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ABSTRACT
Bladder cancer (BC) is the ninth most common malignancy worldwide. Bladder
urothelial carcinoma (BLCA) constitutes more than 90% of bladder cancer (BC). The
five-year survival rate is 5–70%, and patients with BLCA have a poor clinical outcome.
The identification of novel clinicalmolecularmarkers in BLCA is still urgent to allow for
predicting clinical outcomes. This study aimed to identify a novel signature integrating
the three-dimension transcriptome of protein coding genes, long non-coding RNAs,
microRNAs that is related to the overall survival of patients with BLCA, contributing
to earlier prediction and effective treatment selection, as well as to the verification
of the established model in the subtypes identified. Gene expression profiling and
the clinical information of 400 patients diagnosed with BLCA were retrieved from
The Cancer Genome Atlas (TCGA) database. A univariate Cox regression analysis,
robust likelihood-based survival modelling analysis and random forests for survival
regression and classification algorithms were used to identify the critical biomarkers. A
multivariate Cox regression analysis was utilized to construct a risk score formula with
a maximum area under the curve (AUC = 0.7669 in the training set). The significant
signature could classify patients into high-risk and low-risk groups with significant
differences in overall survival time. Similar results were confirmed in the test set
(AUC = 0.645) and in the entire set (AUC = 0.710). The multivariate Cox regression
analysis indicated that the five-RNA signature was an independent predictive factor for
patients with BLCA. Non-negative matrix factorization and a similarity network fusion
algorithm were applied for identifying three molecular subtypes. The signature could
separate patients in every subtype into high- and low- groups with a distinct difference.
Gene set variation analysis of protein-coding genes associated with the five prognostic
RNAs demonstrated that the co-expressed protein-coding genes were involved in the
pathways and biological process of tumourigenesis. The five-RNA signature could serve
as to some degree a reliable independent signature for predicting outcome in patients
with BLCA.
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INTRODUCTION
Bladder cancer (BC) represents one of the important common urological carcinomas and
is the ninth most common malignancy worldwide (Siegel, Naishadham & Jemal, 2013). As
a highly heterogeneous cancer, the development of BC is a multi-step process, and the
majority of bladder tumours at present are low-grade non-invasive tumours (Siegel et al.,
2014). The prognosis of BC patients remains poor, especially invasive BC. Stage progression
was developed in some patients, meanwhile, about 30% of muscle-invasive BCs have occult
distant metastasis at the time of diagnosis that led to a poor 5-year survival (Kamat et al.,
2016). Bladder urothelial carcinoma (BLCA) accounts for 90% of bladder carcinomas. Due
to the progression of these tumours and their frequent recurrence, the prognosis of BLCA
patients is poor and their 5-year survival rate is only 5–70% (Siegel, Miller & Jemal, 2017).
Although there have been advances in diagnostics and pre-operative and post-operative
care, surgical techniques, chemotherapy and radiotherapy, there has been little distinct
improvement in BC patients’ survival rates. As a result, the identification of novel clinical
molecular markers in BC is still urgent to allow for predicting clinical outcomes. This study
aimed at exploring the potential prognostic biomarkers for predicting survival in BLCA
patients, which had much worse survival outcomes.

Over the past few decades, in response to the development of high-throughput
sequencing technology, for instance the next generation sequencing (NGS), researchers
have become devoted to uncovering novelmolecular biomarkers frombulk sequencing data
that have an impact on clinical outcomes by analysing the data at the transcriptome level
or integrating multiple profiles with clinical data (Berger et al., 2018; Jiang et al., 2018; Liu
et al., 2018b;Wang et al., 2018). Protein-coding genes (PCGs) are thought to be involved in
many important pathways and biological processes during tumourigenesis (Ge et al., 2018;
Liu et al., 2017;Zhang et al., 2017). A recent study found that Eukaryotic Elongation Factor-
2 kinase (eEF-2K ) expression was related to shorter overall survival in lung cancer patient
(Bircan et al., 2018). A 24-gene hypoxia signature represented independent prognostic and
predictive value for patients with muscle invasive bladder cancer (Yang et al., 2017). An
9-mRNA prognostic signature model (EME1, AKAP9, ZNF91, PARD3, STAG2, ZFP36L2,
METTL3, POLR3B, and MUC7) has been found to be significantly associated with patients’
survival in muscle-invasive bladder (Han et al., 2019).

In recent years, long non-coding RNAs (lncRNAs) have been found to play an important
role in many kinds of cancers involved in tumourigenesis and tumour progression. The
differential expression analyses of lncRNAs in multi-cancer utilizing microarrays and RNA
sequencing data have suggested that many lncRNAs are dysregulated in human cancers
and many of these are related to patients’ prognoses (Yan et al., 2015). The upregulation of
differently expressed lncRNAs (PCAT-1 and MALAT1) is related to poor recurrence-free
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survival (RFS) of non-muscle-invasive bladder cancer (Zhan et al., 2018). Non-muscle-
invasive BC patients with high UBC1 expression had significantly lower recurrence-free
survival (p= 0.01) (Zhang et al., 2019). The expression of lncRNA HOTAIR is a promising
biomarker for predicting overall survival of patients with bladder transitional cell carcinoma
(Shang et al., 2016). A prognostic 4-lncRNA (AC005682.5, CTD-2231H16.1, CTB-92J24.2
and RP11-727F15.13) expression signature was established for BLCA and researchers
believe that the signature has a good predictive ability (Bao, Zhang & Dong, 2017). Liu
et al. (2018c) proposed a prognostic 5-lncRNA Expression signature for patients with
head and neck squamous cell carcinoma. Fan, Ma & Liu, (2018) constructed a competing
endogenous RNA (ceRNA) network with lncRNA-miRNA-mRNA and identified a four-
lncRNA signature (ADAMTS9-AS1, LINC00536, AL391421.1 and LINC00491) that could
independently predict overall survival (OS) in breast cancer (BC) patients.

