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Abstract

Motivation: Precise identification of Biosynthetic Gene Clusters (BGCs) is a challenging task. Performance of BGC
discovery tools is limited by their capacity to accurately predict components belonging to candidate BGCs, often
overestimating cluster boundaries. To support optimizing the composition and boundaries of candidate BGCs, we
propose reinforcement learning approach relying on protein domains and functional annotations from expert cura-
ted BGCs.

Results: The proposed reinforcement learning method aims to improve candidate BGCs obtained with state-of-the-
art tools. It was evaluated on candidate BGCs obtained for two fungal genomes, Aspergillus niger and Aspergillus
nidulans. The results highlight an improvement of the gene precision by above 15% for TOUCAN, fungiSMASH and
DeepBGC; and cluster precision by above 25% for fungiSMASH and DeepBCG, allowing these tools to obtain almost
perfect precision in cluster prediction. This can pave the way of optimizing current prediction of candidate BGCs in
fungi, while minimizing the curation effort required by domain experts.

Availability and implementation: https://github.com/bioinfoUQAM/RL-bgc-components.

Contact: diallo.abdoulaye@uqam.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Filamentous fungi produce a large array of Secondary Metabolites
(SM) which play an important role in the survival and development
of producing organisms (Keller, 2015). Identifying novel fungal SMs
is a field of high interest, given the relevance of these compounds
particularly in the pharmaceutical industry for production of various
medications (Chavali and Rhee, 2018; Kjærbølling et al., 2019).
Biosynthetic pathways that produce SM compounds are encoded by
clusters of genes often appearing contiguously in an organism gen-
ome, known as Biosynthetic Gene Clusters (BGCs) (Kautsar et al.,
2020; Keller, 2019). The genomic diversity of fungal genomes makes
accurate identification of BGCs in fungi a highly challenging task
for dedicated state-of-the-art tools, and even for manual curation or
experimental characterization performed by experts (Kjærbølling
et al., 2019). BGCs generally contain minimal components: back-
bone enzymes, defining the core chemical compound to be pro-
duced; and tailoring enzymes, capable of generating variants by
modifying the cluster core compound (Keller, 2019). They may also
present other components, such as cluster-specific transcription

factors, transporters and hypothetical proteins (Keller, 2015).
Fungal BGCs are known to vary considerably in composition (simi-
lar clusters with different components), and location (cluster regions
overlapping or spanning multiple chromosomes) even among closely
related species (Evdokias et al., 2021; Keller, 2019; Kjærbølling
et al., 2020).

Various approaches to obtain candidate BGCs (potential se-
quence regions encoding biosynthesis of SMs) were previously pre-
sented (Chavali and Rhee, 2018), such as fungiSMASH (Blin et al.,
2021), DeepBGC (Hannigan et al., 2019) and TOUCAN (Almeida
et al., 2020). However, these approaches show limitations when it
comes to the identification of components and boundaries of can-
didate BGCs, often overpredicting candidate regions. fungiSMASH
offers the option to integrate CASSIS (Wolf et al., 2016) to im-
prove cluster boundary prediction. Apart from being a potentially
time-consuming option, CASSIS requires curated input, such as
gene start and end positions and a reference anchor (backbone)
gene, which may not be readily available and therefore limit its
stand-alone application to other state-of-the-art BGC discovery
approaches.
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Obtaining accurate candidate BGCs is a critical step toward
chemical synthesis of SM compounds, which can be a complex and
costly process as many of these metabolic pathways are silent or
poorly expressed (Montiel et al., 2015; Zhang and Elliot, 2019). In
this work, we propose a reinforcement learning approach based on
protein family domains from Pfam (El-Gebali et al., 2019) and func-
tional annotations to support optimizing the boundaries and com-
position of candidate BGCs obtained with state-of-the-art tools,
therefore potentially facilitating validation and experimental charac-
terization of SM compounds. Protein domains were previously used
in approaches to identify BGCs (Hannigan et al., 2019; Khaldi
et al., 2010), and are used here to represent common or shared func-
tional profiles among BGCs, such as presence of relevant compo-
nents. Reinforcement learning methods are capable of adapting
dynamically given feedback received (Neftci and Averbeck, 2019),
and therefore might be suitable to handle the overestimation of can-
didate BGC boundaries, as well as the intrinsic diversity of fungal
BGC components, potentially favoring the discovery of novel
compounds.

