φ(z).
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Later, an alternative “vector method” of estimating the phase-variation gradients
was proposed in [25–27], where this approach is described in detail. The name “vector
method” reflects the fact that it treats the OCT signal with amplitude and phase as vectors
in the complex-valued plane without the necessity of explicitly single out the phase till the
very last step of the transformations. Besides significantly better computational efficiency,
this method enables a number of other advantages: it is intrinsically very robust with
respect to various measurement errors (the method is intrinsically able to suppress the
strongest phase errors ~π rad. and gives convenient possibilities for amplitude weighting
to reduce the especially noisy contributions of small-amplitude pixels). This method also
obviates the necessity of phase unwrapping even if the displacements are essentially on the
supra-wavelength scale.

In combination with the application of pre-calibrated layers of translucent silicone,
the vector method of strain mapping enables convenient possibilities for realization of
compression OCE (C-OCE) to realize spatially resolved mapping of the Young’s modulus of
the tissues examined [28–30]. Discussion of numerous examples of biomedical applications
of the Young’s modulus mapping based on C-OCE can be found in the recent review [23].
However, the possibility of spatially-resolved mapping of strains based on the analysis
of interframe phase variations, even independently of elasticity mapping, opens very
interesting prospects for studying a broad range of processes. In particular, non-trivial
features of thermally-produced strains in collagenous tissues were found in [31]. The
OCE-based strain mapping was also specially adapted for detection and characterization
of slow deformations related to relaxational phenomena [32,33], this adaptation being
important for longitudinal visualization of slow-rate stages of OCAs penetration in the
results presented below.

2.2. Preparation of Cartilaginous Samples and Strain-Measurement Conditions

As a representative example of poroelastic collagenous tissue, the transverse sections
of porcine costal cartilage were used. Transverse cartilage sections contain approximately
parallel oriented collagen fibers and their bundles [34] which are symmetrically distributed
around the cartilage length axis (Z), so that the tissue can be considered more or less
structurally isotropic in the Z-plane. The porcine costal cartilages of 5th–8th ribs were taken
from a local butcher immediately after slaughter and stored frozen at −15 ◦C. Thawing
was performed stepwise: first, at 4 ◦C for at least 8 h, then at room temperature for 1 h.
Prior to the measurements, all samples were equilibrated in saline solution containing
0.9% NaCl (~300 mOsm). The cross-sectional cylindrical cuts of cartilages with d ≈ 10 mm
and thickness 2.0 mm were prepared using a scalpel and metal punch tool. The axes of
cylinders were oriented along the Z-axis of OCT scans.

The osmotically-induced strain dynamics were studied using a custom-made spectral-
domain OCT setup operating at a central wavelength of 1300 nm (~90 nm spectral width),
20 kHz rate of obtaining spectral fringes, and 20 Hz rate of acquiring B-scans covering 4 mm
laterally and 2 mm in depth (in air). Initially, a series of complex-valued OCT-scans of the
tissue experiencing deformations was acquired and, if necessary, the inter-B-frame interval
could be increased to improve conditions for studying sufficiently slow deformations, as
discussed in [32,33]. The series of OCT-scans thus acquired enabled depth- and laterally-
resolved 2D maps of interframe- and cumulative strains to be obtained using the estimation
of local axial gradients of interframe phase variations [23,31]. The samples were placed in
an equilibrating bath (Figure 1) and at the start of OCT recording a ~1 mm layer of solution
was poured onto the cartilage surface.
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Figure 1. Experimental set up for osmotically-induced strain monitoring.

