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Abstract

Background: The purpose of the present study was to examine the GC content of substituted bases (sbGC) in the
core genomes of 35 bacterial species. Each species, or core genome, constituted genomes from at least 10 strains.
We also wanted to explore whether sbGC for each strain was associated with the corresponding species’ core
genome GC content (cgGC). We present a simple mathematical model that estimates sbGC from cgGC. The model
assumes only that the estimated sbGC is a function of cgGC proportional to fixed AT→GC (α) and GC→ AT (β)
mutation rates. Non-linear regression was used to estimate parameters α and β from the empirical data described
above.

Results: We found that sbGC for each strain showed a non-linear association with the corresponding cgGC with a
bias towards higher GC content for most core genomes (66.3% of the strains), assuming as a null-hypothesis that
sbGC should be approximately equal to cgGC. The most GC rich core genomes (i.e. approximately %GC > 60), on
the other hand, exhibited slightly less GC-biased sbGC than expected. The best fitted regression model indicates
that GC→ AT mutation rates β = (1.91 ± 0.13) p < 0.001 are approximately (1.91/0.79) = 2.42 times as high, on
average, as AT→GC α = (− 0.79 ± 0.25) p < 0.001 mutation rates. Whether the observed sbGC GC-bias for all but the
most GC-rich prokaryotic species is due to selection, compensating for the GC→ AT mutation bias, and/or selective
neutral processes is currently debated. Residual standard error was found to be σ = 0.076 indicating estimated errors
of sbGC to be approximately within ±15.2% GC (95% confidence interval) for the strains of all species in the study.

Conclusion: Not only did our mathematical model give reasonable estimates of sbGC it also provides further
support to previous observations that mutation rates in prokaryotes exhibit a universal GC→ AT bias that appears
to be remarkably consistent between taxa.

Keywords: Microbial genomics, Core genome, Mathematical modeling, SNP GC content, Core genome GC content,
Statistical parameter estimation

Background
GC content in bacterial genomes varies greatly from, for
instance, 13.5% in the intracellular symbiont Candidatus
Zinderia insecticola [1] to more than 75% in the soil
dwelling Anaeromyxobacter dehalogenans [2]. This vari-
ance in base composition has been found to be driven
by phylogeny [3], environment [4], selection [5] and se-
lective neutral processes [6, 7] as well as drift due to a
general AT mutation bias [8–10]. Indeed, it has been

shown that for several intracellular microbes the ge-
nomes tend to be small, less than 0.2 M base-pairs
(mbp) and often AT rich [1] while soil bacteria have
large (several mbp), GC-rich genomes [11]. Population
structure, absence or low rates of recombination and
dominating AT mutation bias appear to guide the intra-
cellular genomes towards higher AT content [12], pre-
sumably due to relaxation of selective constraints [1].
Analogous genomic patterns are also observed for
free-living bacteria exposed to similar relaxation of se-
lective pressures [13, 14]. A recent study [15] showed
that the core genomes are slightly, but significantly,
more GC rich than the corresponding accessory genes,
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i.e. genes belonging to the less conserved part of the
genome in a species. This was assumed to be a conse-
quence of purifying selection operating on the core ge-
nomes [5], although selective neutral processes such as
GC-biased gene conversion (gBGC) [6] and/or amelior-
ation [7] could not be dismissed [15]. Accessory genes of
bacterial species are more frequently distributed between
microbes with the possible consequence that purifying se-
lection will not have the opportunity to purge fitness redu-
cing mutations, which are often biased towards higher AT
content, at the same rate observed for the corresponding
core genomes [15]. In addition, different environmental
conditions and selective pressures [15, 16] may influence
the base composition of accessory genes. Selected for sta-
bility, core genomes could be more GC rich than accessory
genomes due to purifying selection of fitness decreasing or
deleterious mutations as mutations predominantly drift to-
wards the more weakly bonded AT base pairs [15, 17]. Se-
lection may also favour homologous recombination of
DNA stretches resulting in nucleotide substitutions that
are mistaken for single nucleotide polymorphisms (SNPs)
[18]. The purpose of the present study was to explore the
GC content of the substituted bases (sbGC) in core ge-
nomes of strains of diverse microbial species. Each core
genome contained at least 10 strains. The substituted bases
found in the core genome of each species, ranging from
the AT-rich etiologic agent of typhus Rickettsia prowazekii
(29% GC) to the GC-rich pathogen Pseudomonas aerugi-
nosa (66.9% GC), were compared with the corresponding
core genome GC content (cgGC). Each of the 35 core ge-
nomes represented a unique species from altogether 6 dif-
ferent phyla. We developed a first order differential
equation model (gcMOD) predicting sbGC based only on
cgGC and fixed parameters estimating (α) GC→AT and
(β) AT→GC substitutions. The parameters α and β were
subsequently estimated using non-linear regression from
the empirical data described above and gcMOD.