In reinforcement learning, a learning agent interacts directly
with an environment through actions in a goal-oriented manner,
attempting to maximize its task reward and find an optimal solution
(Sutton and Barto, 2018). The agent actions are assigned rewards or
penalties, computed based on a given function and according to en-
vironment states reached (Sutton and Barto, 2018). When optimiz-
ing candidate BGCs, rewards could be assigned for when the agent
identifies correct components and properly defines cluster bounda-
ries, while penalties could be given when the agent disregards rele-
vant components from a candidate BGC. While navigating through
the environment, the learning agent tries to balance exploitation
(acquired knowledge of best actions taken) and exploration (choose
actions not tried previously) (Sutton and Barto, 2018).
Reinforcement learning approaches had limited applications in bio-
logical contexts so far (Mahmud et al., 2018), however results show
they generated robust policies and outperformed previous methods
in tasks performing multiple sequence alignment (Mircea et al.,
2018), controlling gene regulatory networks (Imani and Braga-
Neto, 2019), optimizing DNA and protein sequences (Angermueller
et al., 2020) and performing de novo drug design (Gottipati et al.,
2020). Our reinforcement learning approach relies on protein
domains and functional annotations of BGC components to opti-
mize candidate BGCs obtained with state-of-the-art tools, which
often overestimate cluster boundaries.

2 Materials and methods

The reinforcement learning approach presented here relies on Q-
learning (Watkins and Dayan, 1992), an off-policy temporal differ-
ence algorithm, which is capable of learning directly from interact-
ing with the environment, without relying on an environment model
nor on a long-term value. Rather, a Q-learner uses the next step re-
ward and estimates its gain for the following update and learns from
each state transition (Sutton and Barto, 2018). To model a reinforce-
ment learner agent, Pfam protein domains were extracted from cura-
ted BGC instances and synthetic non-BGC instances, as described in
Section 2.1. Specific rewards were computed for protein domains
according to their occurrence in cluster regions of BGC and synthet-
ic non-BGCs, as described in Section 2.2. Test candidate BGCs were
then submitted to the reinforcement learning agent to decide on po-
tential BGC components to keep or skip. As a final step, the agent
decisions could then be further enhanced by strategies developed
based on curated functional annotations of BGC components, as
described in Section 2.3. Overall performance is evaluated based on
cluster and gene metrics, as described in Section 2.4.

2.1 Datasets
Publicly available fungal BGC benchmark datasets (Almeida et al.,
2019) were applied to develop the reinforcement learning approach
presented here. Both training and test data are represented through
the occurrence of Pfam protein domain features in curated BGC

regions, non-BGC regions and test candidate BGC regions. Previous
work has shown the relevance of Pfam domains as features for BGC
analysis (Inglis et al., 2013; Kjærbølling et al., 2020) and discovery
(Almeida et al., 2020; Hannigan et al., 2019). Pfam domains can in-
dicate the presence of key BGC components as discussed in Section
1, such as polyketide synthase or non-ribosomal peptide synthetase
genes encoding backbone enzymes, genes encoding tailoring
enzymes, transcription factors or transporters. Genes (or genomic
regions, if gene annotations are not available) composing BGCs may
contain none to multiple relevant Pfam domains.

Training: Publicly available training datasets are presented in
Almeida et al. (2019). These training datasets are composed of cura-
ted fungal BGC instances obtained from MIBiG (Minimum
Information about a BGC) (Kautsar et al., 2020) repository, and
synthetic non-BGC instances created from OrthoDB (Kriventseva
et al., 2019) fungal orthologous genes. Training datasets of various
distributions were generated through sampling of orthologous syn-
thetic non-BGC instances, combined with curated fungal BGC
instances (see Almeida et al. (2019) for details). Previous work has
shown the relevance of orthologous genes in BGC discovery as they
indicate conserved genomic regions (Almeida et al., 2020; Takeda
et al., 2014), while BGC regions tend to present high genomic diver-
sity even among closely related species (Kjærbølling et al., 2020).
Publicly available training datasets of various distributions were pre-
viously evaluated in Almeida et al. (2020), identifying the most bal-
anced one (50% BGC and 50% non-BGC instances) as the dataset
yielding the best performance. For comparison purposes, this is
therefore the training dataset applied in our approach.

Testing: The decisions taken by the reinforcement learning agent
are evaluated on candidate BGCs obtained for the Aspergillus niger
NRRL3 genomic sequence (publicly available at https://gb.fungalge
nomics.ca/portal) by three tools: TOUCAN (Almeida et al., 2020),
fungiSMASH (Blin et al., 2021) and DeepBGC (Hannigan et al.,
2019). Aspergillus niger is an organism of interest given its ubiqui-
tous presence, and its importance for industrial processes and bio-
technology, which makes it a relevant species in the study of BGC
discovery (Aguilar-Pontes et al., 2018; de Vries et al., 2017;
Evdokias et al., 2021). To obtain test candidate BGCs from A.niger
amino acid sequence, we extracted sequentially sliding windows of
fixed 10 000 amino acid length with a 30% window overlap [see
Almeida et al. (2020) for details]. Aspergillus niger candidate BGCs
were then obtained from each BGC discovery tool, based on the
same sequentially sliding windows to allow candidate predictions to
be compared across the three tools. Before being processed by the
proposed reinforcement learning agent, candidate BGCs obtained by
all three tools were pre-processed using a majority vote strategy.