Apart from PCGs and lncRNAs, miRNAs are also considered to be dysregulated
expression related to multiple cancers. Researchers have come to the conclusion that
a five-miRNA signature (hsa-let-7g-3p, hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306
and hsa-miR-7161-3p) is a strong and independent prognostic factor in predicting disease
recurrence and survival of patients with HPV-negative head and neck squamous cell
carcinoma (HNSCC) (Hess et al., 2019). For these miRNAs, in addition to head and neck
cancer (Gee et al., 2010; Hess et al., 2019), hsa-mir-210 has already been reported to have
an impact on pancreatic cancer (Greither et al., 2010), osteosarcoma (Cai et al., 2013),
renal cancer (McCormick et al., 2013), non-small cell lung cancer (Eilertsen et al., 2014),
glioblastoma (Qiu et al., 2013), soft-tissue sarcoma (Greither et al., 2012) and breast cancer
(Buffa et al., 2011; Rothe et al., 2011; Volinia et al., 2012). Concerning bladder cancer, a
nine-miRNAs (hsa-miR-99a-5p, hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-145-5p,
hsa-miR-4324, hsa-miR-34b-5p, hsa-miR-29c-3p, hsa-miR-135a-3p, and hsa-miR-33b-3p)
provides prognostic and predictive value of patients with urothelial carcinoma of the
bladder (Inamoto et al., 2018).

In summary, PCGs, lncRNAs and miRNAs are potential biomarkers predicting survival
in tumour patients, the study of Robertson et al. (2017) only focused on a unilateral special
transcriptome signature that has its limitations. In the case of BLCA in this study, we
integrated PCGs, lncRNAs and miRNAs expression data from a large dataset (n= 400) in
The Cancer Genome Atlas (TCGA) database to predict the overall survival of patients with
BLCA more precisely and utilized non-negative matrix factorization (NMF) and similarity
network fusion (SNF) to classify patients with BLCA into distinct molecular subtypes.

MATERIALS & METHODS
Data source and preprocessing
Gene expression profiles (Illumina HiSeq RNA Seq), miRNA mature strand expression
profiles (Illumina HiSeq microRNA Seq) level 3 data and phenotype data of bladder
urothelial carcinoma (BLCA) (Robertson et al., 2017) from the TCGA database were
downloaded through the UCSC Xena portal (https://xena.ucsc.edu/). The mRNA
expression profiles and lncRNA expression profiles were derived from the entire gene
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Figure 1 Process of the study. The procedure of analyses to construct a risk score model and evaluate the
prognostic power of this obtained signature and the BLCA subtypes identification.

Full-size DOI: 10.7717/peerj.9422/fig-1

expression profiles. Genes with missing expression values in> 50% samples were removed.
Patients chosen for model constructing met the following criteria: (1) histologic diagnosis
of primary BC; and (2) available RNA expression profiles and complete clinic-pathological
and follow-up data. After sample filtering, four hundred patients were enrolled for further
analysis and divided into 200 samples in the training set and 200 samples in the test
set randomly based on the ‘‘sample’’ algorithm. The ‘‘sample’’ algorithm was a basic
function in R. The application was generating random samples. This means that sample
takes a sample of the specified size from the elements of x using either with or without
replacement. We utilized this function to guarantee the randomness of the samples and
repeatability of results and avoided the sample-specific results. The selection process of the
prognostic signature is shown in Fig. 1.

Preliminary screening of generally changed RNAs
First, RNAs with significantly high variability expression among different patients of
primary bladder cancerwere preliminary screened. Because these RNAs could be considered
as important roles in tumorigenesis. A generally changed gene was selected based on the
criteria outlined below:

1. The median expression of gene in every sample was more than 20% of the total
median expressions of all RNAs in every sample;

2. The variance of expression of gene in every sample was higher than 20% of the total
expressions variances of all RNAs in every sample.

Selection of seed RNAs
All of the selected RNAs with significant changes across patient samples were analysed
by univariate Cox regression survival analysis to evaluate the relationship between the
expression of each PCG, lncRNA or microRNA and patients’ OS by ‘‘survival’’ package in
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R in the training set (Grambsch & Therneau, 2000; Therneau, 2015). RNAs found to have
significant p values < 0.05 were selected as seed RNAs, indicating prognostic RNAs.

Identification of key RNAs related to prognosis
Considering that a few PCGs, lncRNAs and microRNAs in one model would make
the prediction more precise and practical, we selected the top 20 PCGs, lncRNAs, and
microRNAs to perform the robust likelihood-based survival models to identify key
biomarkers influencing the clinical outcome of cancer by utilizing the ‘‘rbsurv’’ package in
R language (Hyung, Cho & Yu, 2009; Kendall, Pollock & Brownie, 1995; Renaud et al., 2015;
Wang & Tai, 2009).

Furthermore, we performed the random forests for survival regression and classification
(RF-SRC) algorithm by using the ‘‘randomForestSRC’’ package in R language to filter
genes until three PCGs, three lncRNAs and three microRNAs were retained to construct a
predictive model (Ishwaran & Kogalur, 2010; Ishwaran et al., 2014).