Glycerol-water solutions of various concentrations, and the commercially available
contrast agent Omnipaque-300 (300 mg/mL iodine, 39.2% mass iohexol solution) GE
Healthcare (Cork, Ireland), were used as osmotic agents. To study the strain associated
with elution of an osmotic agent, cartilage samples were equilibrated in 50% glycerol
for 48 h and then the measurement was performed by pouring saline solution into the
experimental bath. The obtained data were analyzed using custom-made software for
strain visualization based on the vector algorithm described in [25,26,32] for mapping
strains. The processing-window, over which the strain was estimated and visualized
in elastographic B-scans, had the sizes 100 × 100 µm in the axial and lateral directions.
Consequently, the spatial resolution in the elastographic images corresponded to ~1/2 of
the processing window, i.e., ~50 µm in both directions. Since the strain distribution in the
studied samples had approximately plane-layered structure oriented laterally, for plotting
depth dependences of strain, lateral averaging could be made over a larger size to suppress
small-scale fluctuations in the lateral direction. Correspondingly, the depth dependences
extracted from the initially plotted strain maps was made using the averaging window
with Z-X dimensions of ~80 × 800 µm. The interframe time interval was 1 s. The results
are given as maps of cumulative strain representing the results of summation of interframe
strains as a function of the observation time.

All measurements were repeated at least 3–4 times, the results reflect the representative
findings. The following features of the measurements can be pointed out: (1) strain
fields were obtained for central cross sections (with the diameter 8–10 mm) of costal
cartilage, whereas the sites near the tissue borders with non-isotropic structure along the
Z-axis were not studied; (2) the clearing effect of the substances used, especially that of
highly concentrated glycerol solutions, additionally decreased the level of the OCT signal
received from the deeper layers of the sample, therefore the depth analysis was limited
to 600–900 µm below the sample surface; (3) for low-concentrated glycerol solutions and
glycerol elution experiment with the osmotically-induced strain not exceeding 10−4, the
averaging window size was increased to ~160 × 800 µm when plotting the depth profiles
to decrease the influence of noise; (4) the osmotic-strain dynamics in the present study
correspond to the non-equilibrium regime in which the observed strain is accompanied
with the mass fluxes outside and inside the sample, since the time of continuous observation
is 10–15 min from the moment of the sample comes into contact with the solution.
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3. Results
3.1. Types of Osmotic Effects

Various osmotic effects studied by OCE are presented in Figure 2. For sample groups
shown in (Figure 2a–c), when the solute concentration is not strongly hypertonic, a thin
region (~60–80 µm) of subsurface shrinkage can be seen as an intense blue-color layer just
below the sample surface in the cumulative strain images (Figure 2(a-2,b-2,c-2)). Such an
effect can be attributed to the diffusion of near-surface tissue macromolecules into solution
from the cut surface. The mean amplitude of this subsurface shrinkage was determined to
be 0.05 ± 0.02 for isotonic (Figure 2a) and hypotonic (Figure 2b) saline and 0.06 ± 0.02 for
7% weakly hypertonic glycerol solution (Figure 2b).
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Figure 2. Effects of solutions of different osmolarity on strain kinetics and amplitude inside cartilage
samples. The row numbers from 1 to 4 correspond to the following images: (1) structural OCT scans;
(2) the corresponding cumulative-strain in-depth maps, (3) strain distribution along the dashed lines
in the images in row (2); (4) “waterfall” diagrams of strain dynamics along dashed lines in (2). The
columns from (a–d) correspond to: (a) saline solution (0.9% NaCl, 300 mOsm) applied to cartilage
samples in the native state, time of observation 300 s; (b) saline solution (0.9% NaCl, 300 mOsm)
applied to cartilage samples preliminarily saturated with 50% glycerol, time of observation 600 s;
(c) 7% aqueous weakly hypertonic glycerol solution, time of observation 600 s; (d) 35% strongly
hypertonic aqueous glycerol solution, time of observation 600 s. Notice that for row 3 showing the
depth profiles for the cumulative strain, the depth is counted from the rectangular markings shown
in the images in row 2.

For distilled water (data not shown), the subsurface shrinkage value is slightly lower:
0.04 ± 0.01, which indicated the possible participation of solute molecules (ions) in desorp-
tion mechanism of macromolecule residues from the cut surface.

