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Abstract: The accurate extraction and measurement of eye features is crucial to a variety of domains,
including human-computer interaction, biometry, and medical research. This paper presents a
fast and accurate method for extracting multiple features around the eyes: the center of the pupil,
the iris radius, and the external shape of the eye. These features are extracted using a multistage
algorithm. On the first stage the pupil center is localized using a fast circular symmetry detector and
the iris radius is computed using radial gradient projections, and on the second stage the external
shape of the eye (of the eyelids) is determined through a Monte Carlo sampling framework based
on both color and shape information. Extensive experiments performed on a different dataset
demonstrate the effectiveness of our approach. In addition, this work provides eye annotation data
for a publicly-available database.

Keywords: iris segmentation; sclera segmentation; eye center localization; shape analysis;
eyelid segmentation

1. Introduction

The eyes and their movements can be used as an unobtrusive method to gain deeper
understanding of one’s cognitive and neurological processes: studies show that facial expressions are
the major interaction modality in human communication, as they contribute for 55% to the meaning of
the message. Robust eye detection and tracking algorithms are crucial for a wide variety of disciplines,
including human computer interaction, medical research, optometry, biometry, marketing research,
and automotive design (notably through driving attention monitoring systems).

In today’s context of globalization, security is becoming more and more important. Biometry
refers to a set of methods that rely on a set of distinctive, measurable characteristics that are used to
describe individuals for the purpose of identification and access control. As opposed to traditional
methods of identification (token-based identification or knowledge-based identification), biometric
data is unique and permanently associated with an individual.

Iris recognition is growing in popularity and is currently being used in a broad set of applications.
The first step in any iris recognition process is the accurate segmentation of the region of interest: the
localization of the inner and outer boundaries of the iris and removal of eyelids, eyelashes, and any
specular reflections that may occlude the region of interest. Secondly, the iris region is transformed
into a rubber-sheet model and a unique bit pattern encoding is computed based on these pixels.

Recently, a new ocular biometric technique has received particular interest from the scientific
community: sclera recognition [1]. The sclera region (the white outer coat of the eye) comprises
a unique and stable blood vessel structure which can be analyzed to identify humans. Moreover,
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this method can complement iris biometry by increasing its performance in case of off-angle or
off-axis images.

The major challenges that ocular biometry poses is the accurate segmentation of the regions of
interest (the iris or the sclera). An incorrect segmentation can reduce the available information, but it
can also introduce other patterns (eyelashes, eyelids) that can influence the biometric applicability of
the trait.

This work focuses on the accurate segmentation of the eye: the iris region and the external
shape of the eye (the eyelids). Therefore, this paper’s results are relevant in a variety of domains,
ranging from iris and sclera biometrics, psychology, psychiatry, optometry, education, and driving
assistance monitoring.

This paper will highlight the following contributions:

‚ A fast and accurate iris localization and segmentation algorithm;
‚ A new method for representing the external shape of the eyes based on six control points used to

generate two parabolas for the upper and lower eyelids;
‚ An original sclera segmentation algorithm based on both color and shape constraints (as opposed

to other methods from the specialized literature which are based solely on color information [2–4]);
‚ A Monte Carlo segmentation algorithm based on the proposed model and the corresponding

matching methodology; and
‚ The annotation [5] of a publicly-available database with the eye positions and eyelid boundaries.

The rest of this paper is organized as follows. Section 2 presents a general overview of the most
relevant research literature on eye localization, iris and sclera segmentation. The proposed method
is detailed in Section 3. Experimental results on eye localization and segmentation are presented in
Section 4. The conclusions and future research directions are presented in Section 5.

2. Related Work

Over the past decades eye localization and tracking has been one of the most active research
areas in the field of computer vision, mainly due to its application to a wide variety of research fields.
The organization of all the eye localization methods into a single and general taxonomy proves to be a
challenging task.

Based on the light source, eye detection methods can be classified as active light methods (that rely
on infrared or near-infrared light sources) and passive light methods (that use visible light to illuminate
the eyes). Two general types of active light method can be exploited using a physical property of
the pupil that modifies its appearance in the captured image depending on the position of the IR
illuminator: bright pupil and dark pupil. When the IR illuminator is coaxial with the camera, the pupil
appears as a bright zone (bright pupil), and when the light source is offset from the optical path the
pupil appears dark (dark pupil). This work uses a passive light method.

In [6] a detailed survey on eye detection and tracking techniques is presented, with emphasis on
the challenges they pose, as well as on their importance in a broad range of applications. The authors
propose a three class taxonomy based on the model used to represent the eyes: shape-based methods,
appearance-based methods, and hybrid methods.

Shape-based methods use a prior model of the eye geometry and its surrounding texture and a
similarity measure. Appearance-based methods detect and track eyes based on the color distribution or
filter responses of the eye region. These methods require a large amount of training data representing
the eyes under different illumination conditions and face poses.

Finally, hybrid methods combine two or more approaches to exploit their benefits and to overcome
their drawbacks. As an example, the constrained local models (CLM) [7] framework, a recently
emerged promising method for facial feature detection, uses a shape model to constrain the location
where each feature might appear and a patch model to describe the appearance of the feature. In [8]
a hybrid method is proposed to extract features of the human face. First, a Viola-Jones face detector
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is applied to approximate the location of the face in the input image. Next, individual facial features
detectors are evaluated and combined based on shape constraints. Finally, the results are refined
using active appearance models tuned for edge and corner cues. A three-stage facial feature detection
method is presented in [9]. On the first stage, the face region is localized based on the Hausdorff
distance between the edges from the input image and a template of facial edges. The second stage
uses a similar, smaller model for the eyes. Finally, the pupil locations are refined using a multi-layer
perceptron trained with pupil centered images.

Other methods localize several features on the face using local landmark descriptors and a
predefined face shape model. In [10] the authors propose a new approach to localize features in facial
images. Their method uses local detectors for each feature and combines their output with a set of
global models for the part locations computed from a labeled set of examples. To model the appearance
of each feature, a sliding window detector based on support vector machine (SVM) classifier with
gray-scale scale invariant feature transform (SIFT) features is used. The work presented in [11] localizes
nine facial landmarks in order to investigate the problem of automatic labeling of characters in movies.
In the first stage, the position and the approximate scale of the face is detected in the input image.
The appearance of each feature is determined using a variant of the AdaBoost classifier and Haar-like
image features. Next, a generative model of the feature positions is combined with the appearance
score to determine the exact position of each landmark.

