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The definitive diagnosis of Alzheimer’s Disease (AD) without the need for

neuropathological confirmation remains a challenge in AD research today, despite

efforts to uncover the molecular and biological underpinnings of the disease process.

Furthermore, the potential for therapeutic intervention is limited upon the onset of

symptoms, providing motivation for studying and treating the AD precursor mild

cognitive impairment (MCI), the prodromal stage of AD instead. Applying machine

learning classification to transcriptomic data of MCI, AD, and cognitively normal (CN)

control patients, we identified differentially expressed genes that serve as biomarkers

for the characterization and classification of subjects into MCI or AD groups. Predictive

models employing these biomarker genes exhibited good classification performances

for CN, MCI, and AD, significantly above random chance. The PI3K-Akt, IL-17,

JAK-STAT, TNF, and Ras signaling pathways were also enriched in these biomarker

genes, indicating their diagnostic potential and pathophysiological roles in MCI and AD.

These findings could aid in the recognition of MCI and AD risk in clinical settings, allow

for the tracking of disease progression over time in individuals as part of a therapeutic

approach, and provide possible personalized drug targets for early intervention of MCI

and AD.

Keywords: Alzheimer’s Disease, mild cognitive impairment, neurodegeneration, biomarkers, machine learning,

gene expression

INTRODUCTION

Alzheimer’s Disease (AD) is one of the most widely studied neurodegenerative disorders, and is
associated with widespread brain atrophy and cognitive decline. It is clinically characterized by
memory deficits, and patients develop progressive neuropsychiatric symptoms such as apathy,
delusions, and agitation (1). TheWorld Health Organization (WHO) estimates that AD is the most
common form of dementia and that it stands to be the seventh leading cause of death in elderly
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worldwide. The neuropathology of AD is widely associated
with the accumulation of amyloid-beta (Aβ) plaques and
neurofibrillary tangles in the brain, and the definitive diagnosis
of AD is only possible by post-mortem microscopic examination
of brain tissues (2). While neuropathologic changes are well
correlated with cognitive decline in AD (3), it remains unfeasible
to examine brain tissue for AD diagnosis in clinical settings.

Diagnostic approaches for AD historically involve the
interpretation of neuroimaging data, neuropsychological tests
and laboratory tests (4). Although much progress has been made
in the diagnosis of AD, the methodology of diagnosis relies
heavily on clinicians’ interpretations of laboratory results and
neuropsychological tests for detecting cognitive deficits (5), with
cerebrospinal fluid biomarkers such as phosphorylated tau only
being recently included as considerations for clinical diagnosis
(6). However, the reliability of AD diagnosis remains variable due
to several confounders such as human interpretation, age and
education. For instance, the Mini-Mental State Exam (MMSE)
is widely used by clinicians for the screening of dementia by
administering a 30-points questionnaire to evaluate a subject’s
orientation, recall, attention, language, and comprehension
abilities. While the MMSE is a quick way of assessing subjects’
cognitive decline, its use in monitoring the progression of AD is
limited due to its low sensitivity to intermediate conditions such
as mild cognitive impairment (MCI) (7). The complexity due to
the different variants of AD also requires clinicians to evaluate
a subject’s condition by relying on a combination of other non-
quantitative factors for diagnosis, which can include, but are
not limited to, the medical history of patients, neuroimaging,
and interviewing patients’ kin (8). This complex combination
of diagnostic factors often leads to variability in diagnosis by
different clinicians, therefore a diagnostic approach that is based
on quantitativemeasurements of the biological process of ADwill
be useful to provide more timely and accurate AD screening.

Recent advancements in genome sequencing technology have
contributed to improved accessibility of large transcriptomic
datasets, leading to greater opportunities for identifying
biomarkers associated with complex and rare diseases (9). The
quantification of biomarkers from gene expression profiles may
be a possible diagnostic approach for AD that reduces reliance
on clinicians’ experience thereby reducing human error and
eliminating subjectivity in diagnosis. Gene expression profiles
from several studies have uncovered valuable patterns in AD
patients, namely the presence of Aβ and hyperphosphorylated
tau in the brain (10). Unfortunately, such approaches still face
the limitation of using brain tissue from biopsies, which carries
the risk of complications (11), and may not be translatable
to all clinical settings. Alternatively, blood gene expression
profiles may prove useful in AD screening with significant
reduction of risks and greater tissue accessibility. Two large-scale
blood gene expression datasets were conducted in recent years
that aim to detect biomarkers for early diagnosis of AD: the
Alzheimer’s Disease Neuroimaging Initiative [ADNI; (12)] and
AddNeuroMed (13, 14), which include subjects from North
America and Europe respectively Both studies comprise similar
protocols and data modalities, namely clinical and cognitive
tests, blood transcriptomics, and neuroimaging, although

the ADNI includes additional data from positron emission
tomography imaging and from genetic studies on cerebrospinal
fluid biomarkers of AD (15).