Further estimations of osmotic effects were made for the deeper layers in the tis-
sue bulk located below the above-mentioned thin layer of the subsurface shrinkage in
Figure 2(a-2–c-2). In Figure 2(d-2), for which the glycerol concentration exceeds ~30%, the
amplitude of the osmotic-induced subsurface dilatation (shown by the red color) reaches
0.1–0.15 and completely masks the much weaker subsurface shrinkage effect visible in
Figure 2(a-2–c-2).
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The 0.9% aqueous solution of NaCl (saline) applied to the samples is used as an
isotonic solution in medicine to maintain hydration of biological tissues with minimal
alterations of their physiologic osmolarity. Here saline is used as a reference substance to
visualize strain dynamics in cartilage in nearly-isotonic conditions (Figure 2a). According
to the cumulative strain image (Figure 2(a-2)), the strain depth profile in Figure 2(a-3) and
2D “waterfall” kinetics shown in Figure 2(a-4)) the maximal accumulated strain for 300 s of
equilibration of cartilage in saline does not exceed 3·10−4 and for depths smaller ~300 µm
this small strain is negative, whereas for deeper layers, it changes its sign from negative to
positive (keeping the small magnitude).

This result is only slightly different from that for distilled water (data not shown), for
which the small magnitude of ~2·10−4 of maximal accumulated strain was observed with
the sign changing from negative to positive at a depth of about 400 µm. The effect of weak
axial shrinkage of subsurface layers within 300–400 µm is probably caused by the imbalance
of overall polymer concentration in cartilage and solution: when a sample with a certain
polymer concentration is put into polymer free solution the diffusion of polymers should
occur from cartilage to solution to equalize their concentrations in the two phases [35,36].
The diffusion of macromolecules from the subsurface layer of cartilage is easier than
that from the bulk where they are held by intermolecular bonds. Therefore, only a thin
subsurface layer of intense shrinkage in diluted solutions is observed in the immediate
vicinity of the surface where the tissue structure is damaged by the surgical cut (see the
narrow blue near-surface layer in Figure 2(a-2,b-2,c-2)). On the contrary, for somewhat
deeper layers, the shrinkage effect is comparatively weak: for the times of observation of
300–600 s, small molecules can be washed out by the diffusion of the interstitial fluid.

The comparison between the effect of saline and distilled water indicates that the
balance of the ionic component of saline does not strongly affect the observed axial strain
for equilibration times of several minutes (up to 10–15 min) and does not make a noticeable
contribution to the rapid and strong deformation effects caused by application of the highly
concentrated solutions used in this study (an example of which is shown in column (d) of
Figure 2).

In this context, Figure 2c,d shows examples of the effect of glycerol solution on the
strain dynamics in cartilage for two essentially different glycerol concentrations. Glycerol
is known as one of the most common clearing agents for various applications [24,37]. Its
clearing mechanism is well understood for the skin and other collagenous tissues [38–40].
For high concentrations, it implies strong dehydration, shrinkage, and more regular pack-
aging of the tissue collagen [40]. For clearing of costal cartilage, glycerol was used in [41],
showing a noticeable tissue shrinkage effect for 1.5 h immersion time.

In the present study, the glycerol-induced strain field in costal cartilage is studied for
the first few minutes of immersion. In terms of non-equilibrium strain evolution imme-
diately after the application of clearing solutions, the two principal effects are observed
depending on glycerol concentration. For diluted glycerol solutions (see Figure 2(c1–c4)),
the dilatation effect prevails throughout the bulk of the tissue. On the contrary, for high
glycerol concentrations, the alternating-sign strain profile occurs (Figure 2(d1–d4)). For
7% (w/w) glycerol (Figure 2(c1–c4)) the maximal observed strain reaches +2.5·10−3 for
600 s of observation, which is an order of magnitude higher than that obtained for saline
(Figure 2(a1–a4)) or for distilled water. The application of 35% (w/w) glycerol results in a
dilatational strain with the magnitude ~0.2 at smaller depths and then for deeper layers,
shrinkage with strain magnitude ~0.1 occurs (see Figure 2(d-2,d-3)). These effects are two
orders of magnitude stronger than for 7% (w/w) glycerol ((see Figure 2(c-2,c-3))) and three
orders of magnitude stronger than for saline (Figure 2(a-2,a-3)).