The approach presented in our paper uses a fast shape based approach to locate the center of the
irises. After the accurate iris segmentation, the external shape of the eyes (the eyelids) is segmented
based on color information and shape constraints. The entire method takes, on average, 20 ms per
processed image.

In general shape-based eye localization techniques impose a circularity shape constraint to detect
the iris and the pupils [12,13], making the algorithms suitable only for near-frontal images.

In [12], the authors developed a fast eye center localization based on image gradients: the center
of the circular pattern of the iris is defined as the region where most of the image gradients intersect.
An additional post-processing step, based on prior knowledge of the appearance of the eyes, is applied
to increase the robustness of the method on images where the contrast between the sclera and the iris
is not that obvious, and occlusions (hair, eyelashes, glasses, etc.) are present.

In [14] a multi-stage circular Hough transformation is used to determine the iris center and
its radius. Additionally, a similarity measure for selecting the iris center is computed based on the
circularity measure of the Hough transform, the distance between the hypothetical iris centers and the
contrast between the presumed iris and its background.

In [15] the eyes are localized using two distinctive features of the iris compared to the surrounding
area: the eye region has an unpredictable local intensity and the iris is darker compared to the
neighboring pixels. The eye centers are selected using a score function based on the entropy of the eye
region and the darkness of the iris.

With the development of ocular biometrics, accurate localization of the iris and pupil area has
drawn the attention of computer vision scientists. Iris and pupil segmentation were pioneered by
Daugman [13] who proposed a methodology that is still actual: an integro-differential operator which
uses a circular integral to search for the circular path where the integral derivative is maximal. The
method searches for the circular contour that generates the maximum intensity change in pixel values
by varying the center (cx, cy) and the radius (radii) of the path. This operator has high computational
complexity (for each possible center multiple radii scans are necessary to compute this operator) and
it has problems detecting the iris boundary in cases of low intensity separability between the iris
and the sclera region. Another influential approach [16] uses a two-stage iris segmentation method:
first, a gradient based binary edge map is created, followed by a circular Hough transform to find
the parameters of the iris circle. The binary map is generated so that it favors ranges of orientation
(for example, to delimit the iris-sclera region, image derivatives are weighted to be more sensible to
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vertical edges). The main disadvantage of this method is its dependence on the threshold values used
in the edge map construction phase.

Other shape based eye detection studies use a more complex model of the eye [17,18] by also
modeling the eyelids, but they are computationally demanding and their performance is strongly
linked to the initial position of the template. In [18] the eyes are extracted using a deformable template
which consists of a circle for describing the iris and two parabolas for the upper and lower eyelid. The
template is matched over the input image using energy minimization techniques. A similar approach is
used in [17], but the authors use information about the location of eye corners to initialize the template.

Eye corner detection has gained the attention of several research works, as it is relevant for
multiple domains, such as biometrics, assisted driving systems, etc. In [19] the authors propose a new
eye corner detection method in periocular images that simulate real-world data. First, the iris and
the sclera region are segmented in the input image to determine the region of interest. Next, the eye
corners are detected based on multiple features (response of Harris corners algorithm, the internal
angle between the two corner candidates, their relative position in the ROI). The method gives accurate
results on degraded data, proving its applicability in real-world conditions.

Recently sclera segmentation has shown to have a particular importance in the context of
unconstrained, visible wavelength iris and sclera biometrics. Several works started to address this
problem. In addition, sclera segmentation benchmarking competitions [20] were organized in order to
evaluate the recent advances in this field and to attract researchers’ attention towards it.

The sclera region is usually segmented based on color information. In [21] the sclera region
is roughly estimated by thresholding the saturation channel in the HSI color space; based on this
segmentation, the region of interest for the iris is determined and the iris is segmented using a modified
version of the circular Hough transform. Finally, the eyelid region that overlaps the iris is segmented
using a linear Hough transform.

Other methods [2–4] use more complex machine vision algorithms to segment out the sclera.
In [4] Bayesian classifiers are used to decide whether the pixels belong to the sclera region or to the
skin region, using the difference between the red and green, and blue and green channels from the
RGB color space. In [2] three types of features are extracted from the training images: color features
that illustrate the various relationships between pixels in different color spaces, Zernike moments
and histogram of oriented gradients (HOG) features (the sclera has significant fewer edges than other
regions around the eyes). A two stage classifier is trained to segment out the sclera region. The
classifiers from the first stage operate on pixels, and the second stage classifier is a neural network that
operates on the probabilities that are the output of the first stage. In [3] two classifiers are used: one
for the sclera region and one for the iris region. The features used for the sclera classifier are Zernike
moments and distinctive color features from different color spaces. The iris is localized based on three
control points from the iris on the summation of two edge maps. Eyelids are segmented only near the
iris area based on Canny edge detection and parabolic curve fitting.

3. Solution Description

3.1. Iris Segementation

The outline of the iris segmentation algorithm proposed in this paper is depicted in Figure 1.
First, the face area is localized using the popular Viola-Jones face detector [22]. This method uses
simple rectangular features (Haar-like features) and an efficient image representation, integral image
transform, which allows computing the response of these features very quickly. The face region is
segmented using the AdaBoost algorithm and a cascade of increasingly complex classifiers, which
rapidly discards the background pixels.

On the face area, the eye region is computed using facial proportions. Additionally, the eyebrow
area is roughly estimated using simple image projections. The width of the detected face image
is cropped to 70% (15% of the image width are removed on each side) in order to assure that the



Sensors 2016, 16, 1105 5 of 24

background and the hair are removed from the image. The vertical image projection is computed on
the gray scale intensity image and the first local minimum (projection valley) is selected as the rough
estimation for the eyebrow region (Figure 2).Sensors 2016, 16, 1105  5 of 24 
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3.1.1. Iris Center Localization

Circular regions from the eye region are detected using a radial symmetry detector [23] (Fast
Radial Symmetry Transform—FRST). The FRST is a gradient-based image operator that computes the
role that each pixel p plays to the symmetry of the neighboring pixels at a radius r, by accumulating
the orientation and magnitude contributions in the direction of the gradient.