Screening of BLCA subtypes-associated metagenes
Through data preprocessing, we screened out 8969 PCGs, 89 lncRNAs and 582microRNAs.
Before performing NMF, we applied a filtering procedure to retain genes with high
variability across 200 patients from the training cohorts because the higher variable genes
are informative in the clustering process (Zhao, Zhao & Yan, 2018). The median absolute
deviation (MAD) value of each gene was calculated, and we selected the top 500 most
variable genes for the clustering analysis. In particular, the 89 lncRNAs expression in the
200 patients were all reserved for the following analysis.

The ‘‘NMF’’ R package (Gaujoux & Seoighe, 2010) was utilized to perform the clustering
analysis with the Brunet algorithm. Informative genes were extracted by NMFmethod. We
used NMF to reduce the dimensionality of expression data from thousands of genes to a
handful of metagenes (Brunet et al., 2004). The number of clusters k was varied from 2 to
10, and we repeated the clustering process 30 times. The value of k that led to the stable
cophenetic correlation coefficient mentioned by Brunet et al. was chosen as the optimal
number of clusters. Next, we repeated the clustering 200 times with an optimal k to obtain
the associated metagenes and consensus matrix. Subtype-specific genes were singled out
using the ‘‘extractFeatures’’ function with the largest row feature scores in the ‘‘NMF’’
package (Gaujoux & Seoighe, 2010).

Identification of BLCA subtypes
We clustered the 200 tumour samples in the training set using the SNF algorithm based on
the ‘‘CancerSubtypes’’ R package (Xu et al., 2017). Then, we selected 20 as the number of
iterations for the diffusion process. The statistical significance of the clustering (SigClust)
was calculated to validate the significance of the clustering results. This calculation assesses
the significance of clustering by simulation from a single null Gaussian distribution. The
parameter of the ‘‘icovest’’ was set as 3, indicating original background noise threshold
estimate. Survival analysis was also conducted to validate the significance and verify the
survival patterns between the identified molecular subtypes or in every cancer subtype. We
also made a comparison between our classification and the existing subtype classification
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from the TCGA subtypes (Robertson et al., 2017). The heatmap corresponding to the
dendrogram was generated using the heatmap function with SNF algorithm classification,
mRNA cluster, lncRNA cluster, microRNA cluster, RPPA cluster, hypermethylation cluster,
hypomethylation cluster, mutation process (MSig) cluster, SMG-SCNA cluster, histological
subtype, TNM stages, clinicopathological stages, histological grade, and TP53 mutation,
KRAS mutation, BRAF mutation and EGFR mutation as the annotations.

Multivariate survival analysis
To describe how these RNAs affected the prognosis of the BLCA patients, multivariate
survival analysiswas performedon the 511 signatures composed of the selected 9 biomarkers
using permutation and combination method in the training dataset by using the ‘‘survival’’
package in the R language. Subsequently, we established a weighted overall survival (OS)
prognostic index algorithm model for prediction of the prognosis using the following:

Risk score (RS) =
∑N

i=1
(
Exp∗Coef

)
where N was the number of prognostic PCGs, lncRNAs and microRNAs in the model, Exp
stands for the expression value of the PCGs, lncRNAs and microRNAs, and Coef was the
estimated regression coefficient of the PCGs, lncRNAs and microRNAs in the multivariate
Cox regression model. Patients who have higher risk scores are expected to have a higher
probability of a poor outcome. Selecting the median risk score in each dataset as a cutoff
value, bladder urothelial carcinoma patients were divided into high- and low- risk groups
(Zhou et al., 2015). Meanwhile, we performed Kaplan–Meier survival analyses to inspect
the differential for survival distributions in different groups for each BLCA cohort, and
the two-side log-rank test was used to assess the statistical significance. Furthermore,
multivariate Cox regression analysis was conducted to test whether the risk score was
independent of other clinical covariates.

Functional annotation via GO, KEGG analyses and gene set variation
analysis (GSVA)
To further investigate the underlying biological roles and pathways of the three-dimension
transcriptome signature, the co-expression relationships of the three PCGs, one lncRNA
and onemiRNAwith the corresponding co-expressed protein-coding genes were calculated
using Pearson correlation coefficients in the training dataset. GO analyses were conducted
by using R package clusterProfiler (Yu et al., 2012). GSVA (Hanzelmann, Castelo &
Guinney, 2013) was applied to obtain the abovementioned co-expressed PCGs based
on the following criterion: Pearson correlation coefficient > |0.3|, p-value < 0.05.

Statistical analysis
Survival analysis was performed using the Kaplan–Meier method, and the differences
between survival curves was assessed using the log-rank test. Univariate and multivariate
analyses were conducted using Cox proportional hazard models. Survival predictive
accuracy of prognostic models was estimated based on a receiver operating characteristic
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curve (ROC) analysis via ‘‘pROC’’ R package (Robin et al., 2011). All statistical analyses
were performed in the R platform (R Core Team, 2019). All statistical tests were two-sided
and p-values < 0.05 was considered statistically significant.

RESULTS
BLCA patients’ characteristics in the training and test sets
A total of four hundred patients included in this study were pathologically diagnosed with
bladder urothelial carcinoma after preprocessing. Patients withmissing overall survival data
were excluded from this study. These patients were divided into a training set (n= 200) and
a test set (n= 200) randomly and evenly. The patient agewas classified as≤ 61 and according
to the X-tile software (Yale University Version 3.6.1, http://tissuearray.org) (Camp, Dolled-
Filhart & Rimm, 2004). All of the baseline demographic and clinical characteristics of these
three datasets are summarized in Table 1.

