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Abstract: Albizzia julibrissin Durazz, a Chinese Medicine, is commonly used for its anti-anxiety effects.
(−)-syringaresnol-4-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (SAG) is the main ingredient
of Albizzia julibrissin Durazz. The present study investigated the anxiolytic effect and potential
mechanisms on the HPA axis and monoaminergic systems of SAG on acute restraint-stressed rats.
The anxiolytic effect of SAG was examined through an open field test and an elevated plus maze
test. The concentration of CRF, ACTH, and CORT in plasma was examined by an enzyme-linked
immune sorbent assay (ELISA) kit while neurotransmitters in the cerebral cortex and hippocampus
of the brain were examined by High Performance Liquid Chromatography (HPLC). We show that
repeated treatment with SAG (3.6 mg/kg, p.o.) significantly increased the number and time spent
on the central entries in the open-field test when compared to the vehicle/stressed group. In the
elevated plus maze test, 3.6 mg/kg SAG could increase the percentage of entries into and time spent
on the open arms of the elevated plus maze. In addition, the concentration of CRF, ACTH, and CORT
in plasma and neurotransmitters (NE, 5-HT, DA and their metabolites 5-HIAA, DOPAC, and HVA) in
the cerebral cortex and hippocampus of the brain were decreased after SAG treatment, as compared
to the repeated acute restraint-stressed rats. These results suggest that SAG is a potential anti-anxiety
drug candidate.

Keywords: (−)-syringaresnol-4-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside; open field test;
elevated maze plus; HPA axis; monoaminergic systems

1. Introduction

Neuropsychiatric disorders are expected to rise sharply [1]. Anxiety disorders are the most
common mental disorders, affecting nearly one in five adults in the U.S. alone [2]. The development
of anxiolytic drugs is important for the treatment of anxiety disorders. Benzodiazepines have been
used for the treatment of several forms of anxiety, but these compounds have well-known side effects,
including sedation, muscle relaxation, amnesia, and dependence potential [3]. Albizzia julibrissin
Durazz (Leguminosae, the cortex of Albizia julibrissin Durazz. officially recognized in the Chinese
Pharmacopoeia), commonly named mimosa or silk trees, are widely distributed in Asia. Asians
administered A. julibrissin soup to patients as a folk medicine to treat insomnia, diuresis, sthenia, and
confusion [4]. The extract of A. julibrissin has an anxiolytic-like effect due to 5-HT1A receptor activation,
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and because it has no unwanted adverse effects [5]. (−)-Syringaresnol-4-O-β-D-apiofuranosyl-(1→2)-
β-D-glucopyranoside (SAG) is the main ingredient of the cortex of A. julibrissin, and we speculate that
it may be the effective component in treating anxiety disorders [6].

Monoamine neurotransmitters including 5-HT, norepinephrine (NE), and dopamine (DA) are
believed to be involved in pathogenes is of emotional disorders, and play an important role in
mediating behavioral effects [7]. Several preclinical and clinical reports provided evidence to support
that a dysfunction of the monoaminergic system may be implicated as a promising mechanism in
the pathophysiology of anxiety disorders [8–10].Furthermore, anxiety disorders were closely related
to the hippocampus and cerebral cortex of the brain. Meanwhile, a growing body of evidence
suggests connections between dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis
and affective behaviors [11]. For example, hyperactivity of the HPA axis [12], enlarged adrenal
glands, altered daily rhythm of corticoids secretion, and impairments in the HPA negative feedback
mechanism have been implicated in emotional disorders. It is well known that HPA axis activation
is a key component of the physiological response to stress and anxiety [13], while the monoamine
neurotransmitters in the cerebral cortex, such as NE, DA and 5-HT, and plasma CORT are considered
to be involved in generating symptoms of anxiety [14].

Stress, including chronic and acute restraint stress, is the most important and widely used animal
model of anxiety [15]. Stress can induce behavioral, physiological, cognitive, and neural changes,
potentially altering homeostasis and promoting vulnerability to illness [16]. Acute stress is an adaptive
response to a multitude of adverse stimuli that are perceived to be noxious or threatening [17]. Acute
restraint stress (ARS) can induce both psychological and physical effects. This results in a broad
range of behavioral and physiological changes, including anxiogenic-like effects [18], endocrine, and
autonomic alterations [19]. Continued stressful situations can be responsible for activation of the
hypothalamic-pituitary-adrenal (HPA) axis, which subsequently results in the development of anxiety
and depression [20].