Fig. 1. Computation of majority vote pre-processing for candidate BGCs: regions

are merged according to the average score of predicted labels
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Candidate BGC pre-processing—majority vote: Candidate BGCs
contain a set of genomic region identifiers (such as gene names), as
well as their corresponding Pfam protein domains. Examples of can-
didate BGCs are shown in Figure 1. For our experiments, candidate
BGCs were obtained based on a test set of A.niger genomic regions
of 10 000 amino acid sliding windows with a 30% overlap.

On one hand, overlapping regions allow for covering potential
BGC fragmentation due to fixed length sliding windows. On the
other hand it will also generate repeated regions in candidate BGCs.
The majority vote strategy, shown in Figure 1, therefore handles
duplicated regions based on a local consensus. It works as follows:
each gene g in a candidate BGC is represented by a label vector L ¼
l0; l1; . . . ; lm where m is the number of candidate BGCs in which g
appears and li the candidate BGC label (0 for predicted as non-BGC
and 1 for predicted as BGC). The majority vote score vscore for a
gene g is therefore the average value of its predicted labels L.
Sequential genes presenting a vscore � 0:5 are therefore concatenated
as positive candidate BGCs, while the other genes with a vscore < 0.5
are concatenated as negative candidate BGCs, up to a limit of
10 000 amino acids per cluster. In our experiments, A.niger gene
models were used as reference points, however in the lack of gene
models, regions of fixed smaller size than the sliding window length
could be considered instead.

2.2 Reinforcement learning method
The proposed reinforcement learning approach is based on the
temporal-difference and off-policy algorithm Q-learning (Sutton
and Barto, 2018; Watkins and Dayan, 1992). In Q-learning, the
action-value function Q converges toward an optimal policy, and
allows the reinforcement learning agent to decide on the next step.
The Q function provides the expected value of an action a, given a
state s, and it is dynamically updated during the agent experience of
interacting with the environment. Given a set of actions A, a set of
states S and respective rewards R at a timestep t, the Q function is
computed as:

QðSt;AtÞ ¼ QðSt;AtÞ þ a Rtþ1 þ c max
a

QðStþ1;aÞ �QðSt;AtÞ
h i

where a is the learning rate, and c the discount-rate factor. In addition,
a probability � defines the algorithm exploration versus exploitation
rate (Sutton and Barto, 2018). In the context of optimizing BGC
components, the reinforcement learning agent chooses the most suit-
able action within the set of actions A ¼ keep; skip for a candidate
BGC, which is a set of states represented by Pfam domains within
each gene. At the training phase state rewards were computed by
extracting Pfam protein domains from the selected training dataset,
as described in Section 2.1. Each protein domain d is represented by
an occurrence vector C ¼ c0; c1; . . . cn, where n is the number train-
ing dataset instances, and ci the domain occurrence per training in-
stance (ci > 0 if a curated BGC instance, and ci < 0 otherwise). To
determine the rewards per action Rkeep and Rskip of a domain d, we
first compute a score s as follows:

skeep ¼
X
x2C

x

jCj sskip ¼ j1� skeepj

After computing both skeep and sskip, a keepSkip threshold is
applied to finally determine the rewards Rkeep and Rskip for do-
main d, as in:

Rkeep;Rskip ¼
skeep;�skeep if skeep > ðsskip � keepSkipÞ
�sskip; sskip otherwise:

�

The agent is assigned a penalty for each step it receives a negative re-
ward R<0, with a total penalty computed per episode. An episode
is completed when the agent has gone through the entire training
dataset.

In the testing phase, the reinforcement learning agent is eval-
uated by the keep or skip actions it decides on for genes in candidate
BGCs. Pfam domains are therefore extracted per gene (or per fixed
size region, in case gene models are not available) in candidate

BGCs. The optimal action for a gene g containing a set of domains
D ¼ d0;d1; . . . ; dn, where n is the number of domains found in g is
computed as follows:

ga ¼ argmax
Xn

i¼0

diðRkeepÞ;
Xn

i¼0

diðRskipÞ
 !

Genes for which Rskip > Rkeep are assigned the action ga ¼ skip,
otherwise they are assigned a ga ¼ keep. Only genes assigned a ga ¼
keep action will be maintained in a given candidate BGC.

2.3 Integrating functional annotations
BGCs are generally formed by components that play different roles
in the cluster, such as backbone and tailoring enzymes, transcription
factors, transporters and hypothetical proteins, as discussed in
Section 1. Backbone and tailoring enzymes for instance are consid-
ered essential BGC building blocks for the biosynthesis of SM com-
pounds (Keller, 2019). A total of 85 A.niger BGCs (Inglis et al.,
2013) were used as our gold standard. To define these BGCs, Inglis
et al. (2013) described obtaining in silico BGCs from state-of-the-art
tools, and refining their boundaries based on published experimental
data, synteny between BGC genes across multiple species, assign-
ment of experimentally based GO terms, intergenic distance be-
tween boundary and adjacent genes. These 85 gold standard A.niger
BGCs were then manually curated with their functional annotation
within clusters. Pfam protein domains were then extracted from
functionally annotated BGC gold-standard genes, and associated
with a BGC component role. A list of all Pfam domains associated
with each annotated BGC component is shown in Supplementary
Table S1.

