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ABSTRACT

Most mammalian genes have mRNA variants due
to alternative promoter usage, alternative splicing,
and alternative cleavage and polyadenylation. Ex-
pression of alternative RNA isoforms has been
found to be associated with tumorigenesis, prolif-
eration and differentiation. Detection of condition-
associated transcription variation requires associa-
tion methods. Traditional association methods such
as Pearson chi-square test and Fisher Exact test are
single test methods and do not work on count data
with replicates. Although the Cochran Mantel Haen-
szel (CMH) approach can handle replicated count
data, our simulations showed that multiple CMH
tests still had very low power. To identify condition-
associated variation of transcription, we here pro-
posed a ranking analysis of chi-squares (RAX2) for
large-scale association analysis. RAX2 is a non-
parametric method and has accurate and conserva-
tive estimation of FDR profile. Simulations demon-
strated that RAX2 performs well in finding condition-
associated transcription variants. We applied RAX2
to primary T-cell transcriptomic data and identified
1610 (16.3%) tags associated in transcription with
immune stimulation at FDR < 0.05. Most of these
tags also had differential expression. Analysis of two
and three tags within genes revealed that under im-
mune stimulation short RNA isoforms were prefer-
ably used.

INTRODUCTION

It has recently been revealed that alternative splicing and
alternative cleavage and polyadenylation (ACP) is not only
a universal post-transcription processing step in eukaryotic
gene expression but also a versatile mechanism for post-
transcriptional regulation of genes (1–3) . After transcrip-
tion, a pre-mRNA is capped at the 5′ end, spliced and

cleaved in the 3′-untranslated region (3′ UTR) to yield a new
open end that allows to add a polyadenylation (poly(A)) tail
(3,4). A poly(A) tail at 3′ end may protect the mRNA from
unregulated degradation, trigger export of the mRNA to
cytoplasm and assist recognition by translation machinery
(3–5). A poly(A) signal at which the pre-mRNA is cleaved
and referred to as poly(A) site is recognized and activated
by a batch of protein factors called polyadenylation fac-
tors (3,4,6,7). Alternative splice and poly(A) sites signifi-
cantly increase the complexity of transcriptomes and pro-
teomes because they lead to multiple isoforms or variants of
an mRNA. Using next-generation sequencing (NGS) tech-
niques, it has been observed that over 50% of transcrip-
tion units in the mammalian genome are characterized by
ACP (8–13). As alternative splice and poly(A) sites can un-
cover most transcription variation at subgene level, to in-
vestigate association of transcription variation with tissue
types or cell state change has become very important for
exploring etiologic mechanism of disease of interest (8,14–
20). But almost all of the current studies are based on dif-
ferential analysis. This may be because the current large-
scale statistical methods such as DESeq (21), baySeq (22),
edgeR exact test (23,24), edgeR GLM (25), DEXSeq (26),
Cuffdiff (27,28), DiffSplice (29), SplicingCompass (30) are
differential analysis methods. Of these methods, the former
four are used to identify differential transcription between
conditions and the latter four focus on finding differential
splicing between conditions. However, unlike gene differen-
tial expression, splice switch or usage switch of alternative
poly(A) sites occurs on the same transcription unit and are
associated with a change in condition (Figure 1) . As shown
in Figure 1, switch usage or switch splicing is involved in
two conditions and two poly(A) sites or two splice sites:

condition 1 condition 2
site A high expression low expression
site B low expression high expression

High-expression switches from site A in condition 1 to
site B in condition 2. This is a case that high expression
of sites is associated with change in condition. If one just
looks at the difference in expression of site A or site B be-
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Figure 1. Demonstration for association of usage of alternative splice and
poly(A) sites with conditions: splicing switch and usage switch of poly(A)
sites due to change in condition. Under normal condition, the gene tran-
scription product is isoform 1 due to splicing event between exons a and
b, but in stress or stimulation, for example, the gene product is isoform
2 by switching splicing from exon b to exon c (top two figures). This is
called a splicing switch. Likewise, under normal condition, cells use distal
poly(A) site and the transcription produces mRNA isoform I but when
cells are stressed or stimulated, poly(A) site usage switches from distal
site to proximal site and produces isoform II (bottom two figures). This
is called poly(A) site usage switch.

tween two conditions, then this is another case that one
concerns differential expression of single sites between two
conditions. In the first case only an association method can
be used to test if sites A and B are associated with condi-
tions 1 and 2 in expression but for the second case one can
use differential methods to test for differential expression
of each site between two conditions. So the use of differen-
tial analysis methods to identify usage and splicing switches
from site to site on the same RNA unit is not ideal. To our
best knowledge, no existing large-scale association analysis
methodologies have been proposed. The traditional associ-
ation methods such as Pearson chi-square test and Fisher
exact test are single-test methods and work on the count
data without replicates, they hence could not directly be
applied to high-throughput transcriptomic count data of
RNA reads with replicate libraries. The Cochran Mantel
Haenszel (CMH) chi-square test approach may handle the
data with replication, but it is a single test method, not a
large-scale association test approach. This is why we need to
develop a large-scale association statistical method for iden-
tifying tissue-associated or condition-associated isoform
transcriptions. This method is named ranking analysis of
chi-squares (RAX2). RAX2, which extends the traditional
chi-square test to replicated and high-throughput transcrip-
tomic count data of RNA reads derived from NGS, is based
on comparison between a set of ranked chi-square statistics
for association effects and a set of ranked null chi-square
values across a set of given thresholds and estimation of a
false discovery rate (FDR) profile.