In the present study, we examined the anxiolytic-like effect of SAG on repeated acute
restraint-stressed rats using the elevated plus maze and open field test. Furthermore, in order to
explore the potential mechanisms on monoaminergic systems and the HPA axis, we also examined
the influences on the levels of the plasma corticotropin releasing factor (CRF), adrenocortico tropic
hormone (ACTH), and corticosterone (CORT). We also studied the level of monoamines noradrenaline
(NE), dopamine (DA), serotonin (5-HT) and their metabolites 5-HIAA, DOPAC, and HVA in the whole
of the cerebral cortex and hippocampus of rats.

2. Results

2.1. Effect of SAG in the Open Field Test

The results of the OFT are shown in Figure 1 (Supplementary Materials). There were significant
differences in the number of central entries (F(5,53) = 3.743, p < 0.01), and time spent in central areas
(F(5,53) = 2.637, p < 0.05). Following the ARS, the number of central entries (p < 0.01) and the time
spent in central areas (p < 0.01) of rats in the V/S group significantly decreased when compared with
the V/US group. Compared with the V/S group, diazepam, and SAG (3.6 mg/kg) could significantly
increase the number of central entries (p < 0.05) and the time spent in central areas (p < 0.05). However,
there was no difference with SAG at the doses of 0.9 mg/kg and 1.8 mg/kg.

2.2. Effect of SAG in the Elevated Plus Maze

As shown in Figure 2, there were significant differences among groups in the percentage of open
arm entries (F(5,53) = 2.751, p < 0.05) and the time spent on the open arms (F(5,53) = 2.602, p < 0.05).
The V/S group significantly decreased the percentage of open arm entries (p < 0.01) and the time
spent on the open arms (p < 0.01) of rats compared with the V/US group. Compared to the V/S
group, diazepam and SAG (3.6 mg/kg) could significantly increase the percentage of open arm entries
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(both p < 0.01) and the time spent on the open arms (p < 0.01, p < 0.05) (Supplementary materials are
available online).
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Figure 1. Effect of (−)-syringaresnol-4-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (SAG) on
the number of central entries and the time spent in central areas in the open field test in rats.
(A) Number of central entries; (B) Time spent in central areas. Bars represent mean ± SEM. ## p < 0.01
vs. vehicle/unstressed group; * p < 0.05 vs. vehicle/stressed group. One-way ANOVA with
Student-Newman-Keuls post hoc test.
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Figure 2. Effect of SAG on the open arm entries and the percentage of time spent in open arms in
the elevated plus maze in rats. (A) Open arm entries; (B) Percentage of time spent in open arms.
Bars represent mean ± SEM. ## p < 0.01 vs. vehicle/unstressed group; * p < 0.05 or ** p < 0.01 vs.
vehicle/stressed group. One-way ANOVA with Student-Newman-Keuls post hoc test.

2.3. Effect of SAG on Serum CRF, ACTH, and CORT Levels

As shown in Figure 3, the one-way ANOVA revealed significant differences in the concentration
of CRF (F(5,54) = 3.377, p < 0.05), ACTH (F(5,54) = 5.092, p < 0.01), and CORT (F(5,54) = 6.625, p < 0.01).
With the acute restraint stress, the V/S group significantly increased the content of plasma CRF, ACTH,
and CORT compared with the V/US group (all p < 0.01). Diazepam treated rats could significantly
decrease the plasma CRF, ACTH, and CORT level compared with the V/S group (all p < 0.01). SAG
at the doses of 1.8 and 3.6 mg/kg could significantly decrease the plasma CRF level (p < 0.05). The
level of ACTH could be significantly decreased by SAG at the dose of 3.6 mg/kg, and the level of
CORT could be significantly decreased by SAG at the doses of 0.9, 1.8, and 3.6 mg/kg. (Supplementary
materials are available online).
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tests. (A) Concentration of CRF (ng/L); (B) Concentration of ACTH (ng/L); (C) Concentration of CORT
(ng/mL). Bars represent mean ± SEM. ## p < 0.01 vs. vehicle/unstressed group; * p < 0.05 or ** p < 0.01
vs. vehicle/stressed group. One-way ANOVA with Student-Newman-Keuls post hoc test.