Identification of significant PCGs, lncRNAs and microRNAs
associated with overall survival from the training set
Through preprocessing and preliminary screening of the significantly changed PCGs,
lncRNAs and miRNAs in the training set (see methods), 8969 PCGs, 89 lncRNAs and 582
microRNAs expression profiles were generated for key RNAs identification.

We utilized three algorithms to identify the central RNAs used to construct the candidate
prognostic prediction models. First, we conducted a univariate Cox proportional hazards
regression analysis with the PCGs, lncRNAs andmicroRNAs expression profiling data as the
independent variables while survival time and survival status were the dependent variables,
andwe identified 785 PCGs, 5 lncRNAs and 34microRNAs thatwere significantly associated
with patients’ OS (Table S1). Second, we used the robust likelihood-based survival models
to identify 19 PCGs, 4 lncRNAs and 3 microRNAs that were the most highly correlated
with the prognostic information. Third, using the random forests for survival regression
and classification algorithm, we finally screened out 3 PCGs, 3 lncRNAs and 3 microRNAs
according to the variable importance (VIMP) (Fig. S1).

Acquisition and construction of the prognostic PCG-lncRNA-
microRNA signature model in the training set
The 3 PCGs, 3 lncRNAs and 3 microRNAs mentioned above in the training set could have
511 combinations and the corresponding risk score could be calculated according to every
risk score model (Table S2). All of the risk scores of every patient were computed in the
‘‘Risk score (RS)’’ formula described in the methods. Simultaneously, we conducted ROC
analysis for selecting a better prognostic signature. Finally, the PCG-lncRNA-microRNA
model composed of ANXA1 (PCG), TPST1 (PCG), PSMB10 (PCG), DLEU1 (lncRNA)
and miR-497-5p (miRNA) with a higher AUC and the significant regression coefficients
(p-value < 0.05) was retained as the ultimate model (Table 2). The risk score of each
patient was obtained with the criteria outlined below: Risk score = (0. 3024× expression
value of ANXA1) + (0. 1494× expression value of TPST1) + (−0. 4377× expression value
of PSMB10) + (0. 4875× expression value of DLEU1) + (0. 4262× expression value of
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Table 1 Summary of patient demographics and clinical characteristics of datasets.

Characteristics Training set
(n= 200)

Test set
(n= 200)

Entire set
(n= 400)

Age, years
≤61 60 58 118
>61 140 142 282
Gender
Male 149 147 296
Female 51 53 104
Pathologic stage
Stage I 1 1 2
Stage II 58 70 128
Stage III 70 66 136
Stage IV 70 62 132
Unknown 1 1 2
Histologic grade
High grade 189 188 377
Low grade 10 10 20
Unknown 1 2 3
Pathologic T
T2 44 48 92
T3 97 92 189
T4 22 20 42
Unknown 37 40 77
Pathologic N
N0 114 117 231
N1 24 21 45
N2 37 38 75
N3 4 3 7
NX 16 20 36
Unknown 5 1 6
Pathologic M
M0 101 93 194
M1 7 4 11
MX 89 103 192
Unknown 3 0 3
Diagnosis subtype
Papillary 63 64 127
Non-papillary 135 133 268
Unknown 2 3 5
Overall survival (years) 2.29± 2.41 2.17± 2.18 2.23± 2.29
Vital status
Living 110 115 225
Dead 90 85 175
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miR-497-5p). The AUC value of the PCG-lncRNA-microRNA signature mentioned above
was 0.7669 (Fig. 2A), indicating that the model consisting of the five biomarkers could have
a good performance for survival prediction.We also compared the survival predictive ability
of the PCG-lncRNA-microRNA signature with pathologic stage using ROC analysis in the
training dataset and concluded that the predictive power of the signature constructed was
better than stage (AUCsignature= 0.7669, AUCstage= 0.6591; p-value < 0.05) (Fig. 2B). In
this study, we also compared the proposed model with other known prognostic signatures,
including a six-gene signature (Wang et al., 2019) and an eight-mRNA signature (Zhu et
al., 2019). As shown in the Figs. 2C–2D, the AUC value of the model proposed in this
study was larger than the studies mentioned above. The result indicated that the prognostic
signature model was candidate for predicting patients’ overall survival status. The results
further indicated that the model constructed in our study was a novel predictive prognostic
signature with high sensitivity and specificity in its clinical significance. Furthermore, from
the ‘‘Risk score’’ formula, it suggested that ANXA1, TPST1, DLEU1 and miR-497-5p were
possible risk factors and PSMB10 was a possible protective factor for survival (Table 2).

The 200 BLCA patients in the training set were assigned to the high-risk group (n= 100)
and low-risk group (n= 100) according to the median risk score. Kaplan–Meier analysis
indicated that patients in the high-risk group had a significantly poor outcome than those
in the low-risk group (log-rank test, p-value < 0.0001; Fig. 3A). The distribution of risk
scores, OS, vital status, and corresponding RNAs expression profiles of the 200 patients in
the high-risk and low-risk groups are shown in Fig. 3B.