MATERIALS AND METHODS

Cell lines and stimulation

Human primary CD4 T cells were obtained from buffy
coats derived from the Gulf Coast Regional Blood Bank
via the EasySep Negative Selection Kit (Stem Cell Tech-
nologies) as per manufacturer’s instructions. Purity (>90%)
was assessed via flow cytometry for CD3 and CD4 (UCHT1
and RPA-T4, respectively). Cells were maintained in RPMI
(ATCC) with 10% fetal bovine serum supplemented with
10 mM HEPES pH 7.4, nonessential amino acids, 2 mM L-
glutamate, 50 �M �-mercaptoethanol, 100 units/ml peni-
cillin and 100 �g/ml streptomycin (all from Gibco/Life
Technologies). T-cells were stimulated with plate-bound
antibodies (1 �g/ml anti-CD3 (OKT3 – eBiosciences), 5
�g/ml anti-CD28 (CD28.2 – BD Pharmingen). Activation
of T-lymphocytes was verified via flow cytometric detection
of CD69 expression (FN-50) 16 h after stimulation, and
cells were harvested at 48 h.

High-throughput sequencing library generation

Total RNA was harvested from resting and stimulated cells
with Trizol reagent (Life Technologies) as per manufacturer
instructions. Polyadenylated RNA was isolated with the
Poly(A)-Purist MAG (Ambion/Life Technologies) kit as
per manufacturer instructions. High-throughput sequenc-
ing libraries were generated essentially as described (2), with
the exception that ‘barcoded’ linkers were used to facilitate
multiplexing. Libraries were sequenced via 50 bp paired-
end sequencing on an Illumina GAIIx.

Library processing and mapping

Paired end reads were mapped to the hg18 build of the hu-
man genome using the paired-end mapping module of BWA
(31), default alignment stringency and requiring that each
read be mapped in a proper pair. To rescue reads cross-
ing splicing junctions, nonmapping reads were remapped to
the UCSC KnownGene reference and projected back to the
hg18. Individual reads were condensed into tags based on
their 3′ coordinate using a sliding window of 20 nucleotides
and using the frequency-weighted median 3′ coordinate as
the tag identifier. Tags were then filtered by using a progres-
sive filtering strategy to assess adenosine and guanine com-
position in the five, ten and fifteen bases followed the tag-
mapping site. Tags were assigned to individual transcription
units based on UCSC KnownGene annotations. For each
transcription unit, the aggregate tags mapped to the unit
were ranked based on frequency. Tags were extracted from
the highest to the lowest frequency until the extracted tags
represented greater than 90% of the aggregate frequency for
the gene. The remaining tags were discarded. Libraries were
normalized using a negative binomial model within the DE-
seq package (21). For ‘gene’ analysis, the summed frequency
of all tags mapped to each transcription unit was considered
as a single entity.

RAX2 packages

The methods described in this paper, including estimations
of null chi-square distribution and FDR, are implemented
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Figure 2. Transcription unit structures and different 3′ UTR isoforms. A
majority of mammalian transcription units are characterized by alterna-
tive cleavage and polyadenylation (ACP). The majority of these contain
multiple cleavage and polyadenylation sites in their terminal exon (top),
impacting untranslated region identity without changing the coding se-
quence. Transcription units may also be characterized by mutually exclu-
sive terminal exon structure (middle) or composite terminal exon structure
(bottom). In the latter two cases, ACP is coupled to mRNA splicing, and
both the coding sequence and the untranslated region are impacted. Black
box: exon, white box: untranslated region (UTR), red flag: poly(A) site and
-//-: intron.

in software package RAX2. RAX2 was written in R. The
current version of RAX2 is designed to analyze count data
in two distinct states and the results are output in MS DOS
csv format. Performance of RAX2 and the other statistical
analysis process are given in Supplementary User Guidance
for RAX2. The RAX2 package can be found in Supplemen-
tary Package or Bioconductor.