Results
To scrutinize the relationship between sbGC and cgGC
we created a simple mathematical model of sbGC. The
model (gcMOD) assumes, naively, that sbGC is a func-
tion of cgGC, i.e. FGC(cgGC), and that sbGC is propor-
tional to AT→GC and GC→AT mutation rates, termed
respectively α and β. Additional file 1 contains a more
elaborate mathematical derivation of gcMOD and
Additional file 2 gives a more detailed explanation of
how sbGC is calculated. Furthermore, gcMOD assumes
that the parameters α and β have different universal
fixed rates in the sense that they are not exactly equal
(See Additional file 1). To estimate the fixed rates α and
β we employed non-linear least squares regression (nls)
with empirical sbGC values, from all strains of each spe-
cies included in the study, as the response variable

against gcMOD, the derived formula for the estimated
sbGC function FGC(x):

FGC xð Þ ¼ β
α−β

e α−βð Þx−1
� �

1ð Þ

where x represents cgGC with arbitrary start values set
to α = 2 and β = 1. The nls model converged with σ =
0.076 (residual standard error) suggesting that gcMOD’s
sbGC estimates are within ±15.2% (2 σ · 100, > 95% Con-
fidence Interval). On convergence, the nls method esti-
mated that α = (− 0.79 ± 0.25) p < 0.001 and β = (1.91 ±
0.14) p < 0.001, which indicates approximately (1.91/
0.79) = 2.42 AT substitutions for each GC substitution
on average. Figure 1 shows sbGC (vertical axis) for each
strain plotted against corresponding cgGC (horizontal
axis) together with gcMOD-predicted sbGC values (blue
points). Additional files 3 and 4 contains more informa-
tion regarding the species and data used in the present
study. gcMOD also allows for sbGC predictions to be
performed for each species, in the sense that each sbGC
and cgGC value is based on all strains and all core ge-
nomes for each species, if the parameters α and β are re-
estimated accordingly. A similar analysis on bulk sbGC
for each core genome (See Additional file 5), i.e. sbGC
now designates the bulk %GC content from all strains in
each species (each core genome), gives α = (− 1.35 ± 0.83)
p = 0.003 and β = (2.59 ± 0.61) p < 0.001, which indicates
approximately (2.59/1.35) = 1.92 AT substitutions on
average for each GC substitution. With residual standard
error σ = 0.054, bulk sbGC estimates, which may perhaps
be considered as a sort of equilibrium sbGC for each
species, are thus within ±11% (2 σ · 100, > 95% Confi-
dence Interval).
It is evident from Fig. 1 that sbGC exhibits a pro-

nounced bias towards higher GC content as compared
with cgGC (66% of all strains), assuming that sbGC and
cgGC are approximately similar (represented by a dashed
line in Fig. 1). Microbes with the highest cgGC (60% or
more), however, appear to have more AT-biased substitu-
tions than what would be expected from the trend line
(98% of all strains with cgGC> 60%). In other words, the
GC-bias of the substituted bases in microbial core ge-
nomes appears to level off for the most GC-rich genomes.
The GC-rich microbes with AT biased sbGC include
mostly Actinobacteria such as Propionibacterium acnes,
Mycobacterium tuberculosis, Bifidobacterium longum and
B. animalis as well as the γ-proteobacterium Pseudo-
monas aeruginosa. Characteristics shared among these
microbes include that they are both free living and host
associated (See, for instance, [19]). The magnitude of the
GC bias amongst the more AT-rich core genomes is dem-
onstrated in Fig. 2, where cgGC is subtracted from the
corresponding sbGC (ΔsbGC) and plotted against cgGC.
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FGC(x) − x gives the gcMOD-estimated ΔsbGC and can be
seen in Fig. 2 as blue points plotted against the empirical
ΔsbGC values. (See Additional file 6 for bulk ΔsbGC for
each species/core genome). The figure indicates that there
is a negative association between ΔsbGC and cgGC, fur-
ther emphasizing the observation above that the most AT
rich core genomes have, on average, the most GC-biased
substituted bases.