For each pixel p, a positively-affected pixel p+ and a negatively-affected pixel p´ are computed
(Figure 3); the positively-affected pixel is defined as the pixel the gradient is pointing to, at a distance r
from p, and the negatively-affected pixel is the pixel the gradient is pointed away from at a distance r
from p:

p˘ “ p ˘ round
ˆ

g ppq
||g ppq||

r
˙

(1)

where g(p) is the gradient vector at pixel p.
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The orientation projection Or image and magnitude projection image Mr are updated at each step
based on the positively and negatively affected pixels:

Mr pp˘q “ Mr pp˘q ˘ g ppq , Or pp˘q “ Or pp˘q ˘ 1 (2)

Initially, the orientation projection and magnitude projection are set to zero.
For each radius r the symmetry transform is defined as the convolution (*):

Sr “ Fr ˆ Ar (3)

where:
Fr “ ||ĂOr ppq ||

pαq
ĂMr ppq (4)

Ar is a two dimensional Gaussian filter used to spread the symmetry contribution, ĂOr and ĂMr are
the normalized orientation and magnitude projection images, and α is the radial strictness parameter.

The full transform S is computed as the sum of symmetry contributions over all the
radii considered:

S “
ÿ

r
Sr (5)

The transform can be adapted to search only for dark or bright regions of symmetry: dark regions
can be found by considering only the negatively affected pixels, while bright regions are found by
considering only positively affected pixels when computing Or and Mr.

As the iris region is darker than the surrounding area (the skin and sclera) only negatively-affected
pixels are used to compute Or and Mr. The search radii are determined based on anthropomorphic
constraints: the eye width is approximately 1/5 [24] of the face width, and the ratio of iris width to eye
width is about 0.42 in young adulthood and middle age and increases with age.

The centers of the irises are selected using geometrical and appearance constraints.
The FRST image is scanned using a sliding window of 2 ˆ rmin size, where rmin is the minimum

radius for which the transform is computed, and the minimum intensity position from each window is
retained. The minimum positions that are too close to each other (their distance is less than rmin) are
merged together, and the filtered minima are considered as possible iris candidates.

The iris centers are selected based on the circularity score from the symmetry transform image
and geometrical conditions (the left iris center and right iris center must be positioned in the first and
second half of the face width, respectively). Additionally, the confidence of the candidates that are
positioned above the eyebrow area is penalized.

Figure 4 shows the result of the iris center localization module.
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Figure 4. Iris center localization. (a) Symmetry transform on the eye region; (b) Possible iris center
candidates in green; and (c) iris selection: left iris candidates in green, right iris candidates in cyan, and
selected iris centers in red.

Finally, after the initial approximation of the iris center, a small neighborhood of (rmin/2, rmin/2)
is analyzed and the center of the iris is constrained to the dark region of the pupil, similar to [12].
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3.1.2. Iris Radius Detection

The initial approximation of the iris radius range is based on geometrical face constraints.
The problem now is to refine this rough estimation so that it best fits the real radius of the iris.

We use a vertical Sobel derivate on a blurred ROI around each eye in order to emphasize the
strong transition between the iris and the sclera area. To eliminate the false transitions caused by
potential image noise, the lowest k% of the gradients are ignored.

For each candidate radius r in the interval [rmin, rmax], a radial projection proj(r) is computed
by adding the gradient values that are r pixels away from the iris center and span under the angles
[θmin, θmax]:

proj prq “
θmax
ÿ

θ“ θmin

sobel
`

cx ˘ rcos pθq , cy ˘ rsin pθq
˘

(6)

where sobel(x, y) is the value of the gradient from the vertical Sobel image at (x, y) coordinates,pcx, cyq

is the location of the iris center and rθmin, θmaxs are the search angles.
The above proj(r) reaches its maximum values on the border between the sclera and the iris.
We limit the angular coordinate θ to an interval [θmin, θmax] because the border between the iris

and the sclera yields the strongest transition, while the transition between the iris and the eyelids is
less evident. Often the upper and lower parts of the iris are occluded by the eyelids. The value for
[θmin, θmax] was set to [´45˝, 45˝] through trial and error experiments.

The radial projection is analyzed and the most prominent peak is selected as the iris radius:

radius “ argmax
r

proj prq (7)

Figure 5 illustrates the steps of the iris radius computation algorithm.
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We limit the angular coordinate θ to an interval [θmin, θmax] because the border between the iris 

and the sclera yields the strongest transition, while the transition between the iris and the eyelids is 
less evident. Often the upper and lower parts of the iris are occluded by the eyelids. The value for 
[θmin, θmax] was set to [−45°, 45°] through trial and error experiments. 

The radial projection is analyzed and the most prominent peak is selected as the iris radius: ݏݑ݅݀ܽݎ = argmax௥  (7) (ݎ)݆݋ݎ݌

Figure 5 illustrates the steps of the iris radius computation algorithm. 
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Figure 5. Iris radius computation. (a) Blurred eye region; (b) Vertical Sobel derivative (with k = 20% 
of the gradients ignored); (c) Radial projection of the image (the selected radius is depicted in green); 
and (d) the iris radius. 

3.2. Eye Shape Segmentation 

The outline of the eye shape extraction procedure is depicted in Figure 6; the method is  
color-based and it exploits the high contrast between the sclera and its surrounding area. 

An offline learning module is used to determine the probabilities of a color belonging to the 
sclera region. The output of this module is a look-up table (LUT) that stores the computed 
probabilities. 

The eye shape extraction algorithm uses Monte Carlo sampling and a voting procedure to select 
the eyelid shape from a uniformly generated space of eye shape hypotheses. The b fittest individuals 
contribute to the selected eye shape. 

Figure 5. Iris radius computation. (a) Blurred eye region; (b) Vertical Sobel derivative (with k = 20% of
the gradients ignored); (c) Radial projection of the image (the selected radius is depicted in green); and
(d) the iris radius.

3.2. Eye Shape Segmentation

The outline of the eye shape extraction procedure is depicted in Figure 6; the method is color-based
and it exploits the high contrast between the sclera and its surrounding area.

An offline learning module is used to determine the probabilities of a color belonging to the sclera
region. The output of this module is a look-up table (LUT) that stores the computed probabilities.

The eye shape extraction algorithm uses Monte Carlo sampling and a voting procedure to select
the eyelid shape from a uniformly generated space of eye shape hypotheses. The b fittest individuals
contribute to the selected eye shape.
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Figure 6. Eye shape detection algorithm. 

3.2.1. Sclera Probability LUT 

A selected region around the eyes is transformed into a probability space using machine 
learning techniques to determine the probability of pixels belonging to the sclera region as described 
below. 