Models

For convenience, our discussion about RAX2 is based on
ACP sites within genes. ACP can occur concomitantly with
or independently of alternative splicing (Figure 2). ACP in-
dependent of alternative splicing, that is, all cleavage and
polyadenylation (poly(A)) sites are in the terminal exon of
the transcription unit, results in a transcription unit with a
tandem untranslated region (tandem UTR). Both alterna-
tive splicing of terminal exons and tandem UTR usage are
visible for directed 3′ end sequencing methodologies. Since
either process has the potential to alter 3′ UTR identity,
we do not differentiate between them in this analysis. For
a given transcription unit, transcript variants derived from
the first poly(A) site (poly(A) site 1) are assumed to have
a transcript length from the transcriptional start position
to poly(A) site 1. Similarly, transcript variants with poly(A)
sites 2 and 3 are also assumed to be derived from the tran-
scriptional start position to poly(A) sites 2 and 3, respec-
tively. Therefore, within such a transcription unit, the tran-
script isoforms are one-to-one corresponding to poly(A)
sites. For the sake of convenience, we refer to the transcript

Figure 3. A model for multiple poly(A) sites or tags within genes. mRNA
of Hsp70.3 is a typical model for multiple poly(A) sites (green boxes) and

microRNA sites (red boxes). It has a common start point (promoter ),
four poly(A) sites (PA1, PA2, PA3 and PA4) in 3′ UTR coding for several
mRNA isoforms that are different in their 3′ end. Alternative polyadeny-
lation changes the length of the 3′ UTR and it also can change microRNA
binding sites in 3′ UTR. While microRNAs tend to repress translation
and promote degradation of the mRNAs they bind to. Since transcrip-
tion products are one-to-one corresponding to poly(A) sites, we define the
transcription products as tags.

variant at poly(A) site 1 as tag1. Similarly, the transcript
variants at poly(A) sites 2, 3 and 4 are also defined as tags
2, 3 and 4, respectively (Figure 3). In general, within gene
g (g = 1,.., G), Zg alternative poly(A) sites (Zg is number
of poly(A) sites within gene g) correspondingly have Zg al-
ternative tags. For example, gene AARS2 on chromosome
6 has four poly(A) sites(Zg = 4) and hence its mRNA tran-
scription unit (called gene) has four isoforms or tags (see
columns gene name and pos (position) in Supplementary
Table S1). Supplementary Table S1 lists such count data
of reads of tags within genes where columns 1–7 list infor-
mation of tags or poly(A) sites within genes: tagid, geneid,
name, DNA strand, position on transcription unit and an-
notation; columns 8–10 list count data of cells in normal
and stimulated states. The data were normalized so that they
look decimal. Here, we let ngzjv be count of tag z (z = 1,. . . ,
Zg ≥ 2) within gene g (g = 1, 2,. . . G) in cell state j in repli-
cate v (v = 1,. . . , r). Our concern here is if change in count of
a tag z at a special poly(A) site within a gene of interest is as-
sociated with change in condition (cell state) in the context
of a discontinuous process. For the convenience, we focus
on two states: treatment state (TS) and normal state (NS).
We set j = 1 for NS and j = 2 for TS. To find if the transcrip-
tion variation of an individual tag is associated with change
in cell state, we need to compare the count of tag z to that
of all the other tags (denoted by �z) within gene g. There-
fore, a tag or poly(A) site has two states: z and �z. We set i
= 1 for z and i = 2 for �z. Thus count ngzjv in the raw data
table can be converted into two-by-two table count ngzi jv
where ngzi jv is count of RNA reads of tag z within gene g
in tag state i in condition j in replicate v (v = 1, 2, . . . , r)
and there are Zgr two-by-two table datasets (ngz11v, ngz12v,
ngz21v, ngz22v) for gene g. Since our interest is in regard to
tag z (or poly(A) site z) within gene g instead of gene g it-
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self, totally we have S = ∑G
g=1 Zg tags or poly(A) sites in all

genes of study. To implement ranking analysis of all tags, we
combine subscripts g and z into s where s = 1, . . . , S. Thus,
each tag s has two states (s and �s). We still set i = 1 for tag
state s and i = 2 for tag state �s. The two-by-two table count
table dataset (ngz11v,ngz12v,ngz21v,ngz22v) is then rewritten as
(ns11v,ns12v,ns21v,ns22v).

Since there are replicate observations for each tag, each
count consists of two components: the association effect
and random noise. Thus, a model for each count in such
a two-by-two table is

nsi jv = nsi j + esi jv (1)

where nsi j is count of RNA reads of tag s due to association
effect between state i of poly(A) site s and cell state j and
esi jv is count of RNA reads due to a special noise between
state i of poly(A) site s and cell state j in replicate obser-
vation v. Since nsi jv follows Poisson distribution (21,24) or
negative binomial distribution (21,24,25) or binomial dis-
tribution (32), esi jv may also follow one of these distribu-
tions. But we here do not concern distribution of esi jv be-
cause we do not need to separate it from nsi jv. Let fsi j and
fsi jv be frequencies of counts nsij and esijv, respectively. As
nsi j is count of RNA reads of tag s in state i and in cell state
j, nsi j = ns fsi j and esi jv = ns fsi jv where ns is total count of
RNA reads of tag s within g across two cell states and two
tag states over all replicate libraries. Thus, model (1) may be
rewritten as

nsi jv = ns fsi j + ns fsi jv. (2)