To integrate the functional annotation of BGC components,
three strategies were developed based on Pfam domains associated
to component roles. The three strategies are applied to enhance the
reinforcement learning agent decisions. The averageAction strat-
egy handle genes lacking Pfam domains; the neighborWeight
strategy handles presence of annotations in neighboring genes; and
the dryIslands strategy handles absence of annotations in con-
tiguous neighboring genes.

Various gold-standard BGC genes, mostly annotated as hypo-
thetical proteins, simply do not contain any Pfam domain annota-
tions and therefore may be directly assigned an action ga ¼ skip.
BGC components considered hypothetical proteins may play a rele-
vant role in the cluster (Keller, 2015). However they become chal-
lenging components to identify due to their lack of features, which
makes them harder to distinguish from the noise within non-
relevant components. With the averageAction strategy, if the re-
inforcement learning agent assigns an action ga ¼ keep for a min-
imum gene threshold in a candidate BGC G, then genes in G that do
not contain protein domains (D ¼1) will also be assigned an action
ga ¼ keep. Optimization of the minimum threshold ([25%, 50%,
75%]) has yielded 50% as the most suitable value.

To implement the neighborWeight and dryIslands strat-
egies, a candidate BGC G is assigned a weight vector W, where for
each gene g in G a weight w is computed as follows:

w ¼
Xn

i¼0

hi hi ¼
b if backbone;
k if other annotation;
r otherwise:

8<
:

where n is the number of domains found in g, and h the score associated
with the BGC component functional annotation. For the sake of the
experiments described in Section 3, we have set the following values:
b¼2 if backbone, k ¼ 1:5 if other annotation, and r¼0 otherwise.
For the neighborWeight strategy, if a k number of surrounding
neighbors of a gene g present a

Pk
i¼0 wi > 1, then the gene weight

gw ¼ 1 and the gene action ga ¼ keep. Optimization of the number
of neighbor genes k ¼ ½1;2;3� has yielded the most suitable k¼1.
For the dryIslands strategy, if

Pj
i¼0 gw ¼ 0 for j sequential genes

in G, then the gene action ga ¼ skip. Optimization of the dry island
size j ¼ ½3; 4;5� has yielded the most suitable j¼3. Figure 2 shows
an example of how the reinforcement learning agent decisions are
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adjusted by the neighborWeight and dryIslands strategies.
Functional annotations of BGC components provide expert domain
knowledge and could potentially improve the actions chosen by the
reinforcement learning agent, therefore improving precision of can-
didate BGC components.

2.4 Evaluation metrics
The performance of the reinforcement learning approach proposed
here is evaluated in terms of gene metrics and cluster metrics, for
which precision (P), recall (R), F-measure (F-m) are computed.
Cluster metrics show the performance on identifying cluster regions,
and considers as true positives (TPs) candidate BGCs G that have at
least one gene g that belongs to the set of gold-standard BGC genes.
Gene metrics shows the performance on matching genes in candi-
date BGCs with the complete set of gold-standard BGC genes, and
considers as true positives (TPs) the candidate BGC genes that are
identical or similar gene matches to gold-standard BGC genes. The
similarity between candidate and gold-standard BGC genes is
obtained through local BLAST alignment, with minimum thresholds
of percent identity pident � 20 and query coverage qcov � 10. We
also compute the average F-m between cluster and gene metrics F-m.

3 Results

The reinforcement learning approach proposed here is evaluated on
candidate BGCs obtained with three BGC discovery tools:
TOUCAN (Almeida et al., 2020), fungiSMASH (Blin et al., 2021)
independently and also combined with CASSIS (Wolf et al., 2016)
both using default parameters, and DeepBGC (Hannigan et al.,
2019) for the A.niger genome. A total of 85 A.niger BGCs (Inglis
et al., 2013) were manually curated and are considered as gold
standard to evaluate the performance of our reinforcement learning
approach on selecting BGC components from candidate BGCs. In
Section 3.1, we present an overview of the distribution of genes pre-
senting protein domains associated to functional annotations in the
training and test data. Section 3.2 presents the results obtained by
the reinforcement learning approach on candidate BGCs from the
three tools, and Section 3.3 shows an analysis of reproducibility of
the reinforcement learning approach in a second fungal genome,
Aspergillus nidulans.