Validation of the prognostic signature model in the test set
Using the same method as in the training set, the patients in the test set (n= 200) and
entire set (n= 400) were also classified into high-risk and low-risk groups to validate
the survival prediction of the PCG-lncRNA-microRNA signature. In the test set, the 200
patients were divided into the high-risk group (n= 100) and low-risk group (n= 100).
Kaplan–Meier curve analysis showed that patients in the high-risk group had a shorter
OS than those in the low-risk group (log-rank test, p-value < 0.05; Fig. 3C). The AUC
value of the signature was 0.645 (Fig. 2E). In the entire set, similar results were found
(log-rank test, p-value < 0.0001; Fig. 3E). The AUC of the signature was 0.710 (Fig. 2F).
However, the entire set was just used for exploration purposes instead of evaluating the
value for the model. The distribution of risk scores, OS, vital status, and corresponding
RNAs expression profiles of patients in the test set and entire set in the high-risk and
low-risk groups are shown in Fig. 3D and Fig. 3F. We also noticed that ANXA1, TPST1,
DLEU1 and miR-497-5p showed a tendency towards high expression in patients in the
high-risk group, and PSMB10 presented with low expression in the high-risk group. These
results are in accordance with the results in the training set (please see the section above)
(Figs. 3D–3F).

The survival predictive ability of the three-dimension transcriptome
signature is independent of other clinical features
To evaluate whether the PCG-lncRNA-microRNA signature maintained its prognostic
power in the context of other clinical features, the results of multivariate Cox regression
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Table 2 Identifications of PCGs, lncRNA andmicroRNA in the prognostic expression signature.

Gene
symbol

Gene
name

Gene
type

Location Coefficienta HR lower95 upper95 p-valueb

ANXA1 Annexin A1 Protein-coding 9q21.13 0.3024 1.3531 1.1664 1.5696 <0.0001
TPST1 Tyrosylprotein sulfotransferase 1 Protein-coding 7q11.21 0.1494 2.183 1.416 3.365 <0.0001
PSMB10 Proteasome subunit beta 10 Protein-coding 16q22.1 −0.4377 0.6455 0.5169 0.8061 0.000113
DLEU1 Deleted in lymphocytic leukemia 1 lncRNA 13q14.2-q14.3 0.4875 1.6283 1.2103 2.1907 0.001279
miR-497-5p MIR497 microRNA 17p13.1 0.4262 1.5314 1.1825 1.9833 0.001237

Notes.
HR, hazard ratio.

aCoefficents derived from multivariate Cox regression analysis.
bp-values obtained from multivariate Cox regression analysis.
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Figure 2 Evaluation of the predictive power of the PCG-lncRNA-microRNA signature and patho-
logic stage in the training set, test set and entire set. (A) ROC analysis of the signature for prediction of
overall survival in the training set. (B) Comparison of the survival prediction ability of the PCG-lncRNA-
microRNA signature with pathologic stage in the training set. (C) ROC curves of the six-gene signature.
(D) ROC curves of the eight-mRNA signature. (E) ROC analysis of the signature for prediction of overall
survival in the test set. (F) ROC analysis of the signature for estimation of overall survival in the entire set.

Full-size DOI: 10.7717/peerj.9422/fig-2

analysis showed that the power of the three-dimension transcriptome signature was
maintained in survival predication and was significantly independent of other clinical
features in the training set (hazard ratio [HR] = 4.209, 95% confidence interval [CI]
[2.4541–7.218], p-value < 0.0001), the test set (HR = 1.679, 95% CI [1.0679–2.641],
p-value < 0.05), and the entire set (HR = 2.4419, 95% CI [1.7262–3.454], p-value <

0.0001; Fig. 4).
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Figure 3 Screening and constructing of the prognostic PCG-lncRNA-microRNA signature model. (A)
Kaplan–Meier analysis for overall survival in BLCA patients stratified according to the five-RNA signa-
ture into high-risk and low-risk groups in the training set. Similar results were presented in the test set (C)
and in the entire set (E). (B) The distribution of risk scores, OS, vital status, and corresponding RNAs ex-
pression profiles of the 200 patients in the high-risk and low-risk groups in the training set. Similar results
were presented in the test set (D) and in the entire set (F). The ‘‘+’’ symbol in the panel indicated censored
data. Risk scores are presented and arranged in ascending order from left to right in the x-axis. The vital
status is shown with red and green spots, respectively. Heatmaps of RNA expression profiles of the selected
five biomarkers in the high- and low- groups according to risk scores.

Full-size DOI: 10.7717/peerj.9422/fig-3

NMF and SNF algorithm identifies three subtypes in BLCA
NMF was applied to the training set and cophenetic correlation coefficients were calculated
to choose the appropriate number of clusters. Ultimately, a factorization rank of 3 was
determined for the clusters by the method mentioned by Gaujoux & Seoighe (2010) who
suggested choosing the smallest value of r for which this coefficient starts decreasing
(Fig. S2A). The consensus matrix heatmap showed the preferable sharp boundaries, which
indicated robust and stable clustering for the samples (Fig. S2B).

Then, 172 PCGs, 15 lncRNAs and 42 miRNAs metagenes identified by NMF were
described as features, together with the 200 samples in the training set to build a
similarity network to cluster cancer subtypes based on three-dimension transcriptome
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Figure 4 Univariate andmultivariate Cox regression analysis of the PCG-lncRNA-microRNA signa-
ture and overall survival of BLCA patients in the training (A), test (B) and entire set (C).