In summary, when gcMOD is fitted to empirical sbGC
and cgGC values it predicts that there may be, on aver-
age, approximately two GC →AT mutations for each
AT→GC mutation across the microbial core genomes
included in the present study. Since α and β are fixed
parameters the model therefore indicates that mutation
rates and the GC→AT bias could be universal for pro-
karyotes as has been suggested by previous studies [10].

Fig. 1 sbGC plotted against cgGC. The graph shows sbGC, for each strain, on the y-axis plotted against corresponding cgGC on the x-axis each
point coloured according to phyla. The dashed line designates sbGC = cgGC while the blue points represent gcMOD fitted to the data using
non-linear regression

Fig. 2 Difference in sbGC- and cgGC plotted against cgGC. The figure shows the difference between sbGC and corresponding cgGC (i.e. sbGC
subtracted from cgGC) plotted against cgGC (horizontal axis) as well as the estimated values from (gcMOD-cgGC) (blue points)
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In this respect, the observed sbGC bias for each core
genome may be a result of natural selection counter-
ing the effects of the universal GC→AT mutation
bias [5, 20, 21].

Discussion
SNP-based phylogeny has fast become the de facto
standard for evolutionary analysis of microbial genomes.
While recent publications have elucidated a number of
mechanisms relating to mutation bias in microbial ge-
nomes an examination of mechanisms focusing on the
GC content of substituted bases, as well as modelling of
AT→GC and GC→AT substitution rates, in microbial
core genomes have gained less attention. In the present
study, we find a strong non-linear association between
sbGC and cgGC where sbGC was more biased towards
higher GC content for species with AT-rich core ge-
nomes (see Fig. 1). Thus, the most AT-rich species were
found to have the most GC-biased substituted bases.
sbGC for each species, however, became progressively
less biased toward higher %GC with increasing cgGC
and, indeed, higher genomic %GC in general. Based on
this information we created a mathematical model that
demonstrated how sbGC evolves when the respective
rates of GC→AT and AT→GC mutations in microbial
core genomes vary. Hence, including only a few hypoth-
eses (described in Additional file 1). gcMOD was shown
to produce a statistical significant sbGC-biased trend,
with regards to cgGC (See Fig. 1 and Additional file 5
for bulk sbGC/cgGC values). That GC→AT outnumber
AT→GC mutations in microbial genomes by a signifi-
cant margin is supported by empirical data [10]. While
gcMOD is deterministic, with output taking on a clear
curved shape as shown in Fig. 1, empirical sbGC varied
between the core genomes of the different species as
well as between strains. This has also been widely dem-
onstrated previously as it has been shown how genomic
GC content is affected by environment, lifestyle, phyl-
ogeny, selective pressures, available molecules such as
nitrogen and more [11, 22, 23]. Neither the observation
that there are differences regarding energetics between
AT and GC nucleotides [24] seem to override the uni-
versal trend suggested by gcMOD, at least not for our
dataset. Such influences may, however, potentially be
manifested in the sbGC variance observed between the
strains in each different species (See Fig. 1). While
gcMOD estimates that GC→AT mutations may occur,
on average, approximately twice as often as AT→GC mu-
tations in microbial genomes the observed biases in the
GC content of sbGC, as compared with cgGC, observed
in Figs. 1 and 2, are harder to resolve. In fact, the bias in
sbGC, as compared with cgGC, is part of an ongoing de-
bate of whether microbial base composition is shaped by
natural selection and/or to what extent neutral selective