The proposed approach adopts a pixel-based strategy for the classification and uses only color 
features: the hue component from the HSV color space, and the components of the RGB opponent 
color space. The RGB opponent color-space is a combination of three values based on the channels of 
the opponent color space ([25]): 
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The color information of the pixel is stored by O1 and O2 channels, while component O3 
represents the intensity information. 

The extracted chromatic features are used to train a linear Support Vector Machine (SVM) 
classifier which will be used to determine the probability of each pixel to belong to the sclera region. 

The training of the SVM was performed on randomly-selected patches of approximately 10 × 10 
pixels around the eye area from a publicly available face database [26]. Thirty patches were used for 
the non-sclera region and 25 patches for the sclera-region. Figure 7 shows some examples of sclera 
and non-sclera patches used for training. 

Figure 6. Eye shape detection algorithm.

3.2.1. Sclera Probability LUT

A selected region around the eyes is transformed into a probability space using machine learning
techniques to determine the probability of pixels belonging to the sclera region as described below.

The proposed approach adopts a pixel-based strategy for the classification and uses only color
features: the hue component from the HSV color space, and the components of the RGB opponent
color space. The RGB opponent color-space is a combination of three values based on the channels of
the opponent color space [25]:
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The color information of the pixel is stored by O1 and O2 channels, while component O3 represents
the intensity information.

The extracted chromatic features are used to train a linear Support Vector Machine (SVM) classifier
which will be used to determine the probability of each pixel to belong to the sclera region.

The training of the SVM was performed on randomly-selected patches of approximately
10 ˆ 10 pixels around the eye area from a publicly available face database [26]. Thirty patches were
used for the non-sclera region and 25 patches for the sclera-region. Figure 7 shows some examples of
sclera and non-sclera patches used for training.
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3.2.2. Eye Model 
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the bottom eye. The following shape definition vector, containing the coordinates of control points, 
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where (cx, cy) are the (x, y) coordinates of iris center, (tx, ty) is the middle point on the top eyelid,  
(bx, by) is the middle point on the bottom eyelid. For the top eyelid we define two other control points 
(ltx, lty) and (rlx, rly) to the left and right of the middle point. These landmarks have two 
corresponding on the bottom eyelid that have the same x coordinates as the first two points, their y 
coordinates are defined by the offset values bly and bry (Figure 9).  

The coordinates of the control points of the eye external shape are expressed relatively to the 
eye center in order to make the model invariable to translation. 

Figure 7. Sclera (a) and non-sclera (b) patches used to train the SVM classifier. The non-sclera patches
are selected from the skin and eyelashes region.

Following the learning process Platt scaling [27] is performed to transform the binary output
of the SVM classifier into probabilities. Other methods [3,4] use more complex features, such as
edge information or Zernike moments, as features. Taking into account that the total number of
colors that are representable in a 24 bits/pixel image is finite, a lookup table can be used to store the
probability of each possible color. Therefore, our method has the advantage that it can pre-calculate
the probability of each possible pixel, replacing the computation of the probability with a simple array
indexing operation.

Figure 8 shows the output of the classifier of an input image.
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Figure 8. Sclera probability image (bright zones indicate a high sclera probability, while darker regions
indicate a low sclera probability).

3.2.2. Eye Model

The exterior eye shape is represented using two parabolas, one for the upper eyelid and one for
the bottom eye. The following shape definition vector, containing the coordinates of control points, is
used to generate the shape of the eye:

X “
”

cx cy tx ty bx by tlx tly trx try bly bry

ıT
(9)

where (cx, cy) are the (x, y) coordinates of iris center, (tx, ty) is the middle point on the top eyelid, (bx, by)
is the middle point on the bottom eyelid. For the top eyelid we define two other control points (ltx, lty)
and (rlx, rly) to the left and right of the middle point. These landmarks have two corresponding on the
bottom eyelid that have the same x coordinates as the first two points, their y coordinates are defined
by the offset values bly and bry (Figure 9).
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set to 0.5. The proposed metric computes the average difference between the probability values of 
the inner part of the eyelid curve, which must fit inside of the sclera region and, thus, expected to 
have a high sclera probability value, and the values of the outer area of the curve, which must fit on 
the outside of the eye and, thus, expected to have a low sclera probability value.  

Several variations of this metric were tested: to consider only the pixels from the set {0, Δ}, that 
is the pixels at Δ distance away from the current hypothesis, or to examine all the pixels in the in 
interval [1, Δ]. The best results were obtained by computing the metric over all the pixels in the 
interval [1, Δ].  

The value of Δ is set to a value that is proportional to the iris radius (in our case 5 pixels). A 
lower value of this parameter does not propagate enough the transition between the sclera and the 
non-sclera regions and is very sensitive to noise, while a higher value could lead to missing the 
region of interest. 
  

Figure 9. Eye model using seven control points (12 values) that generates two intersecting parabolas.

The coordinates of the control points of the eye external shape are expressed relatively to the eye
center in order to make the model invariable to translation.

3.2.3. Shape Matching

Using the described model, multiple hypotheses are generated and the sclera probability image is
used to determine how well a hypothesis conforms to the input image. Ideally, the eyelid parabola
should be positioned exactly on the boundary between sclera pixels (brighter region) and non-sclera
pixels (darker region).

In order to express the above assumption we use a similar approach as in [28]. Two sets of pixels
at ∆ distance away from the current hypothesis are considered: the positive pixels (p+) which are the
pixels that belong to the sclera region and negative pixels (p´) which are the pixels from the skin and
eyelashes zone (Figure 10).
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Figure 10. Eyelid shape matching (for the top eyelid only). The dotted line represents the current
hypothesis; the positive pixels are depicted in yellow and the negative pixels in red.

The score of a hypothesis is defined as:

ω “
α
ř

∆ p` ´ β
ř

∆ p´
α` β

(10)

where α and β (α + β = 1) are the weights that control the influence of positive and negative pixels,
respectively.

We assign the same contribution to both sets of pixels, and therefore both weights, α and β, are set
to 0.5. The proposed metric computes the average difference between the probability values of the
inner part of the eyelid curve, which must fit inside of the sclera region and, thus, expected to have
a high sclera probability value, and the values of the outer area of the curve, which must fit on the
outside of the eye and, thus, expected to have a low sclera probability value.