2.4. Effect of SAG on Monoamine Neurotransmitters and Their Metabolites

In Table 1, the one-way ANOVA indicated significant differences in the levels of monoamine
neurotransmitters and their metabolites in the cerebral cortex of rats (F(5, 53) = 12.561, p < 0.01,
NE; F(5,53) = 3.065, p < 0.05, DA; F(5, 53) = 2.562, p < 0.05, HVA; F(5, 53) = 8.324, p < 0.01, 5-HT;
F(5,53) = 11.435, p < 0.01, 5-HIAA. No differences were found in the level of DOPAC (F(5,53) = 1.258,
p > 0.05). The V/S group could significantly increase the levels of NE (p < 0.01), DA (p < 0.05), HVA
(p < 0.05), 5-HT (p < 0.05) and 5-HIAA(p < 0.05) when compared with the V/US group. SAG at the
doses of 1.8 and 3.6 mg/kg could significantly decrease the levels of NE (p < 0.05, p < 0.01) and 5-HT
(p < 0.05, p < 0.01). At the dose of 3.6 mg/kg, SAG could significantly decrease the levels of DA
(p < 0.05), HVA (p < 0.05) and 5-HIAA (p < 0.01). (Supplementary materials are available online).

Table 1. Effect of SAG on the monoamines neurotransmitters and their metabolites in the whole
cerebral cortex of rats.

Groups NE (µg/g) DA (µg/g) DOPAC (µg/g) HVA (µg/g) 5-HT (µg/g) 5-HIAA (µg/g)

V/US 121.35 ± 8.32 39.33 ± 5.38 35.99 ± 4.61 34.03 ± 3.58 20.31 ± 1.89 48.11 ± 3.27
V/S 188.87 ± 9.45 ## 65.24 ± 6.69 # 49.51 ± 5.08 47.76 ± 5.15 # 28.03 ± 2.43 # 58.15 ± 3.92 #

DZP/S 129.78 ± 4.60 ** 44.88 ± 6.00 * 38.40 ± 4.26 31.32 ± 4.23 * 15.57 ± 0.97 ** 31.32 ± 4.23 **

SAG/S
(0.9 mg/kg) 167.45 ± 13.17 55.44 ± 6.57 45.87 ± 3.22 37.89 ± 3.41 21.14 ± 1.01 * 55.21 ± 1.84

SAG/S
(1.8 mg/kg) 164.30 ± 6.12 * 52.93 ± 4.60 41.59 ± 4.01 36.47 ± 3.34 17.89 ± 1.01 ** 50.92 ± 2.91

SAG/S
(3.6 mg/kg) 136.10 ± 2.96 ** 46.76 ± 4.44 * 40.64 ± 4.52 34.00 ± 2.97 * 17.69 ± 1.13 ** 34.00 ± 2.97 **

Values are expressed as the mean ± S.E.M. # p < 0.05 or ## p < 0.01 vs. vehicle/unstressed group; * p < 0.05 or
** p < 0.01 vs. vehicle/stressed group. One-way ANOVA with Student-Newman-Keuls post hoc test.
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In Table 2, the one-way ANOVA indicated significant differences in the levels of monoamine
neurotransmitters and their metabolites in the hippocampus of rats (F(5,53) = 3.716, p < 0.01, NE; F(5,53)
= 4.879, p < 0.05, 5-HT; F(5,53) = 2.656, p < 0.05, 5-HIAA). No differences were found in the levels of
DA (F(5,53) = 1.421, p > 0.05), DOPAC (F(5,53) = 1.624, p > 0.05) and HVA (F(5,53) = 1.245, p > 0.05).
The V/S group could significantly increase the levels of NE (p < 0.01), 5-HT (p < 0.05) and 5-HIAA
(p < 0.05) compared with the V/US group. SAG at the doses of 1.8 and 3.6 mg/kg could significantly
decrease the levels of NE (both p < 0.01) and 5-HT (both p < 0.01). At the dose of 3.6 mg/kg, SAG could
significantly decrease the level of 5-HIAA (p < 0.01). (Supplementary materials are available online).

Table 2. Effect of SAG on the monoamine neurotransmitters and their metabolites in the hippocampus
of rats.