Chi-square statistics

For poly(A) site s, the mean count (n̄si j ) of RNA reads over
r replicates consists of association effect nsi j between site
state i and cell state j and mean noise(ēsi j ):

n̄si j = 1
r

r∑
v=1

nsi jv =

ns fsi j + ns
r

r∑
v=1

fsi jv = ns fsi j + ns f̄si j = nsi j + ēsi j

(3)

where fsi j is the frequency of association effect nsi j between
state i of tag s and cell state j, fsi jv, frequency of a special
noise in replicate observation v and 1

r

∑r
v=1 fsi jv = f̄si j . For

poly(A) site s, n̄si j is expected as

E(n̄si j ) = E(nsi j ) + E(ēsi j ). (4)

(See Supplementary Note S1 for detail), that is, expec-
tation of mean count (n̄si j ) of RNA reads of tag s in tag
state i and cell state j equals expectation of association ef-
fect (nsi j ) plus expectation of mean noise (ēsi j ). Thus, Pear-
son chi-square statistics for mean count n̄si j that is estimate
of association effect nsi j is

χ2
s (n̄) = χ2

s (n + ē) (5)

(See Supplementary Note S2 for derivation). From Equa-
tion (5), we can see that χ2

s (n̄) �= χ2
s (n) unless the mean of

noises is zero (ē = 0), meaning that the Pearson chi-square

for n̄si j is not an unbiased estimate of the chi-square statis-
tic for nsi j . For this reason, we cannot use χ2

s (n̄) as stan-
dard chi-square statistic, that is, P-value for χ2

s (n̄) obtained
from a chi-square distribution has a big bias. In addition,
χ2

s (n̄) = χ2
s (ē) if, for a tag s, there is no association effect

nsi j between tag states and cell states, say, n̄si j = ēsi j .

Null chi-squares

Similarly to using within-group variance to estimate null
variance, we also employ within-group chi-square to esti-
mate null chi-square. To this end, we need to construct an-
other contingent table in which we have site states s and �s
within gene g, and r replicates in cell state j. Set i = 1 for
s and i = 2 for �s. A set of two-by-two tables (see Supple-
mentary Note S3) is constructed with pairs of replicates and
states of tag s in cell state j. Thus the null chi-square is easily
estimated by χ2

s (e) (see Supplementary Note S3 for deriva-
tion).

Ranking analysis of chi-squares

Since χ2
s (n̄) does not have one-to-one correspondence to

χ2
s (e), to compare them, we need to separately rank tags by

amounts of χ2
s (n̄) and χ2

s (e) from the smallest to the largest.
Let χ2

s∗ (n̄) and χ2
s∗ (e) be two Pearson chi-square values at po-

sition s* in the ranking linear space(*), the chi-square values
are smallest at s* = 1 and largest at s* = S*. Then we can
compare χ2

s∗ (n̄) to χ2
s∗ (e) at position s* in a one-to-one fash-

ion. Given threshold �, expression change of tag s* is de-
clared to be associated with change in cell state if and only
if

χ2
s∗ (n̄) − χ2

s∗ (e) > �. (6)

FDR estimation

In large-scale statistical analysis, we do not need to be con-
cerned with so-called type 1 error but we must consider how
to control false discovery rate (FDR) because in, for exam-
ple, 10 000 hypotheses to be tested, at least 500 hypothe-
ses would commit type I error if � = 0.05 is chosen as sig-
nificance level (33). Obviously 500 hypotheses rejected by
chance are not acceptable. This is why we here want to con-
trol FDR rather than type I error. A reasonable control of
FDR involves a reliable estimation of FDR. Given thresh-
old �, the number (N�) of tags whose expression changes
are declared to be uniquely associated with change in cell
state may consist of the number of truly positive tags, T�,
and number of falsely positive tags, F�:

N� = T� + F�. (7)

Therefore, FDR is expected as F DR� = E(F�/N�) at
threshold �. As F� is unknown in experimental datasets,
FDR must be estimated.

The existing methods for estimation of FDR are not suit-
able to our current chi-square statistics because, as seen
above, chi-square statistics are remarkably biased against
standard chi-square statistics such that P-values obtained
from chi-square distribution are also biased. For this rea-
son, we here propose a novel method. The principle of the
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Figure 4. A demonstration plot of ranked treatment chi-square versus null
chi-square. The expected linear plot (red line) is given by null hypothe-
ses that the treatment chi-square is equal to null chi-square at each chi-
square point. The observed linear plot is given by ranked observed treat-
ment chi-squares versus ranked estimated null chi-squares. Given a thresh-
old �, all treatment chi-squares with ds ≥ da are declared to be significant
or interested where da = χ2

a (n̄) − χ2
a (e) ≥ � and s = a +1,. . . , G. All null

chi-squares with dt ≥ db are defined as potential false positives with proba-
bility given in Equation (9) where db = χ2

b (e) − χ2
a (e) ≥ � and t = b+1,. . . ,

G.

method is shown in Figure 4. As seen in Figure 4, ordered
and observed chi-square χ2

s∗ (n̄) more and more deviates
from ordered and expected chi-square χ2

s∗ (e) as chi-square
value increases.