Several variations of this metric were tested: to consider only the pixels from the set {0, ∆}, that is
the pixels at ∆ distance away from the current hypothesis, or to examine all the pixels in the in interval
[1, ∆]. The best results were obtained by computing the metric over all the pixels in the interval [1, ∆].

The value of ∆ is set to a value that is proportional to the iris radius (in our case 5 pixels). A lower
value of this parameter does not propagate enough the transition between the sclera and the non-sclera
regions and is very sensitive to noise, while a higher value could lead to missing the region of interest.
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3.2.4. Eye Shape Selection

To find the exterior shape of the eye, a simple Monte Carlo sampling is used. Monte Carlo
algorithms form a wide class of methods that are based on repeated resampling of random variables
over an input domain, which defines the phenomena in question. These methods have been
successfully used to solve optimization problems with complex objective functions.

N hypotheses are uniformly generated over the input domain defined by the iris center position
and the iris radius. Each hypothesis is matched over the input image using the method described in
Section 3.2.3.

The solution is selected by considering the best b% hypotheses: each one of these shapes
contributes to the solution by a weight that is directly proportional to its fitness value. In other
words, the position for each control point of the result is computed as:

px, yq “
ř

ωi¨ pi px, yq
ř

ωi
(11)

where s(x, y) represents the (x, y) coordinates of a control point from the solution, pi px, yq and ωi are
the position and the score function of the ith hypothesis that votes for the solution.

Figure 11 graphically illustrates the voting process of the proposed algorithm using color maps.
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The optimal value for N was heuristically determined to 200 samples. From our experiments we 
determined that increasing the number of samples of the Monte Carlo sampling does not cause a 
relevant increase in the accuracy of the algorithm. A value for N lower than 100 has a negative 
influence on the accuracy of the algorithm. The reported results in Section 4 were obtained by 
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Figure 11. Eye shape voting procedure. (a) The distribution of the markers obtained through the voting
of the fittest b = 30% hypotheses; cold colors represent smaller values and warm color represent higher
values; (b) The solution control points (marked in green) computed as the weighted average of the
fittest hypotheses. The intersection between the lower and the upper parabola is computed so that the
solution can be expressed through the eye corners and two points on the upper and lower eyelids; and
(c) color scale.

The optimal value for N was heuristically determined to 200 samples. From our experiments
we determined that increasing the number of samples of the Monte Carlo sampling does not cause a
relevant increase in the accuracy of the algorithm. A value for N lower than 100 has a negative influence
on the accuracy of the algorithm. The reported results in Section 4 were obtained by generating N = 200
hypotheses and considering the fittest 30% hypotheses in the voting process.

The result of the eye shape segmentation algorithm is depicted in Figure 12.
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4. Results and Discussion

4.1. Iris Center Localization

The metric used to validate the performance of the eye center localization is the relative error
introduced in [9]: the error obtained by the worst of both eye estimators, normalized with the distance
between the eye centers:

wec ď
max

´

||Cl ´
pCl ||, ||Cr ´xCr ||

¯

||Cl ´ Cr||
(12)

where Cl , Cr are the positions of the left and right iris centers, and pCl , xCr are the positions of the
estimated left eye and right iris centers.

This metric is independent of the image size. Based on the fact that the distance between the inner
eye corners is approximately equal to the width of an eye, the relative error metric has the following
properties: if wec ď 0.25 the error is less than or equal to distance between the eye center and the eye
corners, if wec ď 0.10 the localization error is less than or equal to the diameter of the iris, and finally,
if wec ď 0.05 the error is less than or equal to the diameter of the pupil.

In addition two other metrics were implemented like suggested in [12]: bec and aec which define
the lower and the averaged error, respectively:

bec ď
min

´

||Cl ´
pCl ||, || Cr ´xCr ||

¯

||Cl ´ Cr||
(13)

aec ď
avg

´

||Cl ´
pCl ||, ||Cr ´xCr ||

¯

||Cl ´ Cr||
(14)

where min() and avg() are the minimum and the average operators.
The proposed iris center localization algorithm does not use any color information, only the

sclera segmentation part. For comparison purposes, our iris center localization method is evaluated
on the BIO-ID face database [9], one of the most challenging eye databases, which has been used for
the validation of numerous eye localization methods. The dataset reflects realistic image capturing
conditions, featuring a large range of illumination conditions, background and face size and many
state of the art methods were tested on this dataset. The database contains 1521 grey-scale images
of 23 persons, captured during different sessions in variable illumination conditions. Moreover,
some of the subjects in the database wear glasses, in some images the eyes are (half) closed or the
eyes are occluded by strong specular reflections on the glasses. The resolution of the images is low
384 ˆ 286 pixels. This dataset has been widely used to evaluate eye center localization methods and,
therefore, it allows us to benchmark the results of our algorithm with prior work.

Results on the BIO-ID face database are depicted in Figure 13 and the ROC curve is depicted in
Figure 14.

The comparison of our method with other state of the art papers is shown in Table 1. If the
performance for the normalized error P {0.05, 0.10, 0.25} was not mentioned explicitly by the authors,
we extracted the values from the performance curves; these values are marked with * in the table.

In the case of pupil localization (wec ď 0.05) the proposed method is outperformed only by [12].
In the case of eye localization (wec ď 0.25) our method outperforms the other works. However,
in the case of wec ď 0.10 the proposed algorithm is outperformed by three other state of the art
methods [8,12,15]. This is due to the fact that our eye center localization algorithm relies mostly on
circularity constraints and the BIO-ID face database contains multiple images where the eyes are
almost closed, in which case the circularity of the iris cannot be observed. Therefore, the accuracy of
the algorithm is impaired. The transition between the cases wec ď 0.05 and wec ď 0.25 is smoother
because in multiple images of the database the circularity of the iris is not observable due to occlusions
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and closed eyes. To sum up, the proposed algorithm yields accurate results (wec ď 0.05 in 74.65% of
the images) for the images where the iris is visible, and acceptable results otherwise.
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following properties: if wec ≤ 0.25 the error is less than or equal to distance between the eye center 
and the eye corners, if wec ≤ 0.10 the localization error is less than or equal to the diameter of the iris, 
and finally, if wec ≤ 0.05 the error is less than or equal to the diameter of the pupil.  