processes may play a significant part [3, 6, 15, 20, 25]. As
gcMOD contains some more or less implicit assumptions
several consequences can be noted from the observed re-
sults. First, sbGC content increments, compared to cgGC,
follow a negative trend due to the underlying assumptions
of the model. That is, the increment in sbGC substitutions
decrease with increasing cgGC (See Fig. 2). This means,
for example, that the increase in sbGC for species with
cgGC ranging from 50 to 60% GC will, on average, be less
than for species with cgGC ranging from 40 to 50% GC.
This decreasing trend can also be deduced from Fig. 2 (as
well as Additional file 6). Furthermore, and somewhat sur-
prising perhaps, AT → GC / GC→AT mutation biases
and rates appear to be remarkably similar for all 35 bacter-
ial species included here, supporting previous observations
based on fewer species [10].
It should be noted that selection is less effective on a

shorter time scale [16]. Our estimates are however pri-
marily based on different species’ core genomes, consist-
ing of different strains, as opposed to core genomes with
intra-clonal isolates separated more recently in time
whose mutations may not end up as substitutions or be
altogether lacking [10, 16]. Thus, our described results
are assumed to be based on the strains of different spe-
cies of which natural selection (and/or non-selective
processes) has had vast opportunities to effectively oper-
ate on the different core genomes. It is therefore possible
that putative effects of gBGC are concealed by the ef-
fects of purifying selection.
While gcMOD appears to give reasonable descriptions

of the empirical results, there are some cautions that
must be raised. First, the model does not assume any-
thing about the core genomes except that the function
estimating sbGC should be a continuously differentiable
function of cgGC proportional to mutation rates α and
β. It also means that, on average, the fixed AT/GC sub-
stitution rates in each respective core genome follow
something that may resemble a universal trend. On aver-
age, similar mutation rates for many different species be-
longing to vastly different phyla, all living in various
environments, may seem peculiar. However, statistical
significant estimations of the parameters α and β in
gcMOD from empirical sbGC and cgGC values suggests
that both similar rates and strongly AT-biased mutations
may not be uncommon amongst prokaryotes and this is
consistent with previous studies as noted above. More-
over, variable site extraction and removal of recombinant
regions are error-prone processes. Indeed, the program
Gubbins, used for removal of recombinant sites, is better
suited for more closely related isolates with respect to
time. Since the substituted bases in each core genome
numbered in thousands, errors due to extraction of
these substituted bases is expected to be negligible. Fur-
thermore, Gubbins was ran on core genomes of each
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species, containing both coding and non-coding regions,
that are per definition similar with almost identical %GC,
together with a core genome-based guide SNP-tree cre-
ated with the program parSNP. We therefore assume that
the variance of sbGC between the strains of the different
species is mainly due to life-style, environment and select-
ive pressures. Since we have used data submitted to public
databases and these genomes have been sequenced for a
reason there could be some kind of implicit selection bias.
We have applied strict criteria for inclusion making sure
that there are enough strains in each core genome (10 or
more) and that the species represent a wide range of gen-
omic GC content found in microbes. Finally, there is obvi-
ously also a possibility that our mathematical model is too
simple. But its simplicity, we believe, is also its strength as
gcMOD significantly fits (p < 0.001) the empirical data.

Conclusions
We present a mathematical model gcMOD that models
substituted bases in microbial core genomes (sbGC) each,
except for Brucella spp., representing a unique species.
The model only takes core genome GC content (cgGC) as
an independent variable and return estimates of sbGC.
gcMOD sbGC predictions are based on parameter esti-
mates of GC→AT and AT→GC substitutions (β and α,
respectively) obtained using non-linear regression on em-
pirical data. We find that sbGC, taken from 35 core ge-
nomes, each comprising a unique species, with GC
content ranging from 29 to 65% GC, is biased towards
higher GC compared with cgGC, for all but the most
GC-rich microbial species. This GC-bias could be associ-
ated with natural selection to counter the higher GC→AT
than AT→GC mutation rates observed universally for mi-
crobial genomes. sbGC decreases with respect to increas-
ing cgGC and becomes more AT-biased as core genome
%GC increases. It is well known that selection and envir-
onmental factors may influence genomic %GC and thus
also the sbGC differences between the different species ob-
served here. However, our findings suggest that, given long
enough time for selection to operate, the universal higher
GC→AT than AT→GC mutation rates may also influ-
ence how base composition in microbial core genomes
evolves regardless of taxa. Finally, our model support previ-
ous observations that the AT-biased mutation rates in bac-
teria may be pervasive throughout the prokaryotic
kingdom and that mutation rates in general are remarkably
similar between microbial species from different taxa.