In this study, we identified gene expression profiles associated
with inflammation, vascular dementia, MCI, AD, stroke and
other cerebrovascular diseases in a Singaporean MCI and AD
cohort. The focus on a largely inflammatory set of genes stems
from earlier work suggesting that neuroinflammation in AD is
closely linked to neurodegeneration, the severity of which can be
observed as alterations in white matter hyperintensity through
neuroimaging. We therefore aim to identify potential biomarkers
that could predict neuroinflammatory changes before severe and
irreversible neurodegeneration in AD, or even in MCI, so as
to provide early intervention. Our findings were then validated
using blood gene expression data from ADNI.

However, blood gene expression studies are limited by two
main drawbacks. Firstly, the gene expression profiles are usually
difficult to interpret due to the data being highly variable (16).
Secondly, the large proportion of genes to a small proportion
of subjects creates a statistical hurdle in the search for potential
biomarkers. Technological advancements in recent years have
provided various supervised and unsupervised models for the
applications in features extraction of large expression datasets
(17). Supervised machine learning models, such as Random
Forests (RF), are particularly useful in such applications due to
their flexibility in both classification and regression studies. RF
also has the advantage of tackling the non-linear nature of gene
expression profiles (18). In this study, we employed a multi-
stage machine learning pipeline for the exploration of selecting
differentially expressed genes (DEGs) in AD and MCI subjects.
The analysis pipeline was built upon Boruta, a statistically driven
machine learning method, which differentiated the important
genes from noise after rigorous iterations of RF models (19). We
showed that machine learning techniques may prove useful in
discovering potential biomarkers for AD and MCI detection in
the large data pool of blood gene expressions.

MATERIALS AND METHODS

This section discusses the methodology used for processing of
datasets as well as machine learning pipeline used to extract out
the genes of interest and building a classification model. The
overall framework is illustrated in a simplified diagram as shown
in Figure 1.

Study Subjects and Datasets
This study was conducted on blood gene expression datasets
consisting of one set of clinical samples recruited from the
Memory clinic of the National Neuroscience Institute in
Singapore (NNI), and the publicly available ADNI dataset
(12). The distribution of subjects from each dataset is
shown in Table 1.

In this investigation, the NNI dataset was used as the discovery
cohort for the identification of differentially expressed genes
as potential biomarkers for MCI and AD, and their respective
biological pathways between CN, MCI, and AD subjects. The
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FIGURE 1 | An illustration of the overall framework for studying biomarkers from blood gene expression.

TABLE 1 | Demographics and Mini-Mental State Examination (MMSE) scores of cognitively normal (CN) controls, mild cognitive impairment (MCI), and Alzheimer’s

Disease (AD) subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Neuroscience Institute (NNI) datasets.

CN MCI AD Total

NNI

Number of subjects (%) 99 (39.0%) 61 (24.0%) 94 (37.0%) 254 (100%)

Age

(mean ± s.e.)

63.35 ± 0.69 65.03 ± 0.86 71.18 ± 0.84 66.65 ± 0.51

Gender 42 male,

57 female

24 male,

37 female

48 male,

46 female

114 male,

140 female

MMSE

(mean ± s.e.)

28.62 ± 0.15 27.49 ± 0.20 21.91 + 0.48 25.87 ± 0.27

ADNI

Number of subjects (%) 261 (35.1%) 439 (59.0%) 44 (5.9%) 744 (100%)

Age

(mean ± s.e.)

75.56 ± 0.39 72.53 ± 0.38 75.20 ± 1.43 73.75 ± 0.28

Gender 125 male,

136 female

256 male,

183 female

27 male,

17 female

408 male,

336 female

MMSE

(mean ± s.e.)

27.81 ± 0.21 24.51 ± 0.30 18.95 ± 0.82 25.34 ± 0.21

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s Disease.

applicability of these genes to the identification of MCI and AD
subjects was then evaluated on the ADNI dataset.