Given threshold �, we find that da = χ2
a (n̄) − χ2

a (e) > �
at position a in the ranking linear space (see Figure 4) is the
smallest distance among all s*. We define a as a� and da as
da�

. All ds∗ = χ2
s∗ (n̄) − χ2

s∗ (e) > � would be larger than or
equal to da�

where s∗ = a�, a� + 1, .., S, that is, all tags at
s∗ ≥ a� would be declared as positive tags. So, the number
of positives declared by Equation (6) is obtained by

N� = S − a� + 1. (8)

In order to avoid confusion, s* in the ordered null chi-
square space is replaced with t*. Likewise, for a given thresh-
old �, at t∗ = b�, we also find that db�

= χ2
b�

(e) − χ2
a�

(e) >

� is smallest among all t* (see Figure 4). All χ2
t∗ (e) −

χ2
a�

(e) > � would be larger than or equal to db�
. In addi-

tion, within the ranking space of χ2
t∗ (e), null tag at t∗ = b� +

j has smaller chance to be chosen as a false positive than
at t∗ = b� + k where j < k = 1, ..., S − b� and the ranking
space of χ2

t∗ (e) varies with sample size. In other words, the
probability that a null tag at position t* is chosen as false
positive is determined by replicate number r, chi-square
space, tag space S*, null chi-square values and t*. The logic
relationship is that position t*in the ranking linear space is
positively related to the probability that the null tag at po-
sition t*is chosen as a false-positive tag and null chi-square
value is also positively related to the probability that the null
chi-square is chosen as false-positive chi-square. As position
t* is fixed in a given tag space, the ratio (t*/S*) would not
alone fit to changeable false-positive probability from prac-
tical data; while χ2

t∗ (e) is variable and depends on a prac-
tical dataset and its values at some nearby positions may
not vary or very approximate, so ratio (χ2

t∗(e)/χ2
S∗ (e)) is also

not alone appropriately used as the false-positive probabil-
ity. To obtain an accurate estimate of false-positive proba-
bility we need to combine them. A good and simple com-
bination way is geometric mean. We use geometric mean√

(χ2
t∗ (e)/χ2

S∗ (e))(t∗/S∗) = [(
χ2

t∗ (e)t∗) /
(
χ2

S∗ (e)S∗)]0.5
to es-

timate the probability that a null tag at position t* is cho-
sen as false positive. Additionally, in a single hypothesis test
the P-value of statistic is negatively related to sample size,
similarly, the probability that the null chi-square at posi-
tion t* is chosen as false-positive chi-square is also nega-
tively related to sample size because increment of sample
size would let space of χ2

t∗ (e) be shrunken. On the other
hand, χ2

S∗ (e) = max(χ2
s (e)) is positively related to the proba-

bility. We therefore replace 0.5 with x = (
2r/χ2

S∗ (e)
)2

. Thus,
probability that a tag at position t* is chosen as a false-
positive tag is given by

p(t∗|χ2
t∗ (e)) =

(
χ2

t∗ (e)t∗

χ2
S∗ (e)S∗

)x

. (9)

The number of false positives in N� findings is estimated
by

F� =
S∗∑

t∗=b�

p(t∗|χ2
t∗(e)). (10)

When x → 0, p(t∗|χ2
t∗ (e)) → 1 such that F� → S − b� + 1.

This is an extreme case in which FDR is very conservatively
estimated (see Supplementary Figure S1A1, A2 and A3).
In general, larger sample sizes would have a smaller χ2

S∗ (e),
leading to a larger x value that causes a smaller p(t∗|χ2

t∗(e)).
This is agreeable with the fact that larger sample sizes would
have a smaller FDR. With F�, FDR for N� findings de-
clared by chi-square tests at threshold � is estimated as

F DR� = F�

N�

. (11)

RESULTS

Simulation evaluation of RAX2

We use the following steps to generate the null data of S tags
with r replicates based on the real data in a group:

Step1: Calculate four variances and four means from two-
by-two tables over r replicates for each tag within a gene.

Step2: Choose randomly one variance and one mean with
equal probability for each tag within a gene.

Step 3: Generate a two-by-two random null or baseline
count data with r replicates using negative binomial pseu-
dorandom generator in R environment with the mean as mu
and the variance as dispersion (size).

Step 4: Repeat steps 1–3 until g = G.
We then adopted uniform and normal pseudorandom

generators to generate count data with association effects:

ngzi j = Ugzi j
Ngzi Ngzj

Ngz
(12)

where Ngzi and Ngzj are normal variables with σ = 50 and
mean = 100 (these values are arbitrary because associate
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effect does not depend on individual values) within gene g,
Ngz = ∑2

i=1 Ngzi + ∑2
j=1 Ngzj , and Ugzi j = UgziUgzj where

Ugzi and Ugzj are uniform variables, 0 < Ugzi ≤ 1 and 0 <
Ugzj ≤ 1, i = 1 and 2, j = 1 and 2, z = 1, . . . , Zg. The associ-
ation effect ngzi j is randomly assigned to 10, 20 and 30%
of null tags (the null data above). Using these simulated
datasets, we compared the estimated FDR given by a statis-
tical method to its true FDR across a set of given thresholds
(� = Uχ2