In addition two other metrics were implemented like suggested in [12]: bec and aec which define 
the lower and the averaged error, respectively: ܾ݁ܿ	 ≤ min൫ฮܥ௟ − ௟෡ܥ ฮ, ฮܥ௥ − ௥෢ܥ ฮ൯‖ܥ௟ − ‖௥ܥ  (13) 

ܽ݁ܿ ≤ avg൫ฮܥ௟ − ௟෡ܥ ฮ, ฮܥ௥ − ௥෢ܥ ฮ൯‖ܥ௟ − ‖௥ܥ  (14) 

where min() and avg() are the minimum and the average operators.  
The proposed iris center localization algorithm does not use any color information, only the 

sclera segmentation part. For comparison purposes, our iris center localization method is evaluated 
on the BIO-ID face database [9], one of the most challenging eye databases, which has been used for 
the validation of numerous eye localization methods. The dataset reflects realistic image capturing 
conditions, featuring a large range of illumination conditions, background and face size and many 
state of the art methods were tested on this dataset. The database contains 1521 grey-scale images of 
23 persons, captured during different sessions in variable illumination conditions. Moreover, some 
of the subjects in the database wear glasses, in some images the eyes are (half) closed or the eyes are 
occluded by strong specular reflections on the glasses. The resolution of the images is low 384 × 286 
pixels. This dataset has been widely used to evaluate eye center localization methods and, therefore, 
it allows us to benchmark the results of our algorithm with prior work. 

Results on the BIO-ID face database are depicted in Figure 13 and the ROC curve is depicted in 
Figure 14. 
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Table 1. Iris center localization accuracies compared to the state-of-the-art methods.

Method (wec ď 0.05) (wec ď 0.10) (wec ď 0.25)

Timm et al. [12] 82.5% 93.4% 98.0%
Hassaballah et al. [15] 37% * 84% * 94.3%
Cristianace et al. [8] 57% * 96% 97.1%

Jerosky et al. [9] 38.0% * 78.8% * 91.8%
Proposed method 74.6594% 79.1553% 98.09%

* The performance was not explicitly stated by the authors and it was read from the ROC curve.

However, our method was designed for use cases, such as biometry, optometry, or human emotion
understanding, in which the face is the main component under analysis and the facial region has
medium to good quality. The BIO-ID face database is not adequate for this purpose due to the
low quality of the images. We tested our algorithm on this database so that we can compare with
other methods.

The proposed iris localization method based on the accumulation of first order derivatives obtains
accurate results if the iris is relatively visible in the input image. The search region for the eyes often
contains other elements, such as eyeglasses, eyebrows, hair, etc., and, if the iris is occluded in some
way (semi-closed eyes or strong specular reflections of the eyeglasses), these external elements could
generate a higher circularity response than the actual iris (Figure 15).
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be accessed from [5]. The structure of the annotation data is detailed in Appendix A. 

Figure 15. Failure cases of eye center localization. (a) Symmetry transform image and selected eye
candidates; and (b) selected eye candidates (on the input image).

We try to filter out these false candidates by imposing appearance constraints—the pupil center
must be darker than the surrounding area, so the result of the symmetry transform image is weighted
by the inversed, blurred gray-scale image, and several geometrical constraints: separation of the left
and right eye candidates, penalization of the eye candidates that are too close to the eyebrow area.
Considering that we are interested in obtaining a pair of eye centers, we have also included a metric
that models the confidence of the candidates as a pair. The score of a pair is weighted by a Gaussian
function of the inter-pupillary distance normalized by the face width having as mean the average ratio
between the inter pupillary distance and the face width [24]. However, this method was designed
mainly for application domains (such as optometry, human-computer interaction, etc.) in which the
user is cooperative and the eye is visible in the input image and therefore these exaggerated occlusions
are less likely to occur.

As we will further demonstrate, the performance of the algorithm increases with the quality of the
image, while keeping the computational power low (on average, the eye center localization algorithm
takes six milliseconds on an Intel Core i7 processor).

To test the proposed method we annotated a publicly-available face database [26], created by
the University of Michigan Psychology department. In the rest of the paper we will refer to this
database as University of Michigan Face Database (UMFD). The database comprises facial images of
575 individuals with ages ranging from ages 18 to 93 and is intended to capture the representative
features of age groups across the lifespan. The dataset contains pictures of 218 adults age 18–29,
76 adults age 30–49, 123 adults age 50–69, and 158 adults age 70 and older.
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Six points were marked on each eye: the center of the pupil, the eye corners, the top and the
bottom eyelids and a point on the boundary of the iris (Figure 16). The database annotation data can
be accessed from [5]. The structure of the annotation data is detailed in Appendix A.Sensors 2016, 16, 1105  15 of 24 
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Figure 16. Eye landmarks used on the annotation of University of Michigan Face Database.

The ROC curves for the iris center localization on the age groups from the University of
Michigan database are illustrated in Figure 17 and Table 2 shows the eye center localization results on
this database.
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Figure 17. Performance of the iris center localization algorithm on the University of Michigan
Face Database.

From the Table 2 it can be noticed that the on medium quality facial images (640 ˆ 480) the
performance of the proposed algorithm is highly increased: in 96.30% of the cases, the worst of the
two eye center approximations falls into the pupil area.

The accuracy of the algorithm is lower (93.63%) for older subjects of ages between 70 and 94 years
old due to the fact that a lower portion of the iris is visible and its circularity cannot be observed.

In conclusion, the proposed eye localization method proves to be efficient on all the use cases
considered: pupil localization (wec ď 0.05), iris localization (wec ď 0.10), and eye localization
(wec ď 0.25).
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Table 2. Iris center localization results on the University of Michigan face database.

Dataset

Iris Center Localization Accuracy

Error ď 0.05 Error ď 0.10 Error ď 0.25

wec (%) aec (%) bec (%) wec (%) aec (%) bec (%) wec (%) aec (%) bec (%)

UMFD age 18–29 99.08 99.08 100 99.08 98.08 100 99.08 100 100
UMFD age 30–49 97.36 98.68 100 98.68 98.68 100 98.68 100 100
UMFD age 50–69 95.12 96.74 98.37 98.37 100 100 100 100 100
UMFD age 70–94 93.63 95.54 97.45 96.81. 98.09 99.36 98.09 98.72 99.36

Average 96.30 97.51 98.96 98.71 98.71 99.84 98.96 99.68 99.84

4.2. Iris Radius Computation

To evaluate the accuracy of the iris radius estimation algorithm we compute the following
normalized errors:

aer “
|prr´ rr| ` |prl ´ rl|

rl ` rr
(15)

wer “
2¨max

´

|prr´ rr|, |prl ´ rl|
¯

rl ` rr
(16)

ber “
2¨min

´

|prr´ rr|, |prl ´ rl|
¯

rl ` rr
(17)

where rl and rr are the radiuses of the left and right iris, and prr and prl are the estimated radiuses of
the right and left eye, respectively. The wer (worst error radius) metric represents the radius error for
the worst radius estimator, the aer (average error radius) is the average radius error for the left and
right iris and ber (best error radius) is the radius error for the best radius estimator. The functions are
normalized by the average of the correct irises radius.