Clinical samples from NNI were collected over a period
of 3 years, from 2013 to 2016. Informed consent was
obtained for all subjects. Participants underwent clinical
evaluation of psychological and cognitive performance, using
the MMSE, the Montreal Cognitive Assessment (MoCA),
and magnetic resonance imaging (MRI). Healthy control
(CN) subjects were further required to have no cognitive
complaints, no significant cognitive defects, and a clinical
dementia rating (CDR) of 0. Diagnosis of MCI was based on
the criteria of the National Institute on Aging–Alzheimer’s
Association (NIA-AA) Research Framework (20), the clinical
presentation of cognitive symptoms and neuropsychological

deficits without significant functional impairment, and a
CDR score of 0.5. Subjects with AD were diagnosed using

criteria from the National Institute of Neurological and
Communicative Disorders and Stroke (NINCDS) and the

Alzheimer’s Disease and Related Disorders Association

(ADRDA). According to the NINCDS-ADRDA criteria,
patients with mild AD display cognitive symptoms and deficits
according to neuropsychological evaluation, with significant
functional impairment (4). Patients with mild AD were also
defined as having a CDR score of 1. The NNI data therefore
constitute 254 subjects (99 CN, 61 MCI, and 94 AD, listed in
Table 1).

RNA Isolation and Quantification for NNI
Data
Non-fasting venous blood was drawn via antecubital
venipuncture. RNA was isolated from 1ml of whole blood
using the QIAamp RNA Blood Mini Kit (QIAGEN no. 52304).
Total RNA from subjects was extracted from whole blood on
the same day as blood collection. Isolated RNA was stored at
−80◦C. Complementary DNA (cDNA) was obtained by reverse
transcription of 10 ng of total RNA (Fluidigm no. 100-6298).
One hundred eighty two target genes were shortlisted from a
literature search of genes associated with inflammatory response,
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vascular dementia, MCI, AD, stroke, and other cerebrovascular
diseases (Supplementary Table 1). Primers for the gene targets
were designed using Primer3 (21) or with reference to the
OriGene database, and validated by real time quantitative
polymerase chain reaction (qPCR) using RNA isolated from
lipopolysaccharide-induced human lymphoblastoid cells. The
96.96 Dynamic Array Integrated Fluidic Circuits (IFC) for Gene
Expression was used for quantifying RNA for each gene. The
data was collected using the BioMark HD Image Capture System
for further analysis.

Data Preparation and Pre-processing
Blood gene expression data from NNI were normalized against
the housekeeping gene RP2 to obtain relative expression values
of each gene. Replicates of samples were averaged to obtain a
single gene expression value per gene. Genes with more than
25% missing values were removed from the analysis. For the
remaining genes, missing value imputation was carried out by
the adaptive LSimpute method using the missMethods package
(v.0.4.0) in R (v.4.1.1), based on the least squares principle and
correlations between genes and between arrays (22–24). This
resulted in expression data from 176 genes for analysis in the NNI
dataset (Supplementary Table 1).

Likewise, relative gene expression values for the ADNI
dataset were obtained by normalizing all gene expression values,
which had been obtained by microarray, by that of RP2
for each respective subject, and relative expression values for
replicate samples were averaged to obtain a final relative gene
expression value for each subject. A subset of the ADNI dataset
containing 151 genes in common with NNI was used for
analysis. For both datasets, uniform manifold approximation
and projection (UMAP) plots were constructed and visualized
using the umap package (v.0.2.7.0) and plotly graphing library
in R respectively (25, 26).

To verify that the NNI data were not strongly influenced
by age and gender of the subjects, preliminary random
forest regression models were constructed for regression
of age, and for classification of male vs. female, and for
CN vs. MCI, CN vs. AD, and MCI vs. AD, using the
randomForest package (v.4.7.1) in R (27). The top 30 genes
with greatest variable importance, quantified by their influence
on the prediction error for each model, were denoted as
being either age-dependent, gender-dependent, or diagnosis-
dependent variables. The age-dependent and gender-dependent
variables were compared against diagnosis-dependent variables
to determine the proportion of genes whose expression values are
potentially confounded by age and gender.

In preparation for feature selection, the NNI data were split
into training and testing datasets. Data splits were conducted
using the caTools package in R (v.1.17), such that each split
preserves the original relative distributions of CN, MCI, and AD
subjects in the training and testing data. For the identification
of differentially expressed genes, 80% of the NNI data were
used for training, while the remaining 20% were reserved as
testing data for internal validation. A 80/20 training/testing
split was also conducted on the ADNI data in preparation for
external validation.

The unequal distribution of CN,MCI, and AD subjects in each
dataset presented potential risks of increased bias during feature
selection and classification. This was particularly pertinent for the
ADNI data used in external validation, where the class imbalance
caused by the higher proportion of MCI patients and relatively
lower number of AD patients could have led to deceptively high
accuracy metrics if the data were employed directly. To overcome
this, the Synthetic Minority Oversampling Technique (SMOTE)
was applied on the training and testing data from both NNI and
ADNI (28), employing functions from the smotefamily package
in R (v.1.3.1). SMOTE oversampled underrepresented groups
by repeatedly generating a new data point between a randomly
selected real data point, and a randomly selected point among its
k nearest neighbors. In order to balance our training and testing
data, for each underrepresented group, new data points were
generated by SMOTE to equal the number of data points of the
majority group, such that each class contained the same number
of data points at each feature selection or classification step.