3.1 Distribution of domains linked to BGC components
We performed an analysis of the presence of protein domains associ-
ated with BGC component roles in genes belonging to the training
and test datasets. The distribution of genes that present protein
domains associated with BGC component types is shown in Table 1.
A protein domain may be associated with multiple component roles

if it was found to be present in genes annotated with different
components.

It is noticeable from Table 1 that protein domains appearing in
BGC components are mostly found among genes in BGCs and gold
BGCs instances. Genes that do not contain any protein domains are
mostly found among non-BGCs and non-gold BGCs instances. The
percentage of genes without any encoded protein domains is higher
than that of genes with encoded domains associated to transcription
factors and transporters among BGCs and gold BGC genes.

The distribution of genes encoding protein domains associated
with backbones in the training data is similar to that of the test data.
Genes without any encoded protein domains also yield a similar dis-
tribution among BGCs (14.6%) and gold BGCs (15.5%) genes.
Among non-gold-standard BGC genes, more than half encode pro-
tein domains that are not associated to any component role. Overall
the percentages in Table 1 demonstrate how the presence of protein
domains associated to BGC components is ubiquitous both in BGCs
and non-BGC regions, which makes correctly identifying BGC com-
ponents a challenging task.

3.2 Reinforcement learning improves candidate BGCs
We present here the results obtained by the proposed reinforcement
learning approach on candidate BGCs obtained with three BGC dis-
covery tools: TOUCAN, fungiSMASH (fungiSMASH/C combined
with CASSIS) and DeepBGC. Previously to processing candidate
BGCs, we optimized the following reinforcement learning agent
parameters: learning rate a, discount-rate factor c, exploration-
exploitation probability � and the keepSkip threshold, as described
in Section 2.2, over a set of 500 episodes on the training data evalu-
ating both fixed and incremental parameter values. The parameters
a ¼ 0:01; c ¼ 0:01; � ¼ 0:01; keepSkip ¼ 0:5 yielded the smallest
average penalty over 500 episodes. Supplementary Tables S2 and S3
show a summary of the parameter optimization. In this section, we
refer here to TOUCAN, fungiSMASH, fungiSMASH/C and
DeepBGC as the candidate BGCs directly outputted by each tool;
TOUCAN-Q, fungiSMASH-Q, fungiSMASH/C-Q and DeepBGC-Q
as the candidate BGCs processed by the proposed reinforcement
learning approach; and TOUCAN-Q-all, fungiSMASH-Q-all,
fungiSMASH/C-Q-alland DeepBGC-Q-all as the candidate
BGCs processed by the reinforcement learning approach combined
with functional annotation strategies.

Table 2 shows the results obtained by the reinforcement learning
agent on candidate BGCs for all three tools. As discussed in Section
2.4, cluster metrics show the approach performance on identifying
cluster regions, while gene metrics show the performance on match-
ing candidate and gold-standard genes within a BGC. The average
F-m shows the overall performance, considering both cluster F-m
and gene F-m. The proposed reinforcement learning approach
improved gene metrics, more noticeably gene precision in candidate
BGCs outputted by all three tools: an increase of 14%, 15.4%,
15.2% and 18.7% achieved by TOUCAN-Q-all, fungiSMASH-Q-
all, fungiSMASH/C-Q-all and DeepBGC-Q-all respectively.
For TOUCAN-Q-all and fungiSMASH/C-Q-all, gene metrics
were improved without harming cluster metrics, while for

Fig. 2. Example of functional annotation strategies applied to a candidate BGC

Table 1. Distribution of A.niger BGC components in dataset genes

Component type Training Test

BGCs Non-BGCs Gold BGCs Non-gold BGCs

Backbones 17.0% 2.0% 15.9% 2.2%

Tailoring enzymes 30.5% 7.8% 9.9% 11.9%

Transcription factors 4.8% 2.1% 5.9% 4.3%

Transporters 5.6% 2.8% 7.4% 4.6%

Non-component

domains

44.7% 46.93% 49.3% 58.9%

No domains 14.6% 41.15% 15.5% 23.2%

Total # genes 2833 1781 624 11239
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fungiSMASH-Q-all and DeepBGC-Q-all cluster metrics were
also improved considerably, with an F-m increase of 15.9% and
9.2% for fungiSMASH-Q-all and DeepBGC-Q-all respectively.
This indicates that the reinforcement learning agent was capable of
improving the precision of candidate BGC components without dis-
carding correctly predicted candidate BGCs, and improving coverage
of true positive BGC regions and properly targeting false positive ones
predicted by both fungiSMASH and DeepBGC. The average F-m of
all three tools also improved when applying the reinforcement learn-
ing agent combined with the functional annotation strategies. An in-
crease in average F-m of 5.7%, 12%, 1.4% and 9.1% was shown for
TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all
and DeepBGC-Q-all respectively. Apart from improving gene preci-
sion, all candidate BGCs processed by the reinforcement learning
agent combined with functional annotation strategies (Q-all) yielded
a smaller percentage of gold-standard genes skipped, except for
fungiSMASH/C-Q-all, which yield the same performance for Q
and Q-all models. This suggests that BGC functional annotations
can be relevant features to support improving precision of predicted
BGCs, and better determine their structure.