Groups NE (µg/g) DA (µg/g) DOPAC (µg/g) HVA (µg/g) 5-HT (µg/g) 5-HIAA (µg/g)

V/US 148.71 ± 7.94 28.36 ± 2.58 18.71 ± 1.30 19.35 ± 2.88 23.44 ± 3.24 74.29 ± 2.69
V/S 188.87 ± 9.45 ## 65.24 ± 6.69 # 49.51 ± 5.08 47.76 ± 5.15 # 28.03 ± 2.43 # 58.15 ± 3.92 #

DZP/S 124.13 ± 4.47 ** 23.77 ± 1.20 14.78 ± 1.09 11.95±1.24 19.57 ± 1.76 ** 72.54 ± 2.53 **

SAG/S
(0.9 mg/kg) 153.39 ± 9.53 28.06 ± 1.96 19.93 ± 2.39 17.37 ± 1.44 25.76 ± 4.95 86.17 ± 3.88

SAG/S
(1.8 mg/kg) 139.09 ± 4.89 ** 28.49 ± 1.67 21.48 ± 4.66 13.28 ± 2.12 20.18 ± 1.40 * 81.13 ± 10.86

SAG/S
(3.6 mg/kg) 135.37 ± 14.78 ** 26.45 ± 1.24 15.93 ± 1.43 14.71 ± 1.59 19.50 ± 1.56 ** 76.99 ± 4.56 *

Values are expressed as the mean ± S.E.M. # p < 0.05 or ## p < 0.01 vs. vehicle/unstressed group; * p < 0.05 or
** p < 0.01 vs. vehicle/stressed group. One-way ANOVA with Student-Newman-Keuls post hoc test.

3. Discussion

The results of this behavioral investigation revealed the anxiolytic-like effect of SAG in animal
models of anxiety. Moreover, the results support the designed hypothesis that the HPA axis and
monoaminergic systems play an important role in pathogenesis of anxiety disorders. Repeated
ARS-subjected rats exhibited anxiety-like behavior. This is evidenced by the significant decline of
central entries and time spent in central areas of OFT, the open arm entries, and time spent in open
arm in EPM. Treatment with SAG at the dose of 3.6 mg/kg prevented the decrease resulting from the
ARS by regulating the levels of CRF, ACTH, and CORT in serum and monoamine neurotransmitters
and their metabolites.

Stress refers to any given condition affecting the integrity of biological systems. Since acute stress
is more related with the expression of adaptive responses, it is characterized by early compensatory
responses oriented to restore homeostatic conditions, and it provides relevant information on the
origin and nature of ongoing harmful events in the nervous system. Stress is often associated with
psychiatric (depression, anxiety, and panic) and neurodegenerative disorders (Alzheimer’s disease,
Parkinson’s disease, etc.). Earlier reports have suggested that animals submitted to acute RS for 3 h
induced long lasting anxiety-like behavior in the EPM [21] and acute RS for 60 min could activate
the AT1-angiotensin receptors in the PVN [22], which is related to anxiety-like behavior in the brain.
Of particular interest to this study is the aim to investigate the anti-anxiety effect of SAG in repeated
acute restraint-stressed rats. In the present study, the procedure of repeated ARS is improved on Ortiz
(1996) [23], and is verified by Lv (2015) [24]. Our findings show that repeated acute restraint stress
could lead to anxiety and interfere with the HPA axis.

The dried stem bark of A. julibrissin has been used in China, Japan and Korea as a tonic, to ease
the state of mind and calm the nerves [25]. Previous work has reported that the water extract [5] and
n-butyl alcohol extract of A. julibrissin have obvious anti-anxiety effects [6]. Flavonol glycoside isolated
from A. julibrissin showed sedative activity in mice [26]. Kinjo et al. reported that syringesinol glycoside
isolated from the A. julibrissin cortex had a tonic effect. It is inferred that the lignan might be the valid
anti-anxiety effective components [6]. Meanwhile, the SAG is the main lignan of A. julibrissin. The
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present study has investigated the anxiolytic effect of SAG and determined which neuronal mechanism
is primarily involved. Our results defined the anti-anxiety effect and interpret the mechanism of SAG.