Feature Selection for Differentially
Expressed Genes
Differentially expressed genes (DEGs) were identified for each
pairwise comparison, specifically CN vs. MCI, CN vs. AD, and
MCI vs. AD. Boruta was employed to extract DEGs from the
balanced training NNI data based on multiple iterations of
the RF classifier (19). The RF classifier was selected for its
quick performance and unbiasedness in classification through
majority voting. The Boruta method selects for DEGs through
a statistically rigorous approach by comparing the input features
against shadow variables, derived from randomization of input
variable values, and collating the variables that have greater
feature importance than the best-performing shadow feature
for subject classification at every run, denoted as a “hit” for
that variable for that run. Over multiple runs, the number of
hits for each variable makes up a binomial distribution, from
which the list of important genes can be determined. To further
eliminate variability, for each pairwise comparison, up to 1,000
runs were performed within each round of Boruta, and Boruta
was itself conducted 10 times. Genes that were deemed important
more than 50% of the time were defined as being differentially
expressed between the two conditions.

Validation and Evaluation of Biomarkers
Validation was conducted by constructing RF classifier models
using the DEGs from Boruta for each pairwise comparison,
which were trained on SMOTE-balanced data derived from the
80% training data of each dataset, and tested on the reserved 20%
testing data, which was also balanced by SMOTE. Apart from
internal validation on NNI data, to further validate that the DEGs
identified from the NNI data were generalisable as biomarkers for
MCI and AD, external validation was carried out by constructing
RF classifier models from the NNI DEGs that were also present in
ADNI data, and evaluating the performance of these models on
ADNI data.

In both internal and external validation, the highest accuracies
from 10 iterations of evaluation consisting of 30 RF classifier
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FIGURE 2 | Uniform manifold approximation and projection (UMAP) plots of datasets used for analysis. (A) National Neuroscience Institute (NNI) data colored by

diagnosis. Each point represents data from 176 genes from a single subject. (B) Alzheimer’s Disease Neuroimaging Initiative (ADNI) data colored by diagnosis. Each

point represents data from 20092 genes from a single subject. CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s Disease.

models each, were recorded and compared against 50% accuracy
for each pairwise comparison using one-tailed Student’s t-tests.

Protein-protein association networks were constructed based
on DEGs from Boruta using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database [v.11.5; (29)].

Gene Set Enrichment Analysis
The roles of the DEGs in a wider biological landscape
were explored by annotating these genes with their Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (30),
using the enrichR package (v.3.0) in R (31, 32). The KEGG
pathways that overlap between the three pairwise comparisons
were of particular interest as they could represent biological
processes implicated during transitions from CN to MCI to AD.

RESULTS

Heterogeneity in Alzheimer’s Disease
Heterogeneity in AD presents difficulties for diagnosis and
developing drug treatments (33). This heterogeneity was
observed even at the transcriptomic level, as illustrated by UMAP
plots of the NNI and ADNI datasets (Figure 2).

There was no clear separation between CN, MCI, and AD
subjects within both the NNI and ADNI datasets (Figures 2A,B).
This suggests that there is no clear cluster of genes that
characterize MCI and AD to differentiate them from the CN
subjects. This pattern was retained even after the NNI and
ADNI datasets were split into training/testing sets and adjusted
for class imbalance using SMOTE, demonstrating that the
lack of clear clusters is not an effect of class imbalance and
differences between each group of subjects cannot be easily
resolved (Supplementary Figure 1).

The lack of clear defining delineations between groups of
subjects further complicates diagnosis for these conditions,

and demonstrates how there is no “one size fits all” approach
for AD treatment, emphasizing the need for personalized
treatments based on one’s unique disease profile. Therefore,
we employed the Boruta algorithm to identify differentially
expressed genes and potential biomarkers within this
complex dataset.

Differentially Expressed Genes Identified
as Potential Biomarkers
According to random forest regressionmodels for age-dependent
variables and classification models for gender and pairwise
diagnosis conditions, more than 82% of diagnosis-dependent
variables were not age-dependent, and 80% of diagnosis-
dependent variables were not gender-dependent, suggesting that
most differentially expressed genes across diagnosis in this
study reflect changes across disease rather than age and gender
differences between subjects.