S∗ (e), 0 ≤ U ≤ 1).
Supplementary Figure S1 summarizes these results in the

simulated scenarios where 10% (A1 and B1), 20%, (A2 and
B2) and 30% (A3 and B3) of tags have association effects
on transcription with cell states and r = 6, x = 0 and x =(
2r/χ2

S∗ (e)
)2

where χ2
S∗ (e) = max(χ2

s (e)). With x = 0 (Sup-
plementary Figure S1A1–3), FDR was significantly over-
estimated in all three given scenarios such that many tags
with true association effects would be missed at FDR <0.05
level. In contrast, with x = (

2r/χ2
S∗ (e)

)2
(Supplementary

Figure S1B1–3), the estimated FDR curve is slightly higher
than the true one in each of these three scenarios, finding
tags with a true association effect at a given threshold with
higher power. Supplementary Figure S1C1–3 is obtained
with x = (

2r/χ2
S∗ (e)

)2
from the simulated data with r = 3

and 10, 20 and 30% of tags having association effect, respec-
tively. The fact that these FDR curves are very similar to
those in Supplementary Figure S1B1, B2 and B3 indicates
that our estimate of FDR profile with x = (

2r/χ2
S∗ (e)

)2
is

absolutely conservative but close to its true one across a set
of given thresholds in these scenarios.

Comparison with Pearson chi-square, Fisher exact test and
CMH chi-square test approaches

In order to show strong advantages of our method, we
applied Fisher exact test, Pearson chi-square test and
CMH chi-square test approaches to the simulated data and
used Benjamini-Hochberg (BH) multiple-testing procedure
(34,35) and q-value (36,37) to estimate FDR. Since the
Fisher exact test and Pearson chi-square methods do not
work on the replicated data, we utilized mean counts over r
replicate libraries to construct a two-by-two table for each
tag. These association test methods were performed in R
packages (fisher.test, chsq.test and CMH.test), the BH pro-
cedure was conducted in R package p.adjust with method =
BH. Package qvalue (36,37) was downloaded from Biocon-
ductor and its qvalue.gui() was used to calculate q-values.
The P-values were obtained from application of these three
approaches to our simulated data of 15391 tags with three
replicates among which 10% of tags were given with asso-
ciation effects. The three sets of 15 391 P-values for Fisher
exact tests, Pearson chi-square tests and CMH chi-square
tests were listed in Supplementary Table S2 and adjusted
by HB-procedure and q-value method. Supplementary Fig-
ure S2 displays the results of plotting estimated against true
FDR values across all cutoff points. One can find from Sup-
plementary Figure S2 that FDRs are completely overesti-
mated by BH-procedure and q-value approach. The same
case was also found in the simulated data with five replicates
(data not shown). As indicated above, Pearson chi-square
based on mean counts over replicates is not unbiased and

Figure 5. Scatter and linear plots of treatment chi-squares versus estimated
null chi-squares. (A) Scatter plot of treatment chi-squares against estimated
null chi-squares derived from primary experimental data. Over 80% of
treatment chi-squares fall in the null chi-square distribution. (B) Linear
plot of ranked treatment chi-squares against ranked estimated null chi-
squares. The observed linear dots (blue line) were significantly deviated
from the expected linear dots (red line) across the estimated null chi-square
distribution.

the P-value for such chi-square obtained from a chi-square
distribution is greatly biased against its true value (See Sup-
plementary Table S2). So BH and q-value procedures are
not available to adjust such biased P-value profiles.

RAX2 analysis of the primary T-cell data

We then assessed the performance of RAX2 on 3p-seq
datasets derived from resting and stimulated primary hu-
man CD4+ T cells (Supplementary Table S1). After normal-
izing and filtering, the data contain 16247 tags scattered in
10160 transcription units or genes. Transcription units with
a single tag were filtered and the remaindered 9899 tags scat-
tered in 3812 genes were available for RAX2 analysis. We
performed classical chi-square and the BH- procedure on
our primary T-cell transcriptomic data. As expected in Sup-
plementary Figures S2, only 747 tags were found to be as-
sociated with cell states at FDR < 0.05 (see Supplementary
Table S4). We therefore applied RAX2 to the real data. The
estimated null chi-square value falls in a range of 0 to 6.7
(Figure 5A). The treatment chi-square falls in interval be-
tween 0 and 363, which is larger than that in the estimated
null chi-square distribution. The observed linear dots are
deviated from the expected linear dots when the null chi-
square is larger than 2.5 (Figure 5B).