Simultaneous strong dehydration-induced shrinkage in the bulk and subsurface di-
latation of the tissue caused by the hyperosmotic effect of high-concentration glycerol can
be seen in Figure 2d. According to the cumulative strain image (Figure 2(d-2)) and depth
strain profile (Figure 2(d-3)), the dilatation (positive strain) is observed within ~320 µm
subsurface layer and is followed by a deeper layer of strong shrinkage (negative strain).
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The more detailed description of glycerol concentration effects on alternated-sign strain
evolution is given in the next section.

The weak hypotonic regime was modeled by application of saline to the cartilage
samples preliminary saturated with 50% (w/w) glycerol solution (Figure 2b). Here, the
thin layer of subsurface intense shrinkage is observed similarly to a near-isotonic case
(compare Figure 2(a-2,b-2)) and the strain amplitude is 0.05 ± 0.02, which is similar to that
for cartilage in the native state immersed in saline (Figure 2a). The main flux process in
hypotonic conditions shown in Figure 2b should be the equalizing of glycerol concentration
in interstitial fluid and solution. The diffusion of glycerol molecules is slower than that of
water. Additionally, the tissue permeability for glycerol was estimated to be three orders
of magnitude lower than for water [38]. Thus, the total amplitude of negative strain for
600 s is not high, with an extreme value of about −1.6· 10−3 (Figure 2(b-2)). However, such
hypotonic-induced shrinkage is 5 times more intense than the shrinkage effect observed for
saline equilibration.

3.2. Strain Dependence on Glycerol Concentration

Various characteristic scenarios of strain evolution in cartilage depending on glycerol
concentrations are shown in Figure 3 in more detail. Four glycerol concentrations are
considered: 7, 25, 35, and 100% (w/w). The cumulative strain images for 600 s of observation
are given in Figure 3a–d. Kinetics of strain minima and maxima for the solutions are given
in Figure 3e,f, correspondingly. Dynamics of the strain extreme values show a particularly
strong dependence on concentration (Figure 3e,f). For glycerol concentrations from 7 to
35%, the maximum of axial dilatation increases by two orders of magnitude from ~0.002
to 0.2 (Figure 3f) and the magnitude of axial shrinkage (negative maximal strain) due to
dehydration effect also strongly varies, from −0.006 for 25% glycerol to −0.14 for 35%
(Figure 3e). The pure 100% glycerol solution especially demonstrates a strong increase in
the dehydration effect: the negative strain for 100% glycerol is −0.36, which is ~2.5 times
more intense than that for 35% solution (Figure 3e). The difference in the positive strain
intensity increases somewhat smaller, only two times from 0.20 for 35% concentration to
~0.4 for 100% glycerol concentration (Figure 3f).

Depth dependences for strains corresponding to various glycerol concentrations are
shown in Figure 4a–d. One can see that when the dehydration effect is comparatively weak,
as for 7% and 25% glycerol concentrations (Figure 4a,c), the axial expansion is fairly uni-
formly spread throughout the observable depth to ~700–800 µm. The dehydration-related
shrinkage is observed in subsurface layer not exceeding 100 µm, though for 25% glycerol it
appears to be significantly stronger than for 7% (Figure 4a,c). For 35% glycerol solution,
expansion (positive strain) is not so uniformly distributed as for smaller concentration; on
the contrary, it is localized in a thinner subsurface layer down to ~450 µm, whereas the
dehydration maximum is clearly observed at deeper layers and does not manifest itself at
small depths just below the surface (Figure 4b). For 100% glycerol, the subsurface minimum
again becomes well manifested. The limited depth range of positive strains is also well
visible, such that the strain profile crosses the neutral line at two depths: at ~100 µm from
negative to positive strain and at ~400 µm from positive to negative strain.