From feature selection on the NNI training data balanced by
SMOTE, 17 DEGs were identified between CN andMCI subjects,
10 genes identified between CN and AD subjects, and 16 genes
identified between MCI and AD subjects, from a total of 176
genes in the initial dataset (Table 2).

These potential biomarker genes were used to construct
predictive RF models for classifying the remaining 20%
data from the NNI dataset balanced by SMOTE, as well as
subjects from ADNI. Using the list of DEGs as predictive
features to classify subjects of the ADNI dataset, the mean
highest accuracies obtained were 59.55, 55.96, and 56.65%
for the pairwise comparisons CN vs. MCI, CN vs. AD,
and MCI vs. AD, respectively (Table 3). The classification
accuracies using the list of DEGs as biomarkers were
significantly higher than random classification of 50%
for all three pairwise comparisons. Similarly, RF models
constructed using the list of DEGs evaluated on NNI data
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TABLE 2 | Differentially expressed genes from pairwise comparisons using

National Neuroscience Institute (NNI) data.

Comparison Differentially expressed genes

CN vs. MCI

(17 genes)

ABCA7, CA4, CCL3, CD31, CSF1, F5, FGF2, TNNT2, IKBKG,

IL17A, ITGB3, KITLG, LPA, NOS2, OSM, SF3B1, TBP

CN vs. AD

(10 genes)

CBL, CCL18, CCL27, DNMT3A, FGF1, IL23, IL4R, NFKB1,

THPO, TNFB

MCI vs. AD

(16 genes)

CA4, CCL3, CCL4, CCL5, CCL7, CRP, CSF1, EDN1, F5, IL13,

IL4R, IL6, IL7, NOS2, NOTCH3, OCLN

This table shows the list of differentially expressed genes for each pairwise comparison.

Boruta demonstrates that 17 genes are important for distinguishing between cognitively

normal (CN) control vs. mild cognitive impairment (MCI) subjects, 10 genes are

important for CN vs. Alzheimer’s Disease (AD), and 16 genes are important for MCI vs.

AD, respectively.

TABLE 3 | Highest prediction accuracy for Alzheimer’s Disease Neuroimaging

Initiative (ADNI) data using differentially expressed genes from National

Neuroscience Institute (NNI) data as predictive features.

Comparison Highest

prediction accuracy

(mean % ± s.e.)

p-value

CN vs. MCI 59.55 ± 0.24 8.78e-12 ***

CN vs. AD 55.96 ± 0.13 2.46e-12 ***

MCI vs. AD 56.65 ± 0.09 2.79e-14 ***

This table shows the mean and standard error (s.e.) of the highest prediction percent

accuracy when random forest models constructed using differentially expressed genes

shown in Table 2 are used to classify subjects between pairwise comparisons of

cognitively normal (CN) control vs. mild cognitive impairment (MCI), CN vs. Alzheimer’s

Disease (AD), and MCI vs. AD, are used to classify subjects from ADNI. *** indicates p

< 0.001 according to a one-tailed t-test with the alternative hypothesis that the mean

highest prediction percent accuracy is >50%.

classified between subjects from each pairwise comparison,
i.e., CN vs. MCI, CN vs. AD, and MCI vs. AD, with max
accuracies significantly higher than random classification
(Supplementary Table 2).

Several previously published studies aiming to identify blood
biomarkers for AD focus on distinguishing between healthy
and disease states, and demonstrate variations in DEGs between
studies depending on the analysis methods employed (34, 35).
In contrast, in addition to identifying DEGs associated only with
AD, this investigation aims to identify genes that are differentially
expressed in MCI, compared to CN and AD, specifically in
the context of inflammatory genes. Nevertheless, we evaluated
the performance of DEGs from Li et al. (34, 35) in pairwise
classifications of CN vs. MCI, CN vs. AD, and MCI vs. AD,
compared with the three sets of DEGs from this study. The
DEGs identified in this study performed similarly to those from
previous studies in classifying between CN and AD subjects
(Supplementary Table 3). Our DEGs identified performed better
in the classification of CN vs. MCI and MCI vs. AD subjects.
Overall, pairwise classification using DEGs identified in this
study is likely more representative of differential expression
across CN, MCI, and AD, compared to genes in past studies that
focus on AD classification.

Protein-protein association networks obtained by STRING
demonstrated that most of the DEGs across the three pairwise
comparisons have been shown or hypothesized to share protein
functions in past studies, particularly for genes from CN vs. AD
and MCI vs. AD (Figure 3). This indicates that DEGs identified
by Boruta are functionally related, thus supporting the possibility
that the biological regulation of protein networks involving these
genes is affected during MCI and AD development.