The open field test is widely used to examine the behavioral effects of drugs and anxiety [27].
The test is based on rodents’ natural tendency to remain near the periphery of a novel environment,
and their aversion to open and illuminated spaces. Activity in the central area of the open field is
thought to be correlated with the degree of fear, whereas activity in the peripheral zone and along
the walls of the apparatus is thought to reflect general activity [28]. To demonstrate anxiogenic or
anxiolytic effects of specific treatments, the control animals should display a reasonably high number
of entries into the aversive parts of the apparatus, and be active in the peripheral areas of the open
field. Anxiety-like behavior is reflected by diminished exploration of the aversive space with relatively
unaffected ambulatory activity in the safe areas [29]. Rats that were treated with 3.6 mg/kg SAG could
significantly increase the number of central entries and the time spent in central areas. Therefore,
3.6 mg/kg of SAG appeared to exert significant anxiolytic-like effects in this paradigm.

The elevated plus maze is considered an ethologically valid animal model of anxiety because it
uses natural stimuli (e.g., fear of novel open spaces and fear of balancing on a relatively narrow, raised
platform) that can induce anxiety in humans [30]. The elevated plus maze is based on the natural
aversion of rodents to height and open spaces. In the present study, oral administration of SAG could
induce anxiolytic-like effects on repeated acute restraint-stressed rats by increasing the number of
entries into, and time spent on the open arms of the elevated plus maze.

A prominent mechanism by which the brain reacts to acute and chronic stress is activation of
the hypothalamic-pituitary-adrenal (HPA) axis. The activity of the HPA axis is controlled by several
brain pathways, including the hippocampus (which exerts an inhibitory influence on hypothalamic
CRF-containing neurons via a polysynaptic circuit) and the amygdala (which exerts a direct excitatory
influence) [31]. CRF is a critical mediator of fear conditioning and other forms of emotional memory to
both aversive and rewarding stimuli. The well documented hyperactivity of the HPA axis in depression
seems to be related to hypothalamic secretion of CRF [32]. Acute and chronic stress can increase CRF
levels in the locus coeruleus and anxiolytic drugs can reduce them [33]. The current study has shown
that the repeated ARS rats have a high level of CRF, and SAG can reduce them. Furthermore, they
also show an increase in basal ACTH and CORT in the repeated ARS rats. By comparison, varying
alterations in ACTH and/or CORT have been reported in studies employing the widely-used Chronic
Variable Stress (CVS)/Chronic Mild Stress (CMS) model. Most have shown either no change or an
increase in basal ACTH [34] and no change or an increase in basal CORT [35]. Changes in HPA
responses to acute stress challenge after CVS/CMS are variable. One study reported an increased
ACTH response to acute restraint stress, but no change in CORT response. From the above, the present
study revealed that ARS could significantly increase the CRF, ACTH and CORT levels, and this effect
could be retrained by DZP and SAG (3.6 mg/kg).Furthermore, SAG at the dose of 1.8 mg/kg could
also reverse the increase of CRF and CORT caused by ARS. SAG at the dose of 0.9 mg/kg only could
decrease the level of CORT. Our findings are the first to evaluate the mechanism of SAG from the
aspect of the HPA axis.

Most of the researches have concentrated on the circuits that engage in rapid signaling. However,
anxiogenic responses have long been known to engage complex neuromodulatory systems, and many
current therapies for anxiety disorders are based on this activity. The central systems responsible
for the response to stress appear to be the NE system and the corticotropin-releasing factor (CRF)
system [36]. The central monoaminergic system (including serotonin (5-HT), NE and DA) has been
widely implicated in the pathophysiology and therapeutic strategies for emotional disorders [37,38].
The present study is consistent with these reports. In addition, the synthesis and release of
neurotransmitters in the hippocampus and cerebral cortex are closed related to neuropsychiatric
disorders [20,39]. Furthermore, the brain removed and dissected after 7 days administration is
according to Lv, Li and Liu [24,40,41]. Our data shows that repeated acute restraint-stressed rats could
significantly increase the concentration of NE, DA, HVA, 5-HT, and 5-HIAA in the whole cerebral
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cortex while NE, 5-HT, and 5-HIAA act in the hippocampus of the brain. DZP and SAG (3.6 mg/kg)
could reverse this effect of repeated ARS by decreasing the concentration of NE, DA, HVA, 5-HT,
and 5-HIAA in the whole cerebral cortex and NE, 5-HT, and 5-HIAA in the hippocampus of the brain.