Table 3 shows the performance of the iris radius computation algorithm on the different age
groups from the University of Michigan Face Database.

Table 3. Iris radius computation results on the University of Michigan Face Database.

Dataset aer wer ber

University of Michigan Face Database (age18–29) 0.0903 0.1269 0.053
University of Michigan Face Database (age 30–49) 0.0885 0.1276 0.0495
University of Michigan Face Database (age 50–69) 0.1247 0.1721 0.0774
University of Michigan Face Database (age 70–94) 0.0928 0.1361 0.0495

Average 0.0991 0.1406 0.05735

On average, the normalized aer value is 0.0991; in other words, the average error of the iris radius
is less that 10% of the actual radius. Taking into account the fact that the iris radius has approximately
12 pixels on the images from the database, the magnitude of the error is about 1–2 pixel.

4.3. Eye Shape Segmentation

To evaluate the eye shape segmentation algorithm, we used several statistical measures of the
performance by analyzing the proportion of pixels that are assigned to the eye or non-eye region.

We computed the number of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), by comparing the results of the algorithm with the ground truth from the test databases.
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The terms true (T) and false (F) refer to ground truth and the terms positive (P) and negative (N) refer
to the algorithm decision. Based on these values, the following statistical measures were determined:

sensitivity “
TP

TP` FN
(18)

speci f icity “
TN

TN ` FP
(19)

accuracy “
TP` TN

TP` TN ` FP` FN
(20)

Sensitivity (or recall) is a measure of the proportion of eye pixels that are correctly identified
and indicates the algorithm’s ability to correctly detect the eye region; specificity (or true negative
rate) measures the proportion of non-eye pixels that are correctly identified as such and relates to the
algorithm’s ability to rule out the pixels that do not belong to the eye region. In other words sensitivity
quantifies the algorithm ability to avoid false negatives, while specificity quantifies its ability to avoid
false positives.

Eye shape segmentation results are illustrated in Figure 18. The detected iris is marked with a
green circle and the upper and lower eyelid parabolas are depicted in yellow.
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the algorithm is decreasing with age. On older subjects the sclera portion of the eye becomes less 
visible due to eyelid ptosis and skin excess around the eyes. The shape of eyelid is distorted and it 
can no longer be estimated with a parabola (Figure 19). In addition, sclera color quality degradation 
[29] is a well-known effect of aging on the eyes that influences the performance of the algorithm. The 
loss of performance is about 1%–2% in average. 
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Figure 18. Eye shape segmentation results on University of Michigan Face Database. (a) Eye shape
extraction results; and (b) failure cases.

From the results on University of Michigan Face Database it can be noticed that the accuracy of
the algorithm is decreasing with age. On older subjects the sclera portion of the eye becomes less
visible due to eyelid ptosis and skin excess around the eyes. The shape of eyelid is distorted and it can
no longer be estimated with a parabola (Figure 19). In addition, sclera color quality degradation [29] is
a well-known effect of aging on the eyes that influences the performance of the algorithm. The loss of
performance is about 1%–2% in average.
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The results of the eye shape segmentation algorithm are strongly dependent on the accuracy
of the eye center localization. For example, in the last image from Figure 18 it can be seen that the
performance of the algorithm is impaired due to the wrong eye center estimation.

To the best of our knowledge, full eye segmentation methods that we can compare with have not
been reported previously in the specialized literature. An older work [17] uses a deformable template
to find the full shape of the eye, but only the run time of the algorithm is reported.

The algorithm was also tested on an image database that is independent from our training set, the
IMM frontal face database [30], which contains 120 facial images of 12 different subjects. All of the
images are annotated with 73 landmarks that define the facial features for the eyebrows, nose, and
jaws. The contour of each eye is marked with eight points (Figure 20).
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Results on the IMM face database are depicted in Figure 21 and the numerical scores are shown
in Table 4.
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Table 4. Performance of the eye shape segmentation algorithm the UMFD and IMM datasets.

Dataset
Eye Shape Segmentation Results

Sensitivity Specificity Accuracy

UMFD (age 18–29) 87.61% 90.02% 88.77%
UMFD (age 30–49) 90.75% 83.29% 86.57%
UMFD (age 50–69) 84.35% 83.06% 83.58%
UMFD (age 70–94) 84.76% 82.41% 83.41%
IMM Face Database 86.3% 90.13% 87.93%

Labeled Face Parts in the Wild (LFPW) [10] is a large, real-world dataset of hand labeled images,
acquired from Internet search sites using simple text queries. The images from the dataset are captured
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in unconstrained environments and contain several elements that can impair the performance of the
algorithm: the eyes are occluded by heavy shadowing or (sun-) glasses, hats, hair, etc., some faces
contain a lot of make-up and present various (theatrical) facial expressions. The only precondition of the
images is that they are detectable by a face detector. Each image was annotated with 29 fiducial points.
The images contain the annotation of three different workers and the average of these annotations was
used as the ground truth. Due to copyright issues, the image files are not distributed, but rather a
list of URLs is provided from which the images can be downloaded. Therefore, not all the original
images are still available, as some of the image links have disappeared. We have downloaded all the
images that were still accessible (576 images) from the original set of images and we evaluated the
performance of our method on this dataset.

The mean errors of our algorithm compared to other state of the art works and a commercial off
the shelf (COTS) system [10] are shown in Table 5.

Table 5. Mean error normalized by the inter-pupillary distance.