Differentially Expressed Pathways in MCI
and AD
In our analysis of the gene annotations of each set of genes
obtained from pairwise Boruta analyses, we were interested
in signaling pathways that were found in the intersection
between the three pairwise comparisons. These overlapping
regions indicate gene annotations that could be implicated
during transition across CN, MCI, and AD development,
and could present potential therapeutic targets. From the
KEGG pathway annotations, we identified five such pathways,
namely the PI3K-Akt, IL-17, JAK-STAT, TNF, and Ras signaling
pathways (Figure 4).

The location of each pathway in the Venn diagram in Figure 4
indicates the stage at which the pathway is implicated in the
transition between conditions. Pathways at the center of the
Venn diagram, where all three pairwise comparisons overlap,
likely undergo expression changes at the transcriptomic level
throughout CN, MCI, and AD development. Pathways that
overlap between CN vs. MCI and CN vs. AD are likely to undergo
changes duringMCI, which are retained into AD, while pathways
that overlap between CN vs. MCI andMCI vs. AD likely undergo
changes that are more detectable during MCI but not necessarily
AD. Pathways that overlap between CN vs. AD and MCI vs. AD
indicate changes that are likely to be more representative of AD,
rather than MCI.

DISCUSSION

Visualization of the blood gene expression profile using UMAP
did not show distinctive clusters of AD, MCI and CN, illustrating
the heterogeneous nature of AD. The visualization under
UMAP also demonstrated that the underlying structure of
detecting biomarkers in AD could not be resolved easily even
when using non-linear approaches. Therefore, conventional
classification approaches will likely be ineffective and a robust
machine learning algorithm will be required for a more accurate
biomarker identification. In this regard, RF was chosen for its
versatile applications in classification and regression, and Boruta
was employed to further increase robustness. In this study, we
employed a machine learning pipeline for the identification
of AD-related genes, which in turn highlighted five signaling
pathways that could potentially be used for discriminating
between stages of AD progression.

We recognize that the ambiguity of a patient’s true condition,
under the MCI classification, may influence the feature selection
as not all MCI patients evolve to AD, and some individuals can
even revert back to CN. This suggests that the disease progression
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FIGURE 3 | Protein-protein association networks constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Proteins

displayed are expressed from genes identified by Boruta from pairwise comparisons between (A) cognitively normal (CN) control and mild cognitive impairment (MCI),

(B) CN and Alzheimer’s Disease (AD), and (C) MCI and AD subjects.

FIGURE 4 | Top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways from gene set enrichment analysis of differentially expressed genes from each

pairwise comparison. All pathways shown have an adjusted p < 0.05 from gene set enrichment analysis. Pathways that are considered as potential biomarker

pathways, specifically the PI3K-Akt, IL-17, JAK-STAT, TNF, and Ras signaling pathways, are shown in red. CN, cognitively normal; MCI, mild cognitive impairment;

AD, Alzheimer’s Disease.
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from MCI to AD is non-linear, as previously suggested in
literature (34). The clinical diagnosis of MCI, upon which our
feature selection algorithm depends, is also challenging due
to the lack of clear distinguishing symptoms. In addition, the
worsening of MCI may develop into other forms of dementia
besides AD. Nevertheless, the association between MCI and AD
development provides motivation for studying both of them in
conjunction. By consideringMCI and AD as different conditions,
we aim to identify not only potential blood biomarkers for
AD diagnosis, but also biomarkers for MCI diagnosis, with the
goal to provide early intervention for AD by detection of MCI
subjects before they progress into AD. Early detection of MCI
subjects and treatment may alleviate their symptoms in the early
stages and reduce the probability of MCI patients progressing
into AD.

The genes identified in this study are able to classify subjects
as belonging to either CN, MCI, or AD groups, with greater than
random accuracy, thus supporting their potential application in
biomarker panels for diagnostic purposes in clinical settings.
However, the classification accuracies observed in this study also
suggest that MCI and AD are highly complex and heterogeneous.
This could have been a result of the gene expression landscape
between healthy and diseased groups being relatively similar
overall (35, 36). To reduce variability resulting from class
imbalance in our data during feature selection and evaluation,
we performed SMOTE on both our training and testing data,
and employed several iterations of Boruta, with majority voting
to reduce the likelihood of false positives being included in
our final set of DEGs. Further validation and investigation
of these DEGs as clinically relevant biomarkers for MCI and
AD will ideally be conducted in the future using a much
larger dataset (than the current NNI data used in this study),
that is also supported by common AD biomarkers such as
amyloid and tau.