Figure 5 shows the time evolutions of the depth positions of strain minima and maxima
for different glycerol concentrations. For high concentrations of glycerol that cause strong
dehydration, the positive strain maxima are located within a fairly narrow depth interval
~100–200 µm below the surface, slowly migrating to the deeper layers (Figure 5a,b). In
comparison to the strain maxima, the kinetics of strain minima is more intense: their
depth positions move from ~200 to ~700 µm for 100% glycerol (Figure 5a) and from 200
to 800 µm for 35% glycerol (Figure 5b). In both cases, the neutral line position in the
course of this evolution remains approximately in the middle between the positions of the
strain minimum and maximum. For low glycerol concentrations and absence of strong
dehydration, the strain maxima remain steadily located in the vicinity of ~200 µm depth
(Figure 5c,d). At ~400 s of observation the strain-maximum position gets shifted towards
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~450 µm for 7% glycerol (see Figure 5d). However, it is clear from Figure 4a that for 7%
solution, the distribution of the positive strain is rather broad and flat, so that the shift
visible in Figure 5d corresponds to only a slight modification of the shape of the broad
maximum shown in Figure 4a. The negative strain for low glycerol concentrations from
the start of observation is shifted towards far deeper layers, closer to the detection limit
(Figure 5c,d), so that for 7% glycerol, the position of the too deep minimum cannot be
determined correctly. For 25% solution, the strain minimum is better detectable and is more
or less steadily located between 700 and 900 µm (Figure 5c). The neutral line for 25% is also
shifted to the deeper layers towards the strain minima, which indicates the prevalence of
axial extension throughout the observable thickness (Figure 5c).
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The data for the neutral line of zero strain are shown by solid black curve.

3.3. Strain Dependence on the Type of Osmotic Agent

Glycerol is a strong hyperosmotic agent which at high concentrations may affect not
only the tissue cell viability, but even the integrity of collagenous structure. The molecular
weight of glycerol is relatively small, at Mw = 92 g/mol, meanwhile it has three OH
groups with the ability to form hydrogen bonds and effectively bond water molecules.
Small concentrations of glycerol are ubiquitously used as additives in the pharmaceutical
and cosmetics industries. However, the clearing ability of low concentrations of glycerol
is usually not sufficient [38], therefore it is important to consider agents with higher
concentrations and moderately stronger osmotic effects.

In Figure 6, the effect of ~40% aqueous iohexol (Mw = 821 g/mol) solution (Omni-
paque) on cartilage is shown. The alternated-sign strain visible in Figure 6b is qualitatively
similar to the case of glycerol solutions of 35% and 100% concentrations. The absolute
value of strain in Figure 6c does not exceed 0.15. The dehydration effect of Omnipaque is
substantially less pronounced, so that the magnitude of strain minimum at 600 s amounts to
−0.06 (Figures 3e and 6c) and is located comparatively close to the surface: Figure 5e shows
that both extreme values lay within ~300 µm under the surface. The zone of dehydration
with negative osmotic strain spreads towards ~500 µm depth (Figure 4e).
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4. Discussion

In the present work, the ability of the recently developed modality of phase-resolved
OCT to map osmotically-induced deformations in biological tissue has been demonstrated.
The method allows one in a non-contact manner to obtain strain distributions resolved in
the tissue depth and laterally during diffusion of optical clearing agents. Alterations of
tissue mechanics under the action of various OCAs have been studied for decades [24].
However, the majority of works were focused on the differences between equilibrated
states: native tissue and tissue saturated with corresponding OCA to the equilibrium
state [42–45]. Only a few recent works analyzed what happens during the clearing process,
when the OCA diffusion is accompanied by evolution of mechanical moduli [46]. In [46],
the effect of 20% glucose on hyaline-type cartilaginous tissue was investigated and it was
found that, for the first 10–15 min of diffusion, the tissue stiffness rapidly decreased, while
for the rest of the 110 min it gradually restored its initial value. This finding demonstrates
further evidence of the importance of the processes occurring in the first few minutes
of immersion.