Candidate BGCs shown in Figure 3 demonstrate the changes in
cluster composition before and after applying the presented re-
inforcement learning method. A comparison between gold-standard
and candidate BGCs in Figure 3A shows how the reinforcement
learning agent improved candidate BGCs from all three tools by cor-
rectly skipping non-BGC genes (in blue). Certain cases however are
more complex for the agent, given the ambiguity of protein domains
in candidate BGC genes. As the examples in Figure 3B show, more
non-BGC genes were kept by the agent, which can lead to processed
candidate BGCs to be somehow overpredicted. This behavior could
be caused by the fact that domains found in non-BGC genes in
Figure 3B also appear in true positive BGC genes, as opposed to
Figure 3A for which most domains in non-BGC genes were not pre-
sent in any true positive BGC genes. Among protein domains of
non-BGC genes (blue) in Figure 3B, more than 50% are associated
to BGC component roles, and found immediately after true positive
BGC genes. Non-BGC genes shown in Figure 3A presented only
20% of domains linked to BGC component roles. This demonstrates
how ambiguous domains in candidate BGCs or their neighboring
genes, along with the genomic diversity of these clusters, may in-
crease the complexity of accurately identifying BGC components
and boundaries.

Properly identifying BGC components is a challenging task not
only for computational approaches that attempt to do so, but even
for synthetic approaches that try to express genes composing candi-
date BGCs (Keller, 2019). Supplementary Table S4 shows an ana-
lysis of A.niger BGC component types found in gold-standard BGC
genes and components found in candidate BGCs, before and after
applying the reinforcement learning approach proposed here. As dis-
cussed in Section 2.3, gold BGC genes may contain none to multiple
domains, therefore they may present none to multiple functional

annotations. Candidate BGCs outputted by fungiSMASH and
DeepBGC presented a smaller number of true positives, and conse-
quently a smaller number of components was found compared to
TOUCAN candidates, as shown in Supplementary Table S4.

The reinforcement learning agent aims to improve precision of
candidate BGC components by removing potentially non-relevant
regions. At the same time, the agent has to handle ambiguous genes
that map to protein domains, normally found in both BGC and non-
BGC instances. The number of backbone genes properly identified
by TOUCAN (92.9%), fungiSMASH (70.7%), fungiSMASH/C
(69.7%) and DeepBGC (64.6%) remains the same even after proc-
essing by the reinforcement learning agent for all three tools. This
could indicate that the reinforcement learning agent was capable of
learning correctly the relevance of regions encoding such enzymes.
Backbone enzymes are vital components of BGCs (Kjærbølling
et al., 2020), and their accurate identification could demonstrate the
robustness of a BGC discovery method. Transcription factors and
transporters in DeepBGC candidate BGCs were maintained by the
reinforcement learning agent, however the overall percentage of
these components remains lower than the percentage identified by
TOUCAN and fungiSMASH.

Some BGC genes are not associated to any component role, and
often do not even contain any Pfam protein domains, as discussed in
Section 2.3. Usually considered as hypothetical proteins, these genes
pose a challenge on correctly identifying BGC components, and
could be overlooked by BGC discovery approaches since their com-
putational representation will likely be more analogous to non-BGC
regions. These hypothetical proteins can seem to diverge from other
BGC components but they may play important self-protection roles
for the organism producing a SM compound (Keller, 2019). As
shown in Supplementary Table S4, genes without any domains were
the most missed by the reinforcement learning approach (Q) among
candidate BGCs from all three tools. The averageAction strategy
aims to address this issue by keeping candidate BGC genes without
domains when at least a minimum 50% threshold of genes within a
candidate BGC are assigned the action keep. A more lenient thresh-
old was experimented with for averageAction strategy, however
it can lead to the agent identifying a higher number false positives—
genes without protein domains and often associated with non-
relevant BGC regions—resulting in a decrease in precision.

3.3 Reproducibility in Aspergillus nidulans candidate

BGCs
Similarly to A.niger, A.nidulans is a source of highly useful SMs
compounds which are also largely utilized in the pharmaceutical in-
dustry (Drott et al., 2020; Inglis et al., 2013). To further evaluate
the reproducibility of the proposed reinforcement learning ap-
proach, we processed the A.nidulans genome considering a total of
72 gold standard BGCs presented in Drott et al. (2020). Assignment
of functional annotations to BGC components is a costly and time-

Table 2. Performance on A.niger candidate BGCs from TOUCAN, fungiSMASH and DeepBGC