Full-size DOI: 10.7717/peerj.9422/fig-4

data. We classified all of the 200 BLCA patients into three clusters: cluster_1 (63 patients,
31.5%), clusters_2 (85 patients, 42.5%) and clusters_3 (52 patients, 26.0%). Statistical
significance analysis of clustering showed that cluster_1/cluster_2, cluster_1/cluster_3
and cluster_2/cluster_3 had significant differences (p-value = 0) (Fig. S2C). The same
classification method was performed in the test set and the entire set. Patients in these
two datasets can also be divided into three clusters that presented with similar proportions
(Fig. S2D). Furthermore, we found that patients in the high-risk group with high grade
and stage I; and stage II; were enriched in subtype 2 and subtype 3 and few were in subtype
1, while patients in the low-risk group were enriched in subtype 1 and subtype 2 and few
were in subtype 3. This suggested that subtype 2 and subtype 3 have potentially higher
carcinogenic biological processes (Figs. S2E–S2G).

The average silhouette width between these clusters was 0.47 (range, from 0.42 to 0.55),
which indicated the robustness of the classification in the training set (Fig. 5A). However,
the overall survival probability between the three clusters had no significant differences
(p-value = 0.2) (Fig. 5B). Meanwhile, the high-risk group had a poor prognosis compared
with the low-risk group in every cluster (cluster_1: p-value < 0.0001, cluster_2: p-value <
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0.0001, cluster_3: p-value = 0.00049) (Fig. S3). In the test set, the average silhouette width
between the three clusters was 0.39 (range, from 0.25 to 0.54), the OS probability across
the three clusters had no significant differences (p-value = 0.13) (Figs. 5C–5D), and the
survival probability between the high-risk group and low-risk group had no significance
except for the cluster_2 (p-value= 0.0085) (Fig. S3). In the entire set, the average silhouette
width across the three clusters was 0.44 (range, from 0.31 to 0.57), the entire probability
across the three clusters had significant differences (p-value = 0.015) (Figs. 5E–5F), while
the high-risk group had a poor prognosis compared with the low-risk group in every
cluster (cluster_1: p-value < 0.0001, cluster_2: p-value = 0.00059, cluster_3: p-value <

0.0001) (Fig. S3). The heatmap was presented in Fig. S4. The basal squamous, neuronal,
luminal papillary and luminal infiltrated subtypes shared in the same cluster 3, which
showed higher TP53 mutation and more dead events. And the majority of basal squamous
and neuronal subtypes were enriched in the cluster 3, indicating high risk group, while
the luminal papillary subtype was enriched in the cluster 2. Furthermore, the lncRNA and
microRNA clusters also presented preferable general boundaries.

We also investigated the basic expression of these five biomarkers in the tumor and
normal tissues (Fig. S5A). Based on the biomarkers of the constructed signature, we also
investigated the potential biological significance behind these molecules. We calculated the
expression correlation of the 5 genes, and the correlation coefficients of most of the genes
were low in the subtypes or tumour samples. The genes with positive regression coefficients
had positive correlations with each other. The relationship of ANXA1 and TPST1 showed
a positive correlation (r = 0.21, p-value < 0.05) and the association of ANXA1 and
DLEU1 also showed a positive correlation (r = 0.21, p-value< 0.05) (Fig. S5B). All of these
indicated that these genes carried less overlapped information and showed low redundancy.

Functional characterization of GO and KEGG analyses and gene set
variation analysis (GSVA)
To explore the co-expression relationships of the selected PCGs, lncRNAs and miRNAs
with the PCGs, Pearson correlation coefficients were computed according to the standard.
The expression of 4469/8969 protein-coding genes in the training set were highly correlated
with that of at least one of the biomarkers. GO analysis, including biological process, cellular
component and molecular function, was conducted. Focal adhesion and MAPK signaling
pathway were also identified in the KEGG analysis. Then, GSVA for these co-expressed
PCGs was performed based on the Hallmark gene sets from the Molecular Signatures
Database (MSigDB). Several functionally related terms were identified and suggested that
the selected five signatures might be involved in tumourigenesis by interacting with related
PCGs that referred to important biological processes such as ‘‘epithelial to mesenchymal
transition’’ (EMT), ‘‘KRAS signaling up’’ and so on (Fig. 6; Table S3).
Furthermore, the protein of the prognostic markers shared in the same subcellular
localization, including plasma membrane, extracellular, nucleus and endosome and so
on (Table S3). Data were from a subcellular localization database COMPARTMENTS
(https://compartments.jensenlab.org/Search).
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Figure 5 Classification of BLCA into three molecular subtypes. Silhouette information for k = 3 classes
and Kaplan–Meier survival curve comparing the survival of cluster_1 (red), cluster_2 (orange), and clus-
ter_3 (purple) in the training set (A), test set (C) and entire set (E). Survival differences were calculated
using the log-rank test, respectively (B, D, F). P-values of less than 0.05 were considered statistically signif-
icant.