Despite the discovery cohort being relatively small, our
classification models using DEGs identified from NNI data also
classified subjects with greater than random accuracy when
validated on external ADNI data, with comparable prediction
accuracies across all three pairwise comparisons of CN vs.
MCI, CN vs. AD, and MCI vs. AD. Therefore, our DEGs can
be generalized to different cohorts of subjects from varying
geographical regions and data collection methods.

The five pathways (PI3K-Akt, IL-17, JAK-STAT, TNF, and
Ras signaling) identified from gene enrichment analysis of the
DEGs represent potential changes in biochemical signaling over
different stages of MCI and AD onset and development. It is
likely that all of the five pathways undergo some dysregulation
during the course of MCI development and AD progression.
The finding of inflammatory pathways in the differential
gene expression analysis is not particularly surprising, given
that the initial set of NNI genes were also associated with
several inflammatory processes. Despite this, the localization
of the different pathways to different regions of the Venn
diagram in Figure 4 indicates that at different stages of disease
progression, different pathways could experiencemore detectable
transcriptomic changes. This has applications in diagnostic
practice and personalized medicine–although MCI is associated
with increased systemic inflammation in general (37), greater

dysregulation of specific pathways could provide indications of
disease stages in each patient, and provide potential targets for
that disease stage.

Additional challenges remain to be addressed regarding blood
transcriptomes as biomarkers for disease diagnosis. Relating
the dynamics of gene expression in the brain to blood can be
confounded by changes in RNA availability rather than specific
pathway dysregulation, such as the possibility that extensive
neuronal death in highly inflammatory environments could
lead to less detectable RNA changes at later AD stages (38).
Therefore, it would be prudent to consider if the observed
transcriptional changes detected were indeed associated with
disease progression.

Each of the five pathways identified in this study has
individually been implicated in cognitive impairment,
particularly when they are altered in the central nervous
system, even in neurological conditions not directly linked
to AD (39–43). Should their expression levels in blood aid in
identifying individuals with cognitive impairment accurately,
dysregulation of these pathways would be possible biomarkers
for MCI. An association between brain and blood levels of their
expression, with corroboration from behavioral studies, would
further support the utility of these pathways as tools for assessing
patients’ risks of developing MCI and AD onset, providing
opportunities for therapeutic intervention.

The five inflammatory pathways observed from gene
enrichment have each been associated with AD, albeit usually
in the context of pathway dysregulation in the brain. Of note,
IL-17A demonstrates a strong correlation with the pathogenesis
of AD, and evidence of elevated IL-17A was observed in AD
patients (44). Studies performed on rodents with Aβ-induced
neurodegeneration demonstrated improved memory function
after treatment with IL-17 antibodies (45). This provides strong
evidence that the inhibition of IL-17 reduces the degenerative
effects of Aβ in the glial cells, preventing further complications
in AD patients.

Another pathway that holds potential in the treatment of
AD is the TNF signaling pathway. Numerous studies have
described the elevation of TNF-α in AD patients (46, 47)
and the intervention of this pathway has been shown to
alleviate brain pathology in rodent models (48). Additionally,
the role of the TNF signaling pathway is supported by a
recent genome-wide association study, which suggests that
regulation of this pathway and its interactions with other
signaling pathways could be implicated in AD development
and neuropathology (49). Several drugs have been proposed to
target different parts of the TNF signaling pathway and there
is some reported clinical evidence suggesting that intervention
of this pathway lowers AD neuropathology (50). Currently
there are a few FDA approved drugs that target the IL-17A
signaling and TNF signaling pathways. A few drug examples
include Secukinumab, an antibody that selectively binds and
neutralizes IL-17A, and Etanercept, a biological antagonist to
TNF-α, that has been shown in a pilot study to improve
cognitive function (51). This information may be applicable in
the treatment of MCI patients, if early detection and diagnosis is
conducted through routine blood tests, to prevent the potential
development of AD.
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Additionally, the JAK-STAT signaling and PI3K-Akt signaling
pathways were found to be differentially expressed between
AD, MCI and CN, serving as potential grounds for future
research or drug targets. Although the mechanism behind how
these pathways lead to development of AD is unclear, past
investigations have found correlations between altered activity
of these pathways and development of AD. The JAK-STAT
signaling pathway was found to be activated in reactive astrocytes
present in rodent models (52), although the mechanism of
how JAK-STAT is involved in AD has not been studied
extensively. The PI3K-Akt signaling pathways were found to
be inhibited by Aβ, leading to neuronal death (53), but the
mechanism of how this occurs is still not well understood. The
involvement of these two pathways in AD pathophysiology could
be explored in further research, with the possibility of them being
therapeutic targets.