Model Gene metrics Cluster metrics Average % gold-std. genes

P R F-m P R F-m F-m Negative Skipped

TOUCAN 0.269 0.906 0.414 0.963 0.929 0.946 0.68 12.6% —

TOUCAN-Q 0.402 0.68 0.506 0.963 0.929 0.946 0.726 12.6% 26.4%

TOUCAN-Q-all 0.409 0.74 0.527 0.963 0.929 0.946 0.737 12.6% 16.2%

fungiSMASH 0.341 0.665 0.451 0.649 0.741 0.692 0.571 33.2% —

fungiSMASH-Q 0.521 0.516 0.519 1 0.741 0.851 0.685 33.2% 22.3%

fungiSMASH-Q-all 0.495 0.575 0.532 1 0.741 0.851 0.691 33.2% 13.8%

fungiSMASH/C 0.371 0.713 0.488 1 0.729 0.844 0.666 34.13% —

fungiSMASH/C-Q 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%

fungiSMASH/C-Q-all 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%

DeepBGC 0.351 0.481 0.406 0.732 0.612 0.667 0.536 52.4% —

DeepBGC-Q 0.574 0.42 0.485 1 0.612 0.759 0.622 52.4% 12.2%

DeepBGC-Q-all 0.538 0.46 0.496 1 0.612 0.759 0.627 52.4% 7.1%
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consuming process. Since manually curated component annotations
were not available for A.nidulans gold-standard BGCs, we gener-
ated pseudo-annotations by assigning potential component types to
gold-standard BGC genes based on similar keywords found in their
protein domain descriptions matching annotated BGC components
in A.niger.

For instance, backbone pseudo-annotations were assigned to
genes containing similar descriptions to the annotated backbone
genes in A.niger, such as polyketide synthases, non-ribosomal pep-
tide synthetases, dimethylallyltryptophan synthases and terpene syn-
thases. Tailoring enzymes pseudo-annotations were considered as
genes containing similar descriptions of A.niger tailoring enzymes,

such as methyltransferases, monooxygenases and oxidoreductases.
Transcription factor and transporter pseudo-annotations were
assigned to genes presenting domains described as presenting these
functions. A list of all Pfam domains associated with a pseudo-
functional annotation is shown in Supplementary Table S5. The dis-
tribution of component pseudo-annotations found in the training
data and gold-standard genes for A.nidulans is shown in Table 3.

Candidate BGCs for A.nidulans were obtained from TOUCAN,
fungiSMASH, fungiSMASH combined with CASSIS, and DeepBGC
in the same manner as candidates were obtained for A.niger, per-
forming the test set pre-processing using a majority vote of overlap-
ping sliding windows of fixed 10 000 amino acids as described in
Section 2.1 by the reinforcement learning agent on TOUCAN,
fungiSMASH and DeepBGC candidate BGCs for A.nidulans are
shown in Table 4.

The reinforcement learning approach improved gene precision in
candidate BGCs outputted by all three tools: an increase of 13%,
15%, 16.6% and 14.5% is seen for TOUCAN-Q-all,
fungiSMASH-Q-all, fungiSMASH/C-Q-all and DeepBGC-Q-
all respectively. Gene metrics also yield improvement in
A.nidulans without harming the cluster metrics for TOUCAN-Q-
all, while improving it for fungiSMASH-Q-all and DeepBGC-
Q-all, and only showing a less than 1% difference for
fungiSMASH/C-Q-all. As previously mentioned, this indicates
that the reinforcement learning agent was able to improve the preci-
sion of candidate BGC components without discarding correctly
predicted candidate BGC regions. Average F-m performance also
showed improvement for all three tools when compared to their ori-
ginal candidate BGCs, with an increase of 5.2%, 6.4%, 3.6% and
8.2% for TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/
c-Q-all and DeepBGC-Q-all. When comparing the models

Fig. 3. Comparison between gold-standard and candidate BGC composition for four A.niger clusters. Non-BGC genes are shown in dark blue. (A) Candidate BGCs for which

the reinforcement learning agent correctly skipped most non-BGC genes compared to their polyketide (left) and fatty acid (right) gold standard BGCs. (B) Candidate BGCs for

which the agent kept most non-BGC genes compared to their two non-ribosomal peptide gold standard BGCs, possibly due to their ambiguous protein domains, which more

than half are associated to BGC component roles but do not belong to neighboring clusters (A color version of this figure appears in the online version of this article.)