Landmark [10] [11] COTS [10] Our Method

Left eye error 0.024 n/a n/a 0.0412
Right eye error 0.027 n/a n/a 0.0440

Left eye inner corner 0.0285 0.072 0.048 0.0677
Left eye outer corner 0.035 0.077 0.076 0.0701
Left eye upper eyelid 0.027 n/a n/a 0.0503

Left eye bottom eyelid 0.03 n/a n/a 0.0564
Right eye inner corner 0.028 0.055 0.047 0.0672
Right eye outer corner 0.033 0.084 0.07 0.0694
Right eye upper eyelid 0.027 n/a n/a 0.0486

Right eye bottom eyelid 0.028 n/a n/a 0.0562

From Table 5 it can be noticed that our method is comparable with the COTS system and [11],
but [10] is more accurate. However, [10] detects 29 fiducial points on the face and the total processing
time for an image is 29 s. Our method takes on average 20 ms to find all of the six landmarks around
the eyes, being several orders of magnitude faster than [10].

For the eye center localization, the average normalized error is in average 0.0426. A normalized
error less than 0.05 implies that the detected iris center is within the pupil area. Therefore, our method
has a good performance even on images that are degraded due to capturing conditions.

For the sclera landmarks, the algorithm yields larger localization errors: on average the normalized
distance between the sclera landmarks and the annotated landmarks is 0.0607. First, we note a
difference of semantics between the annotated landmarks and the result of our algorithm: the proposed
method is intended to segment the sclera region as accurately as possible and not to detect the position
of the eye corners. While in some cases the sclera landmarks can determine the exact eye corners this
cannot be generalized. For example, from Figure 22 it can be noticed that the sclera region is correctly
segmented but the distance between the annotated left eye inner corner and the corresponding sclera
landmarks is large; the normalized error between these two points is 0.0708.

In addition, some of the images in the database contain sunglasses that totally obstruct the eyes
and in some other images the sclera is not visible, due to the low image resolution, and cannot be
accurately segmented even by a human operator. The problems targeted by our solution are iris and
sclera segmentation; in order to solve these problems the features under consideration must be visible
in the input image.

Figure 23 shows the results of our method on some images from the LFPW database. Due to the
smaller resolution of the images, we only draw the landmarks (eye centers and the landmarks used to
generate the eyelid parabolas).
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Figure 23. Results on the LFPW database. The eye centers are depicted with a green cross and
the landmarks used to generate the shape of the eyelids are marked red crosses. (a) Results; and
(b) failure cases.

The main application domains targeted by our method are optometry and ophthalmology,
augmented reality, and human-computer interaction, where the quality of the images is usually
medium to good and the user is cooperative.

The method is integrated into a virtual contact lens simulator application and into a digital
optometric application that measures the iris diameter and the segment height (the vertical distance in
mm from the bottom of the lens to the beginning of the progressive addition on a progressive lens)
based on facial images. Snapshots of the virtual contact lens simulator application are presented in
Figure 24: different contact lenses colors are simulated: dark-green, hazel, natural green, and ocean
blue respectively.

The average execution time for the full eye segmentation algorithm (the iris and the eyelids) is on
average 20 ms on a on an Intel Core i7 processor on 640 ˆ 480 resolution images.
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5. Conclusions

This paper presents a fast eye segmentation method that extracts multiple features of the eye
region: including the center of the pupil, the iris radius, and the external shape of the eyes. Our work
has superior accuracy compared to the majority of the state of the art methods that measure only a
subset of these features.

The eye features are extracted using a multistage algorithm: first the iris center is accurately
detected using circularity constraints and, on the second stage, the external eye shape is extracted
based on color and shape information through a Monte Carlo sampling framework.

Compared to other state of the art works our method extracts the full shape of the eye (iris and
full eyelid boundaries), and we consider that it is sufficiently generic so that it has applications in a
variety of domains: optometry, biometry, eye tracking, and so on.

Extensive experiments were performed to demonstrate the effectiveness of the algorithm.
Our experiments show that the accuracy of the method is dependent to the image resolution: increasing
the image quality leads to an increase of accuracy without excessively increasing the computation time.

Future work will include increasing the accuracy of the estimated eye shape using more
measurement cues (like corner detectors for the eye corners) and tracking of the iris centers. By tracking
the iris centers the detection system will benefit by reducing the detection failure in the case of
illumination changes or when one of the irises is not fully visible. Additionally, we intend to use other
curves for representing the eyelid shapes, such as third degree polynomials, spline, or Bezier curves,
in order to increase the performance of the eye shape segmentation.

Supplementary Materials: The eye feature annotation of the UMFD dataset is available online at https://drive.
google.com/folderview?id=0Bwn_NrD78q_Td3VjOXA2c183UHM&usp=sharing.
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Abbreviations

The following abbreviations are used in this manuscript:

ROI Region of interest
CLM Constrained Local Models
HOG Histogram of Oriented Gradients
FRST Fast Radial Symmetry Transform
LUT Look Up Table
SVM Support Vector Machine
UMFD University of Michigan Face Database
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
LFPW Labeled Face Parts in the Wild database
COTS commercial off the shelf

Appendix A

This section describes the annotation format of the University of Michigan Face Database [26].
This dataset contains a large number of faces of individuals throughout the adult lifespan (from 18 to
94 years) and it includes representative faces from both younger and older subjects.

A detailed description regarding the data acquisition procedure and the breakdown of
participants by age, race, and gender can be found in [26]. Access to the database is restricted
to academic researchers.

This work provides only the database annotation files; to request access to the images please
contact the authors of [26].

For each image from the dataset, the annotation data is stored into a .pts file with the same
base-name the image; for example, the annotation file for the image EMWmale19neutral.bmp is stored
in the file EMWmale19neutral.bmp.pts.

All photos were annotated with 12 landmarks around the eyes. Table A1 specifies the
correspondence between annotation landmarks and eye features and Figure A1 illustrates the exact
localization of each one of these points.
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Table A1. The 12 landmarks defining the eye features.

Eye Type Eye Feature Landmark #

Left eye

Iris center 1
Iris radius 2

Eye external corner 3
Eye interior corner 4

Top eyelid 5
Bottom eyelid 6

Right eye

Iris center 7
Iris radius 8

Eye external corner 9
Eye interior corner 10

Top eyelid 11
Bottom eyelid 12
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A .pts file is a simple text file structured as a set of line separated by a new line character. The layout
of the file is as follows:

‚ The first line contains the total number n of points annotated in the image (in this case n = 12);
‚ The following lines, ranging from k = 2 to n + 1 contain the coordinates of the (k ´ 1)th landmark

(one point per line)

The annotation can be freely used for education and research purposes.
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