Ras/ERK signaling and its associated MAPK signaling
pathway have also been investigated widely in contexts of disease
due to their diverse regulatory roles in processes such as cell
survival, migration, proliferation, and differentiation. In AD,
ERK proteins are hypothesized to play a role in mediating
Tau hyperphosphorylation and β-secretase expression which
influences Aβ aggregation (54). Ras/ERK signaling has also been
shown to be activated by Aβ, with the resultant aberrant signaling
leading to neurodegeneration in AD (41). Therefore, early
detection and targeted treatment for Ras signaling dysregulation
could provide a means for preventing prolific Aβ aggregation and
neurodegeneration in early AD.

Differential expression in these five pathways indicates
that these pathways are dysregulated at different stages
of disease development over MCI and AD, although it
should be noted that the complex relationship between
blood and brain expression makes interpretation of blood
gene expression difficult, specifically in understanding how
differential expression in blood is indicative of transcriptional
patterns in the brain. The transcriptional signature of some
gene modules in the brain, particularly those with roles in
basic cellular processes such as gene expression regulation
and infection, have been observed to be preserved in the
blood of healthy subjects (55). In AD patients, especially
at advanced stages of disease, strong blood-brain correlation
for transcription has been observed, including brain-specific
genes and inflammation-associated genes (56). However, blood-
brain transcriptional correlation in MCI subjects remains to
be established. While further investigation is needed before it
can be concluded if these patterns of dysregulation definitively
reflect neurophysiological changes in the brain, the findings
of past human and animal studies suggest that the blood and
brain transcriptome are correlated for some pathways, including
inflammatory genes such as those studied here, especially
in neurodegeneration (57).

Another challenge in identifying blood biomarkers of
disease relates to population heterogeneity. Highly generalisable
biomarkers are rarely available, due to heterogeneity between
individuals, even within the healthy control population–the
blood transcriptome is highly dynamic and inflammatory
processes may vary in response to age, underlying disease, viral
infection, or even seasonal changes (16).

This not only presents an opportunity for personalized
medicine, but also highlights its importance in MCI and AD
diagnosis. Since the expression of these inflammatory pathways
is dynamic and highly variable even in healthy subjects, there
is a risk of false positives in MCI and AD diagnosis if one
only considers differences in expression levels of genes in the
five pathways between individuals. Consequently, in evaluating
MCI and AD risk of an individual, it may be beneficial to track
longitudinal changes in expression of the five pathways for each
subject, rather than making a diagnosis based on data from a
single time point.

There are several previously published studies that aim to
identify blood biomarkers of AD using blood gene expression
data (14, 34–36, 58–60). A number of these studies employed
publicly available data from AddNeuroMed for biomarker
discovery and evaluation, although the different methods for
feature selection and classification employed for each study
resulted in varying differentially expressed features between AD
and CN subjects (14, 34, 35, 59, 60). To overcome variations
in individual differentially expressed genes, researchers may
employ pathway-based classification models instead (14, 36),
which we also include in our investigation. Through pathway
analysis, there is more consensus between studies–for instance,
the JAK-STAT pathway we identify in this investigation was also
mentioned as a pathway of interest by Li et al. (35). Here, our
study differs from previously published work in that we focus on
biomarkers of MCI as indicators of AD risk, and on the pathways
that are implicated across the development of MCI and AD,
rather than just differential expression at each stage compared
to CN.

The findings of this study provide potential blood biomarker
genes and pathways for assessingMCI andAD risk in individuals.
However, the complex molecular landscape of MCI and AD
presents opportunities for further research, with the aim of
making definitive diagnoses based on RNA extracted from
blood. For instance, the relationship between blood RNA levels
and RNA and protein levels in the brain could be further
explored to determine how the differences observed in blood
between conditions are linked to physiological changes in the
brain during AD progression. Another aspect that could be
considered is how the biomarkers identified in this study
compare against blood biomarkers for other diseases, especially
inflammatory conditions.

CONCLUSIONS

A machine learning pipeline employing Boruta effectively
identifies DEGs in AD, which can classify subjects as either MCI
or AD patients. These genes are enriched in five pathways–the
PI3K-Akt, IL-17, JAK-STAT, TNF, and Ras signaling pathways–
which are possibly dysregulated in MCI and AD. These
pathways are also potential biomarkers that classify MCI and AD
patients with reasonable accuracy. Our study demonstrates the
potential to make use of these discovered biomarkers for early
diagnosis of MCI and AD patients through routine blood testing,
thereby providing biological insights toward early intervention
through targeted drug treatment development for preventing
deterioration into AD. These biomarker pathways may also
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provide targets for disease monitoring over time as an approach
for personalized medicine as their transcriptional patterns are
altered as MCI develops into AD.
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