The results obtained by applying RAX2 to our real tran-
scriptomic data are illustrated in Supplementary Tables S3–
S5. At FDR < 0.05, 1610 (16.3%) tags were found to be
associated in transcription with antigen receptor stimula-
tion (Supplementary Table S3). Among 1610 tags, 1279 have
fold change >1.4 or < 0.715. Heatmap shows that these
1279 associated tags also displayed strong differential ex-
pression between rest and stimulation (Figure 6). We chose
genes with two tags identified at FDR < 0.05 (see Supple-
mentary Table S6), and plotted logarithms of the ratio of
transcription relative frequencies of proximal tags in stim-
ulation to those in normal condition against those of distal
tags and observed four patterns of transcription variation:
forward and backward ‘switch’ changes; positively and neg-
atively accordant changes (Figure 7A) where forward switch
is defined when high expression is switched from proximal



PAGE 7 OF 10 Nucleic Acids Research, 2015, Vol. 43, No. 15 e96

Figure 6. Heatmap of tags differentially expressed between two conditions
detected by RAX2. The heatmap was made with the data of 1279 tags
with fold change (average of tag expressions in stimulated cells/average
of tag expressions in normal cells or average of tag expressions in normal
cells/average of tag expression in stimulated cells)> 1.4 selected from 1610
associated tags detected by RAX2.

site to distal site and backward switch when high expres-
sion is switched from distal site back to proximal site. We
call such an association expression positively accordant ex-
pression when expression of two tags is highly raised by
stimulation or negatively accordant expression when both
come down due to stimulation. In our data, genes with for-
ward switch were many fewer than genes with backward
switch (148 versus 186), implicating that under stimulation,
usages of many distal poly(A) sites switched to proximal
poly(A) sites. In addition, positively accordant genes were
many more than negatively accordant genes (186 versus 85)
(Figure 7B). This means that stimulation significantly pro-
moted transcription of tags. Figure 7C shows that proxi-
mal tags positively associated with stimulation are signifi-
cantly more than distal tags positively associated with stim-
ulation (372 versus 334). This result indicates that proximal
poly(A) sites were preferably used under stimulation. This
is consistent with the previous studies (18–20). Sandberg
et al. (17) found that tandem UTR length is highly neg-
atively correlated to proliferation ratio. That is, prolifera-
tive cells more use proximal poly(A) sites. Mayr and Bar-
tel (16) also observed that cancer cells preferably used short
3′ UTR while tissue cells more used long 3’UTR because
cancer cells have high proliferation ratio but tissue cells are
highly differentiated. CD3/CD28 costimulation triggered a
series of physiological activations and expansion (growth)
of T-cells. Figure 8 displays examples for forward and back-
ward switches, positively and negatively accordant changes.
Figure 8A is backward switch between two tags within gene
PHF6 (PHD finger protein 6) potentially playing a role in
transcription regulation. Stimulation made high transcrip-
tion level switched from distal poly(A) site backward to
proximal poly(A) site. In gene SRP68 (Signal Recognition
Particle of 68 kDa, a ribonucleoprotein complex), the tran-
scription pattern of two tags (Figure 8B) is completely in-

verse with that in gene PHF6, called forward switch. Fig-
ures 8C and 8D show negatively and positively accordant
transcription of proximal and distal tags in genes ARL4C
(ADP-Ribosylation Factor-Like 4C) and IL24 (interleukin
24). Stimulation triggered high transcription of two tags in
gene IL24 but strongly suppressed transcription of proximal
and distal tags in gene ARL4C.

In our result, 162 genes were found to have three poly(A)
sites whose usages were associated with stimulation (Sup-
plementary Table S8). Supplementary Figure S3 displays
three scatter plots of these genes with proximal tags versus
middle tags (Supplementary Figure S3A1), proximal tags
versus distal tags (Supplementary Figure S3A2) and mid-
dle tags versus distal tags (Supplementary Figure S3A3).
In plot of proximal versus middle tags (Supplementary Fig-
ure S3A1), accordantly changed tags were many more than
switched tags (47 versus 9 in Supplementary Figure S3B1).
Among accordantly changed tags, proximal and middle
tags positively responding to stimulation are more than
those negatively responding to stimulation (Supplementary
Figure S3C1). This result suggests that stimulation indeed
raised transcription of tags but did not significantly trigger
transcription switch between proximal and middle poly(A)
sites. However, Supplementary Figures S3A2 and S3A3 def-
initely show that stimulation remarkably increased tran-
scription switch from distal poly(A) sites backward to mid-
dle poly(A) site (Supplementary Figure S3B2) or backward
to proximal poly(A) sites (Supplementary Figure S3B3)
while positively and negatively accordant transcriptions be-
tween proximal and distal poly(A) sites and between mid-
dle and distal poly(A) sites became very weak. In genes with
proximal and middle poly(A) sites, positive tags were more
than negative tags but in genes with distal poly(A) sites, neg-
ative tags were more than positive tags (Supplementary Fig-
ure S3C2–3). These results strongly indicate that, as seen in
genes with two tags, in genes with three tags, CD3/28 cosim-
ulation resulted in more usage of shorter tags.

DISCUSSION

Transcriptional profiling via NGS technologies has under-
scored the complexity of transcript isoform variation in
mammalian cells. The extent of this variation, whether the
identity and function of a protein product (e.g. alternative
splicing) or the visibility of the gene product is altered due
to the posttranscriptional regulatory machinery (e.g. ACP),
has been broadly appreciated. It is of great interest to lever-
age newer technologies to globally assess the impact of these
processes on human disease, particularly since several in-
dividual examples in which dysregulation of either process
contributes to human disease exist (5).