Table 3. Distribution of A.nidulans pseudo BGC components in

dataset genes

Pseudo-component

type

Training Test

BGCs Non-BGCs Gold BGCs Non-gold BGCs

Backbones 17.5% 2.13% 20% 2.45%

Tailoring enzymes 36% 3.70% 31.63% 4.5%

Transcription

factors

4.83% 2.35% 5.92% 3.92%

Transporters 5.82% 3.65% 7.55% 5.2%

Non-component

domains

33.15% 48.28% 35.3% 62.12%

No domains 14.6% 41.15% 12.65% 22.8%

Total # genes 2833 1781 490 10002
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relying on the reinforcement learning agent only (Q) versus the ones
relying on both the agent and the functional annotation strategies
(Q-all) we can observe improvements on gene recall and the per-
centage of gold-standard genes skipped, but a small drop on gene
precision, with the exception of fungiSMASH/C models that yield
similar performance for Q and Q-all models. Likely, the usage of
A.nidulans pseudo-annotations resulted in a slight increase of false
positive components. However, it might be an useful alternative
when manually curated functional annotations are not available, or
also when wanting to favor recall over precision.

Candidate BGC composition before and after applying the re-
inforcement learning agent is shown in Supplementary Figure S1.
Similarly to A.niger, Supplementary Figure S1A demonstrates
improvements in candidate BGCs achieved by the agent by skipping
non-BGC genes (in blue). When handling more complex cases, as
shown in Supplementary Figure S1B, the agent kept most non-BGC
genes, potentially resulting in overpredicted boundaries.
Approximately 50% of protein domains from non-BGC genes in
Supplementary Figure S1B were associated to pseudo-functional
annotations in A.nidulans, while only 20% of domains from non-
BGC genes in Supplementary Figure S1A were associated to any
annotation.

4 Discussion and conclusion

Secondary metabolites are a crucial source of compounds that
benefit human health. Identifying BGCs responsible for synthesiz-
ing these compounds in fungi may lead to the discovery of new
natural products, and potentially novel drugs. State-of-the-art
tools for BGC discovery often overpredict BGC boundaries and
components. In fungi BGCs are typically encoded by a high diver-
sity of components, known to vary even among evolutionary close-
ly related species. Precise identification of BGC components is
therefore a challenging task, and can facilitate the validation and
experimental characterization of SM compounds. In this work we
presented a reinforcement learning method and functional annota-
tion strategies to support optimizing fungal candidate BGCs
obtained with state-of-the-art tools. We evaluated our proposed
approach on candidate BGCs obtained for A.niger and A.nidulans
by three BGC discovery tools: TOUCAN, based on supervised
learning; fungiSMASH, based on probabilistic and rule-based
methods, as well as a version of fungiSMASH combined with
CASSIS for cluster border prediction; and DeepBGC, based on
deep learning. The results obtained by our reinforcement learning
approach yield improvement of cluster and gene precision of BGC
candidates obtained from all three tools, without affecting correct-
ly predicted BGC regions.

Overall, best average F-m performances obtained for A.niger
relied on the combination of the reinforcement learning method and
functional annotation strategies based on expert curation. In

A.nidulans, even pseudo-functional annotations were able to im-
prove BGC gene recall, and reduce the number of gold-standard
genes being skipped by the reinforcement learning agent. This indi-
cates that, when available, integrating functional annotations fur-
ther advances the approach capabilities. Functional annotations
may however not always be publicly available, since they can be
time-consuming to obtain. The results have shown however that the
reinforcement learning approach alone, based solely on Pfam pro-
tein domains, improved average F-m of candidate BGCs in average
by 7% in A.niger and 5.8% in A.nidulans. The performance of the
reinforcement learning approach indicates its ability to identify the
relevance of certain protein domain profiles associated with fungal
BGCs, supporting previous findings of these as relevant features in
the context of BGC discovery (Cimermancic et al., 2014; Hannigan
et al., 2019; Khaldi et al., 2010).

The results achieved through reinforcement learning in candi-
date BGCs from both fungal genomes evaluated are indicative of
the method generalization power and robustness by handling can-
didate BGCs from different organisms. In addition, a preliminary
analysis, shown in Supplementary Figure S2, was performed by
processing completely annotated MIBiG BGCs from three fungal
species using the proposed reinforcement learning method. The
fact that the completely annotated BGCs were kept almost intact
by the reinforcement learning method, with or without functional
annotation strategies is another indication of its potential robust-
ness on properly identifying essential BGC components for the SM
biosynthesis.

As discussed in Section 1, properly identifying BGC components
can be a great challenge, given the underlying high diversity of
BGCs. Moreover, another important challenge related to the scar-
city of validated fungal BGC data are potential biases, both of clus-
ter boundary definition, as well as of BGC composition, since most
MIBiG fungal BGCs composing the training dataset are polyketide
synthases. While reported as manually curated (Kautsar et al.,
2020), most MIBiG fungal BGCs in the training dataset are partially
annotated, and Inglis et al. (2013) presented limited experimental
characterization evidence for the annotated Aspergillus BGCs con-
sidered as gold standard BGCs in this work. While the number of
completely or partially annotated fungal BGCs is scarce, the number
of experimentally characterized clusters is even smaller. This only
highlights that improving the availability of validated and experi-
mentally characterized fungal BGC data can be a fundamental step
toward supporting the development of robust in silico approaches
for fungal BGC discovery.
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