As an instructive example of a study related to the effect of non-isotonic solutions on
a collagenous tissue, one can mention paper [47], where phase-sensitive OCT was used
to observe the de-swelling/swelling osmotically-induced phenomena occurring in eye
cornea tissue following storage for corneal transplantation. In this study the osmotically
active hypertonic substance was dextran solution rather than the OCA solutions used in the
present study. However, for comparison with the present study, it should be pointed out
that in [47] quite large strains of the tissue were also observed, because the studied corneal
samples could change their thickness ~two times during the osmotic de-swelling/swelling.
These data agree with the cumulative strain values up to several tens per cent observed
in the present study. Another generically similar observation in [47] is that during the
observation interval the tissue may behave non-monotonically, for example demonstrating
initially decrease in the thickness and then increase. Similarly to the present study, the
strongest deformations were observed at the first stages of the osmotically-induced filtration
of the liquids. Finally, alternating-sign deformations were observed both depending on the
elapsed time and observation depth within the cornea thickness.

In the present work it is also shown that deformations of the highest magnitude are
observed within the first few minutes of glycerol diffusion, and proper understanding of
this effect is important from the viewpoint of the overall efficiency and biological safety of
the clearing procedures, and also because in some cases it may affect the tissue integrity.

In this context, one should distinguish the average (“global”) deformations of the
macroscopic tissue volume subjected to optical clearing and local spatially non-uniform
strain variations caused by high gradients of OCA concentration. The first process involves
the alteration of the macroscopic parameters of the tissue, such as thickness and length, or
bulk moduli [41–45,48]. For instance, cartilaginous tissue demonstrates extensive shrinkage
after ~1.5 h application of clearing solutions of glycerol and glucose [41] which is already
available for visual assessment and can be directly measured by conventional optical
microscopy ruler with sufficient accuracy. The knowledge of such a durable cumulative
effect of OCA on the tissue structure is of the upmost importance for estimation of its
properties at the final stage of clearing, which is close to the equilibrium state in terms of
diffusion. However, in the first minutes of OCA diffusion, the distributions of water and
agent concentrations are strongly non-uniform [49,50]. Additionally, the so-called diffusion
fronts occur, which may be accompanied by intense straining and dramatically alter tissue
mechanics, though the existence of these transient effects is comparatively short-term [47].
These non-equilibrium effects are insufficiently studied up to the date due to the complexity
of theoretical analysis and the lack of physical methods enabling their direct observation.
As shown in the present work for cartilage, and in [47] for the cornea, such osmotically-
induced non-uniformities of strains and displacements can emerge on a scale of tens of
micrometers. In fact, the effects of the non-equilibrium strain fields on cell viability, matrix
integrity and sustainability of different tissues have never been directly observed before. It
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may reasonably be expected that the duration of a non-equilibrium state is dependent on
the size of a particular agent molecule. This expectation is supported by the present study,
in particular Figure 3f, which demonstrated that the osmotically-induced positive strain
fields in the case of small glycerol molecules become nearly saturated within 200–350 s
intervals, whereas for Omnipaque, strain still continues to gain intensity (Figure 3f). For
dextran, a high molecular weight compound studied in [47], it takes tens of hours to proceed
through maximum strain intensity caused by dehydration and dextran integration. It was
shown previously on isolated chondrocytes and 3D cartilaginous scaffolds that alterations
of micromechanical properties of the matrix tissue surrounding cells may influence to
a great extent to the cell signaling and overall tissue homeostasis [51–53]. The recently
found mechanotransduction pathways in cartilage have attracted increasing attention
in recent years [54]. Moreover, osmotic stress may influence the metabolic activity of
cells [55], in extreme cases leading to cell death [56]. In this regard, the method of direct and
non-destructive monitoring of transient mechanical strains demonstrated in the present
work may greatly contribute to the evaluation of the particular correlations between the
osmotically-induced strain duration and intensity and biochemical response of the tissue.
Moreover, it is noteworthy that the method is not limited to cartilaginous tissues, and the
scope of its applications can be significantly expanded to other tissues and organs where
superficial scanning is accessible.