Methods
All 716 genomes used were taken from a previous study
(the archaeon Sulfolobus islandicus was removed) and have
been thoroughly described there [15]. Briefly, core ge-
nomes, containing both coding and non-coding regions,
were extracted using parSNP from the Harvest suite

tools [26] for prokaryotic species, except Brucella spp.,
having more than 10 fully sequenced strains with closed
genomes. It was decided on strict criteria as variant site
calling is sensitive to both methods and algorithms
used to identify them. Gubbins [18] was subsequently
applied on each of the resulting core genomes to re-
move putative recombinant regions leaving predomin-
antly non-recombinant, substituted bases with a guide
tree provided by parSNP for each core genome/species.
All Gubbins produced fasta-files were carefully exam-
ined using Seaview [27] removing all columns contain-
ing gaps. Core genome GC content (cgGC) was both
calculated as the total %GC for each core genome, i.e.
species containing all strains, but also for each individ-
ual strain in each species/core genome. The GC con-
tent of the substituted bases (sbGC) was similarly
calculated both as the total %GC content of all variable
sites for each strain, in each core genome/species, as
well as for each individual species. Additional file 2
contains a more elaborate description of how sbGC and
cgGC were calculated. Seaview was used to assess %GC
in all instances. Both sbGC and cgGC were found to
conform to Chargaff ’s parity laws [28], i.e. A/T and G/C
substitutions are similar.
The derived mathematical model, gcMOD, returns es-

timated sbGC given cgGC assuming fixed rates α and β
for AT to GC and GC to AT mutation rates. gcMOD is
based on the initial condition that sbGC and cgGC are
approximately equal as cgGC approaches 0.
To assess model fit, estimate parameters α and β and de-

termine statistical significance we fitted a non-linear least
squares regression model using the function gnls from the
R-package “nlme” [29]. Empirical sbGC, from the 35 core
genomes described above, was used as the response variable
and gcMOD, taking empirical cgGC values, as the
non-linear model. The starting values of the parameters
were set to α = 2 and β = 1. The non-linear regression
models converged without error and model residuals were
assessed and found to follow an approximate Gaussian dis-
tribution. The estimated parameters α and β are reported
as mean estimates ± two standard errors (> 95% Confidence
Intervals) with a null-hypothesis of being zero (i.e. gcMOD

is just a straight horizontal line: dFGCðxÞ
dx ¼ 0). All statistical

models and figures were created with the free data analysis
software R [30]. All figures were created with the
R-package ggplot2 [31].

Additional files

Additional file 1: A detailed mathematical derivation of the sbGC
model gcMOD in pdf-format. (PDF 458 kb)

Additional file 2: A detailed explanation of how sbGC and cgGC were
derived in pdf-format. (PDF 190 kb)
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Additional file 3: An Excel file containing data used for strain-wise
sbGC/cgGC analyses (XLSX 44 kb)

Additional file 4: An Excel file containing data used for bulk sbGC/cgGC
analyses (XLSX 11 kb)

Additional file 5: The graph shows bulk sbGC on the y-axis plotted
against corresponding cgGC on the x-axis for the core genomes of 35
different species each coloured according to phyla. The dashed line des-
ignates sbGC = cgGC while the blue points represent gcMOD fitted to
the data using non-linear regression. (PDF 8 kb)

Additional file 6: The figure shows the difference between bulk sbGC
and corresponding cgGC (i.e. cgGC subtracted from sbGC) plotted
against cgGC (horizontal axis) as well as the estimated values from
(gcMOD-cgGC) (blue line). (PDF 8 kb)

Abbrevations
(g)nls: (generalized) non-linear least squares method; AT/GC
content: Number of A + T or G + C nucleotides divided by DNA sequence
length; cgGC: Core genome GC content; gcMOD: The mathematical model
for sbGC prediction; mbp: Mega base pairs; millions of base pairs; sbGC: The
GC content of substituted bases in core genomes; SNP: Single nucleotide
polymorphism; ΔsbGC: Difference between sbGC and cgGC, i.e. cgGC
subtracted from sbGC
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