Notably, a previous study found that the extract of Albizzia julibrissin (at 100 or 200 mg/kg)
significantly increased time-spent and arm entries into the open arms of the EPM in rats [5], and the
content of SAG in the bark of Albizzia julibrissin was 0.04% [6]. According to the preliminary
experiments, the 3.6 mg/kg dose was chosen as the highest dose in the present study. However,
our data showed that SAG exerted an anxiolytic effect only at this high dose. Testing higher doses
is warranted to further elucidate the anxiolytic effect of SAG. Meanwhile, the repeated treatment of
SAG for 7 days in the present study had exerted the anxiolytic effect, the effect of acute SAG will
be investigated in the future. Furthermore, in order to reduce the number of animals used, and to
compare the effect between the SAG and the stressed group, the SAG with the unstressed group
was not designed in the present experiment, which was consistent with the previous studies [24,42].
We detected the content of neurotransmitters only in the whole cerebral cortex and hippocampus,
and many researches of anxiety were also only detected the two important central regions of the
brain [20,39]. Meanwhile, the amygdala plays an important role in altering monoamines such as
norepinephrine and serotonin in several animal models of anxiety [43].The synthesis and release of
neurotransmitters in the amygdala should also be investigated in the next step and to estimate whether
the content of neurotransmitters in the amygdala is consistent with the present results. In addition,
the present study proves that the mechanism of SAG involves monoaminergic systems, including NE
ergic, DAergic and 5-HTergic systems, and the further progress will be made by using an antagonist.

4. Materials and Methods

4.1. Animals

A total of 60 8-week-old male Sprague-Dawley rats from Laboratory Animal Center of the
Academy of Military Medical Sciences (Beijing, China) were used. Each animal was housed in
individual cages in a temperature-controlled environment (22 ± 1 ◦C) with unlimited access to food
and water. They were maintained on a 12-h light/dark cycle (light phase: 07:00–19:00). All rats
were allowed to acclimatize to the standard conditions for 7 days before experimental procedures
were initiated. Behavior experiments were performed between 09:00 and 14:00. The experimental
procedures were approved by the Institutional Animal Care and Use Committee of the Institute of
Psychology of the Chinese Academy of Sciences and in accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals.

4.2. Drugs and Reagents

SAG (Figure 4) (PubChem CID: 91973808) was purchased from Weikeqi Biological Technology
(Sichuan, China), the purity of SAG (Figure 5) was 98%, which was quantificationally analysed
employing HPLC-UV method carried on a Waters 2695 HPLC system equipped with UV-vis detector.

Diazepam was obtained from Yimin Pharmaceutical Factory (Beijing, China).Norepinephrine
(NE), 5-HT, 5-hydroxy-3-indoleacetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid
(DOPAC)and homovanillic acid (HVA) were purchased from Sigma (St. Louis, MO, USA). The
Elisa kits of CRF, ACTH and CORT were obtained from R&D (Minneapolis, MN, USA). All of the other
reagents were of analytical grade.
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Figure 5. The purity of SAG detected by HPLC. SAG was analyzed by HPLC with UV detection at
204 nm. The analysis was performed with a C-18 column (4.6 mm × 250 mm) at 35 ◦C. It was eluted
(eluent A: acetonitrile; eluent B: 0.2% phosphate solution) at a flow rate of 1.0 mL/min.

4.3. Treatment

All drugs were prepared immediately before use and were given orally in a volume of 1 mL/100 g
body weight. The vehicle/unstressed (V/US) group was orally administered physiological saline.
Diazepam at the dose of 1 mg/kg was chosen as a positive control drug. DZP and SAG were dissolved
in physiological saline. To evaluate the anxiolytic effect of SAG, the rats were orally administered SAG
(0.9, 1.8, and 3.6 mg/kg) [5,6] 60 min prior to behavioral testing or diazepam 30 min before behavioral
testing. The treatment protocol of doses and the administration route used for SAG and diazepam
were adopted according to previous studies [6,44]. All animals were given daily administration for
7 days [5,40,41] (Figure 6).