Full-size DOI: 10.7717/peerj.9422/fig-5

DISCUSSION
Heterogeneity makes cancers not just a single disease but a diverse group of diseases and
this presents a large significant difficulty and challenge to the treatment of cancer patients.
With the ability to perform genome-wide molecular profiling of cancers and the increasing
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Figure 6 Visualization for the results of GO (A), KEGG (B) and GSVA analyses (C).
Full-size DOI: 10.7717/peerj.9422/fig-6

prevalence of high-throughput sequencing technology in biological studies, especially in the
development of gene expression profiling technologies, researchers can confront the genetic
challenge to better understand the heterogeneity of a variety of cancers. Bladder urothelial
carcinoma accounts for 90% of bladder cancers, and tumour node metastasis (TNM)
classification and pathological grade are incapable of adequately and precisely forecasting
their patients’ clinical outcomes. In the development of molecular technologies, it is
urgent to identify and validate a novel biomarker accounting for molecular mechanisms
of bladder urothelial carcinoma and predicting individual survival of patients. Meanwhile,
heterogeneity existing for each tumour type makes it hard to select the right treatment
strategies for bladder cancer patients with different molecular subtypes. The evidence has
shown that one single RNA element is less sensitive and specific for clinical outcomes
than a combination of multi-dimensional levels (Xu et al., 2017). We believed that the
three-dimension transcriptome signature represented the combination of three types of
RNAs, including protein-coding RNA, lncRNA and microRNA. Hence, we constructed
a risk score formula based on a signature composed of PCGs, lncRNAs and miRNAs,
which are involved in oncogenic and tumour suppressive pathways and that may show a
predictive power in BLCA patients.
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In this comprehensive analysis, we adopted various algorithms to identify three PCGs,
one lncRNA and one miRNA whose expression levels were associated with the overall
survival of bladder urothelial carcinoma patients. Then, we further unveiled that the
signature created by combining these biomarkers was related to BLCA patient clinical
outcomes. The multi-dimensional RNA signature could effectively divide patients in the
training set into high- and low- groups with significantly different overall survival, and this
finding could be successfully validated in the entire set and show a marginally significant
difference in the test set. We found that the AUC value was low in the test set, and the
KM-curve in the test set is only weakly significant ( p= 0.03), and the curves separate
marginally in the first years of follow-up but eventually meet again after 5 years. While, it
is the metric that 5-year survival after cystectomy is clinically most valuable because few
additional events occur after 5 years, so this metric is the key factor on whether the patient
was cured by the surgery, or died by the cancer. These suggested that the performance of
ourmodel was to some degree data set dependent. However, only this weak prognostication
could be achieved despite optimal combinatorial analysis of many thousands of variables.
This is saying something important about the (low) amount of prognostic information that
is found in data sets of muscle-invasive bladder cancer. Moreover, with clinical covariates
in the multivariate Cox regression model, the signature identified in this study was assessed
to be to some extent an independent factor for predicting OS in BLCA patients. Ethnicity
(Yu, Qian & Yang, 2018) and gender (Marcus et al., 2008) have been suggested to influence
the prevalence of the disease and the survival of the bladder cancer patients. Yu et al.
considered that non-Hispanic white patients have the highest incidence rate and better
survival rates. However, in this study, we concluded that there was no significant difference
of the overall survival between the white patients and the other ethnicity in our univariate
analysis. Differences in results may account for the small sample size (n= 200) and lack
of statistical power, and also the gender. Taken together, these results suggested that the
constructed PCG-lncRNA-miRNA signature might be beneficial for clinical identification
of and selection of therapeutic strategies for patients who are experiencing pain and
need more treatment to prolong their lives. But more datasets were needed to verify the
model. In addition, compared to the study of Robertson et al., we integrated three types
of multi-omics to predict overall survival, and the screening process included different
sophisticated algorithms.

Likewise, compared with the traditional classification of cancers, categorical methods
based on transcriptomes can be utilized to classify cancer samples into subtypes with
different molecular characteristics and clinical significance. We applied NMF to perform
gene expression profiling for the classification of BLCA. We identified three molecular and
clinical clusters in the training set and the high-risk group had a poor prognosis compared
with the low-risk group in every cluster. These results suggested that BLCA is a highly
heterogeneous disease and demonstrated that transcriptome expression profiling applied
for categorization of cancers has molecular and clinical significance.

The initiation and progression of BLCA requires the activation of potential key signalling
pathways and dysregulation of cellular biological processes. Gene set variation analysis of
co-expression protein-coding genes of the five biomarkers of the signature showed that
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these genes were enriched in the processes and pathways of tumourigenesis in BLCA.
Accumulating evidence demonstrated that these discovered biomarkers play crucial roles
in a variety of human cancers. Annexin A1 (ANXA1) is a protein-coding gene and encodes
a membrane-localized protein that binds to phospholipids. ANXA1 has been reported
to have an anti-proliferative effect mediated by the intracellular form of the protein,
and it has been found that both mRNA and protein levels are down-regulated in head
and neck cancer tissues. ANXA1 is overexpressed in familial breast cancer patients with
BRCA1/2mutations and is associated with poor prognostic features such as triple negative
and poorly differentiated tumors and may be biomarker candidates for breast cancer
survival prediction in high risk populations such as HER2+ cases (Sobral-Leite et al., 2015).
Researchers have concluded that ANXA1 acts as a tumour suppressor in head and neck
squamous cell carcinoma (HNSCC) and could be an important prognostic biomarker
(Raulf et al., 2018).

Studies depicting the function of tyrosylprotein sulfotransferase 1 (TPST1) in cancer
are rare. In tumour tissues, TPST1 appears to be significantly lower expression than in
control lung tissues. The TPST 1 expression was significantly associated with lymph node
metastasis and the tumour node metastasis (TNM) stage in patients with lung cancer and
may be a negative prognostic biomarker of lung cancer (Jiang et al., 2015). Upregulation
of TPST-1 might be an underlying mechanism contributing to NPC metastasis (Xu et al.,
2013).