Therefore, time-resolved monitoring of the effects of a particular OCA concentration
on strain evolution within the tissue in the first minutes of diffusion can provide addi-
tional important data on the clearing mechanisms and reveal possible adverse effects of
OCA administration.

Note also that according to Equation (1) for the used phase-sensitive OCE modality,
the axial displacement is directly proportional to interframe phase variation. In principle,
this phase variation depends not only on mechanical displacements of scatterers, but
potentially may be affected by variations in the refractive index. Thus, the strain evolution
maps shown in Figures 2, 3 and 6 rigorously speaking should reflect the interplay of these
mechanical and optical effects. When refractive index is constant, i.e., when the influences
of variations in the interstitial fluid concentration and volumetric content are negligible, the
observed phase variations depend only on interframe displacements of scatterers, and their
axial derivative represents the actual axial strain. However, in a non-equilibrium regime
when gradients of OCA concentration are fairly large, certain variations in the refractive
index may occur. It is the mismatch of refractive indices between the interstitial fluid and
solid tissue components, first of all, collagen fibrils, which is mainly responsible for the
tissue opacity in visible and near infrared spectral range [57]. The effect of optical clearing
by application of hypertonic OCAs, such as glycerol, is mostly related to reduction in the
refractive indices mismatch throughout the tissue, thus providing deeper penetration of
optical radiation [24,57].

In this context it is important to understand to what degree the refractive index
variations during the first steps of the clearing process may affect the apparent strain
evolution in the phase-sensitive OCE images. The most dramatic drop of n may occur
on the border of fluid and dried solid matter (protein): from 1.330 to 1.598, respectively,
according to the data presented in Table 2 of [57]. This accounts for approximately 20%
of the total n variation. In fact, the experimental conditions of the present study exclude
the potential total dehydration of the tissue, for it is always saturated with liquids of
different contents: saline, glycerol-water solutions, or Omnipaque. Furthermore, glycerol-
water concentrations less than 30% w/w do not cause intense dehydration of collagen
fibers [38]. The refraction diagram of water-glycerol system corresponds to the gradual
increase in n with increasing glycerol concentration (0–99% w/w) from 1.33 to 1.47 [58].
Thus, the most dramatic variation in n that may be expected near the interface with pure
glycerol amounts to ~10%. However, this may be true only for extremely high glycerol
concentration about 100% (w/w) (Figure 3d), whereas in other cases the mismatch should
be significantly lower. For example, the refractive index of 25% (w/w) glycerol is only
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slightly different from that of water, 1.36 versus 1.33, respectively [58]; for 35% glycerol the
ratio is 1.38/1.33. From 10 to 100% (w/w) glycerol concentration n value grows by ~10%,
whereas the observed positive-signed strain maximum in cartilage increases by a factor of
160 when glycerol concentration is increased from 7 to 100% (w/w) (Figure 3f). For strain
minima, the negatively signed strain magnitude grows by a factor of 65 (Figure 3e) versus
8% growth of corresponding n values from 25 to 100% (w/w) glycerol [58]. Therefore, with
the change of glycerol concentration, the observed strain magnitude varies more strongly
than the accompanying variation in the refractive index n caused by possible protein
dehydration. Indeed, for the diffusion of pure glycerol presented in Figure 3d, the observed
cumulative-strain magnitude for 5 min of immersion exceeds 0.4 for positive-signed strain
and −0.3 for negative-signed strain (Figure 3d–f), which is a noticeably greater than even
the extreme estimate of variation in n and far more intense variation than real alterations of
n for the reported experimental conditions.