4.4. AcuteRestraint Stress(ARS)

Animals were submitted to repeated restraint for 3 days by placing each rat into a plastic
cylindrical restraint tube (diameter 6.5 cm, length 15 cm), ventilated by holes (1-cm diameter) that
comprised approximately 20% of the tube surface. Restraint lasted for 30 min. After the last restraint,
the rats were transported to the closed experiment room that was under low light, noise, and other
external disturbances for 30 min.
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4.5. Behavioral Tests

4.5.1. Open Field Test (OFT)

The OFT apparatus was a 180 cm diameter cylinder with 60 cm high walls. The center of the
bottom of the apparatus had a 52 cm diameter section. The rats were placed into the field at the same
point against the wall and allowed to freely explore the apparatus for 5 min. The number of central
entries, and the time spent in the center were recorded by an automatic video tracking system. The
apparatus was thoroughly cleaned with 70% methanol after each trial.

4.5.2. Elevated Plus Maze (EPM)

Immediately after the OFT, the rats were transported to the EPM room. After the adaptation
of 5 min, anxiolytic activity was measured using the EPM, which consisted of two open arms
(50.8 cm × 10.2 cm × 1.3 cm) and two closed arms (50.8 cm × 10.2 cm × 40.6 cm) that extended
from a central platform (10.2 cm × 10.2 cm). The maze was elevated to a height of 72.4 cm above the
floor. The entire maze was constructed of clear Plexiglas. Each rat was placed on the central square
facing an open arm and was allowed to freely explore the maze for 5 min. Arm entries were defined as
the entry of all four paws into an arm. A computer recorded the time spent on, and number of entries
into the open and closed arms by means of infrared photocells. The apparatus was wiped clean with a
70% ethanol solution and dried after each subject.

4.6. Estimation of Serum CRF, ACTH and CORT

Immediately after the completion of the two behavioral tests, the rats were sacrificed by
decapitation and blood samples were collected in EDTA coated tubes kept in ice and centrifuged at
3000 r·min−1 for 15 min at 4 ◦C. Plasma was separated and supernatants were stored at −80 ◦C for
estimation. The contents of CRF, ACTH, and CORT were determined by a commercially available,
enzyme-linked immunesorbent assay (ELISA) kit according to the manufacturer’s instructions. The
absorbance of each sample was measured at a wavelength of 450 nm. The results of CRF and ACTH
are presented as ng/L, and the results of CORT are presented as ng/mL.

4.7. Estimation of Monoamines and Metabolites

Following the collection of blood, the rats’ brains were rapidly removed and dissected, the cerebral
cortex and hippocampus were isolated on an ice plate. The tissue samples were weighed and stored
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at −80 ◦C until homogenization. Levels of monoamines and metabolites (NE, DA, DOPAC, HVA,
5-HT and 5-HIAA) were estimated using High Performance Liquid Chromatography (HPLC) with
an Electrochemical detector as described previously [45]. In brief, the brain tissue samples were
homogenized in 0.10 Mperchloric acid by Polytron (Swedesboro, NJ, USA) homogenizer. Homogenates
were then centrifuged at 1200 r·min−1 for 10 min at 4 ◦C. Twenty microliters of supernatant was
injected via a HPLC pump (Model 1525, Binary Gradient Pump, Waters, Milford, MA, USA) into a
column (2.1 mm ×150 mm at 30 ◦C, 3 µm, Waters Atlantis) connected to a Electrochemical detector
(Model 2465, Waters, Milford, MA, USA) at a potential of +0.75 V with a glassy carbon working
electrode Vs Ag/AgCl reference electrode. The mobile phase consists of 50 mM citric acid, 0.3 mM
Na2-EDTA, 1.8 mM dibutylamine, and 4% methanol (pH 3.5) at a flow rate of 0.35 mL/min.

4.8. Statistical Analysis

The data is expressed as mean ± standard error of the mean (SEM) individual value of the
rats from each group. The statistical analysis was performed using one-way analysis of variance
(ANOVA), followed by the Student-Newman-Keuls post hoc test and Graph Pad Prism 5.0 software
(Graphpad Sofware Inc, La Jolla, CA, USA). In cases of significant variation, the individual values
were compared using Dunnett’s test. Values of p < 0.05 were considered statistically significant.

5. Conclusions

To summarize, the present data indicates that SAG induced anxiolytic-like effects on repeated
acute restraint-stressed rats in the elevated plus maze and open field test. Additionally, its mechanism
of action appears to be related with the HPA axis and monoaminergic systems.

Supplementary Materials: Supplementary materials are available online.
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