The identification of relative expression changes of in-
dividual mRNA isoforms derived from a single transcrip-
tion unit can in theory be performed by considering each
of these isoforms from the transcription unit as a single en-
tity and applying statistical approaches DESeq (21), baySeq
(22), edgeR exact test (23,24), edgeR GLM (25), DEXSeq
(26), Cuffdiff (27,28), DiffSplice (29) and SplicingCompass
(30) to determine whether a given isoform is differentially
expressed between two different cell states. However, these
approaches do not directly assess whether isoforms within
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Figure 7. Two-way scatter plot for four association patterns of transcription of two tags within genes between two cell states. A two-way scatter plot displays
distributions of scatter dots in four phases: Phase II for forward switch, phase IV for backward switch, phase I for positive accordance and phase III for
negative accordance. (A) Plot of proximal tags versus distal tags where coordinates x and y are differences between ratios of counts of tags in stimulation
and those in rest state. The ratio = sum of transcription counts of a tag over all replicates in a cell state / sum of transcription counts of this tag over all
replicates and all cell states. (B) Numbers of genes with four transcription patterns of proximal and distal tags. (C) Numbers of genes with proximal tags
positively and negatively responses to stimulation and numbers of genes with distal tags positively and negatively response to stimulation

Figure 8. Examples for association patterns of transcriptional representa-
tion of two tags within genes between two cell states. Gene products shown
here contain two tags defined by usage of distal and proximal poly(A) sites.
Association between relative expression of two tags within genes and the
cell states, detected by RAX2, shows backward switch (A), forward switch
(B), negative accordant changes (C) and positive accordant changes (D). y
axis corresponds to ratio of count sum of a tag over all replicate libraries
in a cell state (0 h or 48 h post stimulation) to the sum of the tag over all
replicate libraries across all cell states.

genes are associated with the conditions in transcription.
Valid statistical approaches for doing so are Pearson chi-
square test and Fisher exact test, but these methodologies
cannot currently use information of variation in replicate li-
braries. As seen in Supplementary Appendix B, the Pearson
chi-square of mean count over all given replicates is biased
because mean noise cannot be excluded. CMH chi-square
test approach can be applied to repeat two-by-two table data
or stratified count data and indeed its power is significantly
higher than Pearson chi-square tests and Fisher Exact tests
(see Supplementary Table S2), so it will be promised to ex-

tend our RAX2 to CMH and to develop a multiple CHM
test approach.

Therefore, we need to develop a novel chi-square test
methodology. Within the context of NGS datasets where
individual transcription units have a potential to be char-
acterized by the production of multiple mRNA isoforms,
it is not clear what the relationship is between replication
and the P-values of chi-square statistics. To avoid this puz-
zle issue, a nonparametric approach is preferably chosen.
This approach requires that an observed Pearson chi-square
profile be compared to the null Pearson chi-square profile
given a threshold. Since null chi-square profile does not ex-
ist, it must be estimated. In our methodology, we adopt a
manner similar to estimation of null variance from repli-
cate within-cell data to estimate the null chi-square profile.
To choose appropriate threshold, we need to estimate FDR
cutoff within which the findings declared by comparison be-
tween observed and null chi-square profiles are believed to
be reliable.

While there are several alternative approaches for estima-
tion of FDR, for example, the Benjamini-Hochberg pro-
cedure (34,35), the Benjamini-Liu procedure (38) and the
Pounds–Cheng procedure (39), Tan-Xu multiprocedures
(40), these FDR estimators are based on P-value profile
and are not suitable to our nonparametric method. The
permutation-based estimator developed by Tusher et al.
(33) has been shown both in theory and in simulation to be
handicapped by bias in small sample sizes (41,42). Storey
and Tibshriani (37) proposed a q-value as a new FDR esti-
mator. Similarly, the q-value approach is also based on P-
values (36,37). The other ranking analysis methods (41–43)
are designed to be applicable to continues data sets or can-
not otherwise be used to this context. To accurately esti-
mate FDR for the chi-square findings, we here proposed a
novel approach. Our approach is based on a simple prin-
ciple: given a threshold, tags were declared to be associ-
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ated with conditions by comparing treatment ranking chi-
square profile to null ranking chi-square profile and number
of false tags associated with conditions was determined by
comparing null chi-square at low ranking position to that
at higher ranking position. For a given threshold �, a tag
at t∗ = b� + k in a linear space of the null chi-squares has
growth of probability to be declared as a false positive with
increment of k. As seen in Figure 4, if a treated chi-square
distribution falls into the null chi-square distribution, then
we cannot find a� value except for a� = 1 across a set of
given thresholds, and hence we also cannot find b� value ex-
cept for b� = S. Thus, N� = 0,F� = 0, and FDR cannot be
defined in such a case. Supplementary Figure S1 shows that
estimated FDR is larger than its true FDR when thresh-
old is small but it tends to be very close to its true value as
threshold increases. This property guarantees that estima-
tion of FDR is conservative and reliable at any threshold
level.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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