The investigation of the glycerol diffusion coefficient in cartilage gives 10−9 m2/s for
90% (v/v) glycerol [59], so that for 5 min the expected effective penetration depth of glycerol
is about ~

√
Dt, i.e., ~0.6 mm. This value is comparable to the maximal observable depth

in the OCE experiment. Thus, during the interval of observation, glycerol is expected to
penetrate almost the whole observable thickness of cartilage. In view of this, the alternating-
sign strain evolution at the subsurface level for highly hyperosmotic glycerol solutions
(>30% w/w) most probably is not associated with the solute “integration” into the tissue
matrix, whereas the kinetics of tissue dilatation for diluted glycerol (<25% w/w) may reflect
the real process of glycerol diffusion (Figure 3a,c and Figure 4a,c).

Consequently, the alternating-sign nature of strain evolution in cartilage during diffu-
sion of highly hyperosmotic glycerol solutions (>30% w/w) is most probably connected
with complex processes of the interstitial structural transformations including matrix de-
hydration manifesting as tissue shrinkage and subsurface swelling. Concerning possible
reasons of this one can argue that, first, the hindering for glycerol permeation into the tissue
matrix due to its dehydration-related shrinkage leads to its anomalous accumulation at the
subsurface level and subsequent tissue dilatation. The second reason can be connected with
the structure of the cartilaginous matrix itself. The porous matrix of hyaline-type cartilage
consists mainly of collagen and proteoglycan aggregates integrated with each other accord-
ing to the network principle [60]. Proteoglycan molecules possess the negatively charged
sulfate and carbonate groups that are fixed and in normal conditions are compensated with
the positive ions of interstitial fluid. The violation of matrix electroneutrality due to, for
instance, compressive load and outflow of the fluid with compensating ions from the com-
pressed area, gives rise to a series of forces striving to restore the equilibrium, which include
streaming and diffusion currents, changing of the macromolecule conformation, and even
piezoelectric effects [61]. Considering the phenomena of alternating-sign character of strain
in the subsurface cartilage layer during the first minutes of glycerol diffusion observed in
the present study, one can speculate that the strong subsurface dehydration of cartilage
caused by the application of glycerol may also promote the outflow of positively-signed
ions that can no longer compensate for the negatively-signed cartilage proteoglycan groups.
Further, the electrostatic repulsion of the “naked” charges of proteoglycans may cause the
process similar to that known as cartilage osmotic regulation [60,62,63]. The electrostatic
repulsion of the liberated fixed charged groups may provoke the dramatic structural ex-
tension shown in (Figures 2c and 3b,d). Further research appears to be needed to reveal
the nature of glycerol-induced sign-alternating strain fields in cartilage. In this context the
described OCE-based technique opens rich possibilities unavailable to the previously used
experimental techniques.
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5. Conclusions

The application of the new OCE modality to observe non-uniform osmotically-induced
strain fields in biological tissues is presented. OCE enables one to monitor strain alterations
as small as 10−4 and as large as 0.4–0.5 for axial strain value. The duration of uninterrupted
observation can be tens of minutes, which allows one to cover the whole range of the most
intense strain accumulation during OCA diffusion into biological tissue. The concentration-
dependent effects studied for glycerol impregnation into cartilaginous tissue include low
intensity subsurface dilatation for concentrations less than 30–35% and an alternating-sign
strain field for highly concentrated glycerol. The effect of Omnipaque was found to be
similar to that of glycerol but proceeding with substantially slower rate.
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