Proteasome subunit beta 10 (PSMB10), known as the immunoproteasome (IP) gene, is a
multi-catalytic proteinase complex with a highly ordered ring-shaped 20S core structure. In
breast cancer, high expression of the IP gene is associated with a longer survival. In contrast,
IP upregulation is a cell-intrinsic feature that is not associated with longer survival in acute
myeloid leukaemia (AML). Especially, in M5 AML, expression of the IP gene was found to
be mostly co-regulated with genes involved in mitochondrial activity and stress responses,
cell metabolism and proliferation (Rouette et al., 2016).

Deleted in lymphocytic leukaemia 1 (DLEU1), as a long-noncoding RNA, has potential
mechanisms underlying tumourigenesis. In colorectal cancer tissues, by activating KPNA3
via recruiting SMARCA1, an essential subunit of the NURF chromatin remodelling
complex, increased expression of DLEU1 was observed, and higher expression of DLEU1
in patients indicated lower survival rate and a poorer prognosis (Liu et al., 2018a). In
oral squamous cell carcinoma (OSCC) cells, DLEU1 has oncogenic functionality and
participates in migration, invasion, and xenograft formation. Elevated DLEU1 expression
contributes to OSCC progress and highDLEU1 expression has been associated with shorter
overall survival of primary head and neck squamous cell carcinoma patients (Nishiyama
et al., 2018). Higher lncRNA-DLEU1 expression is found in epithelial ovarian carcinoma
(EOC) tissues than in normal tissues. In the ovarian cancer cell lines A2780 and OVCAR3,
plasmid transfection of DLEU1 to upregulate its expression increased cell proliferation,
migration, and invasion while inhibiting apoptosis (Wang et al., 2017).

Research on miR-497-5p in human cancers reported that the expression of miR-497-5p
was lower in cancer tissues than in normal tissues in HPV-infected patients with cervical
cancer in the Uyghur population in China (Gao et al., 2016). Overexpression ofmiR-497-5p
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inhibited A375 cell proliferation, migration and invasion, arrested the cell cycle, induced
cell apoptosis, and it decreased hTERT expression at both the mRNA and protein levels.
MiR-497-5p acts as tumour suppressor by targeting hTERT in melanoma A375 cells (Chai
et al., 2018).

In this study, we found that TPST1 and ANXA1 were considered as risk factors while
PSMB10 was a protective factor. Deeper research into these two genes has potential value.
In addition, molecular subtyping of BLCA in our study may be helpful for selecting specific
treatment strategies for patients in different subgroups.

Nevertheless, the current study also has some limitations presented as follows. First,
although mathematical algorithms are a powerful method of identifying the potential
biological mechanisms behind high density data, further in vivo/in vitro experiments to
verify the identified biomarkers are still needed to provide more convincing explanations
of the biological evidence. Second, the method of the choice of 50/50 training and test
sets may be outdated, and the training set can be significantly bigger to capture more
information. Cross-validation may be alternative. However, in this study, we adopted
the ‘‘sample’’ algorithm, this algorithm was generating random samples. Therefore, it is
urgent to expand the sample size for verification. Furthermore, as a retrospective study,
the cohort of patients was heterogeneous, and the number of tissues derived from one
database (TCGA) was limited, and as a result, the robustness of the results in prognostic
assessment must be validated in prospective patient cohorts in clinical trials or external
validation datasets, ideally with large prospective patient cohorts. We have tried our best
to search for more datasets in many kinds of databases, but it is very hard to find out the
clinical samples simultaneously including survival information and all expression data
of the protein-coding genes (PCGs), lncRNA and microRNA, which were included in
our proposed model. Third, the number of lncRNAs and miRNAs screened in the gene
expression profiling in this study was rare, and as a result, lncRNAs and miRNAs were
seldom included in our established model. The signature might not represent all of the
candidate biomarkers that are potentially associated with survival of bladder urothelial
carcinoma. Fourth, the data shows that despite sophisticated gene selection and modeling,
it was not possible to get a good separation of survival in the test set. The appropriate
weighting of the genes is to some degree method and data set dependent. When the model
was tested in NMF-clusters, which are a representation of RNA-based molecular subtypes,
they failed to provide any survival information in the individual subsets. More genes,
or a different selection strategy e.g., knowledge driven, or using coherent signatures, or
subtype-dependent signatures may be better approaches for survival prediction. Moreover,
molecular categorization is a whole field of tumour research that can not be necglected, and
to obtain the precise classification of the tumors, multi-omics data and various algorithms
were need to draw preferable subgroups. Fifth, the analysis excluded the samples with
missing overall survival data. Missing data in general, including the overall survival, may
affect the survival models and predictions, however the impact of missing death data on
survival analyses and estimates of overall survival is small whenmortality capture sensitivity
is high (e.g., approximately 90% or more) (Carrigan et al., 2019).
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CONCLUSIONS
All in all, in a comprehensive analysis, we have established a PCG-lncRNA-miRNA signature
that has to some degree the independent power of predicting overall survival of bladder
urothelial carcinoma patients. However, despite sophisticated gene selection andmodeling,
the verification in the test set is only weakly significant, and the appropriate weighting of
the genes is to some degree method and data set dependent. The findings of this proposed
model could have value in the introduction of personalized therapies. Furthermore, we also
identified three molecular subtypes in patients with BLCA, and the constructed signature
could stratify the risk of OS among patients in every subtype. However, large-scale clinical
trials and replication experiments are required to assess the possible molecular signature
to predict survival.
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