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Abstract: Signalling molecules and their cognate receptors are central components of the Metazoa
endocrine system. Defining their presence or absence in extant animal lineages is critical to
accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting
chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm,
Priapulus caudatus Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to
chordate endocrine homeostasis, participating in multiple developmental and physiological processes.
Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key
taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly,
we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor
retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa,
contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity
for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via
RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to
the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of
the Metazoa.

Keywords: Bilateria; nuclear receptors; xenobiotics; endocrine system

1. Introduction

Retinoic acid (RA) is a critical regulator of multiple biological processes in vertebrates including
cell differentiation and embryonic development [1,2], central nervous system development [3–5],
organ formation and tissue maintenance [6–8] and vision [9]. Retinoids, such all-trans retinoic acid
(ATRA), 9-cis retinoic acid (9cisRA) and 13-cis retinoic acid (13cisRA) are active metabolites of vitamin
A (retinol), known to bind and modulate the retinoic acid receptor (RAR) and retinoid X receptor
(RXR), the central mediators of RA signalling [10]. RAR and RXR belong to the nuclear receptor (NR)
superfamily and are ligand-dependent transcription factors that regulate the expression of specific
genes [11,12]. RAR heterodimerizes with RXR and recognizes specific RA responsive elements (RAREs)
in the regulatory region of the target gene [13,14]. Upon binding to ligands, the position of the helix
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12 on the ligand-binding domain (LBD) is modified, allowing the recruitment of coactivators and
consequently, the activation of gene transcription [11,13,14]. The emergence of various non-chordate
genome sequences established that RA signalling is not chordate-specific, since signalling components
such as RAR and RXR gene orthologues have been found in species from Ambulacraria (echinoderms
and hemichordates) [15–20]. Recently, RAR was also functionally characterized in various mollusc
species and in a second Lophotrochozoa clade, the annelid worm Platynereis dumerilii. Yet, functional
studies in mollusc species demonstrated the loss of RA binding affinity towards RAR [21–24]. In
contrast, the annelid Platynereis RAR orthologue showed a conserved capacity to bind and respond
to retinoids, but with lower affinity compared to vertebrate RAR paralogues [25]. Furthermore,
it was demonstrated that RAs trigger neuronal differentiation, a role previously described only in
chordates [4,21,26]. Surprisingly, in a second annelid species, Helobdella robusta (leech), RAR and other
RA signaling components are absent [15]. The search for RAR gene orthologues in Ecdysozoa (e.g.,
arthropods and nematodes) genomes was previously unsuccessful, implying that RAR was probably
lost in this superphylum [15]. Overall, these studies suggest that 1) RAR evolution was shaped by
events of secondary gene loss during Bilateria evolution, notably in the whole Ecdysozoa lineage and
Appendicularia (Tunicata) [15,16,18] and 2) the bilaterian RAR ancestor was a RA low-affinity sensor,
with the ability to bind retinoids and activate transcription of target genes—annelids (Platynereis),
or a receptor without capacity to bind ligands as seen in molluscs [22–25]. Additionally, NRs are
prime targets of endocrine disrupting chemicals (EDCs) (e.g., [27]), with various examples denoting
the impact of EDCs acting via NRs [28,29]. Yet, variations in NR gene complement and sequence
variation as well as the molecular architecture of endocrine systems are of paramount importance to
recognize the mechanisms of action of EDCs [30,31], particularly in invertebrate lineages, e.g., [32,33].
In the specific case of RAR, environmental contaminants such as pesticides have been shown to exploit
mammalian RARs [34], but not the molluscan orthologue [24]. To further scrutinize the evolution RA
signalling, specifically if RAR is absent or present in other extant Ecdysozoa lineages, we investigated
the genome of the penis worm, Priapulus caudatus Lamarck, 1816 (Scalidophora, Priapulida). Priapulids
are mud-dwelling, carnivorous marine worms with a tubular body shape and an eversible proboscis
(Figure 1A; see Video S1) that altered little since the arthropod/priapulid common ancestor (over 520
million years ago) [35–37]. Their morphological and developmental characteristics together with their
slow rate of molecular evolution suggest Priapulida as a key phylum to understand the evolution
of Ecdysozoa.
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Figure 1. The retinoic acid receptor (RAR) and retinoid X receptor (RXR) nuclear receptors of P. 
caudatus. (A) A specimen photograph of P. caudatus. (B) Maximum likelihood phylogenetic tree of 
Figure 1. The retinoic acid receptor (RAR) and retinoid X receptor (RXR) nuclear receptors of P.
caudatus. (A) A specimen photograph of P. caudatus. (B) Maximum likelihood phylogenetic tree of RAR,
RXR, thyroid hormone receptor (TR) and peroxisome proliferator-activated receptor (PPAR) nuclear
receptors; numbers at nodes indicate posterior probabilities calculated using aBayes. Photograph by
João N. Franco.

2. Materials and Methods

2.1. Sampling

One adult and two juvenile specimens of P. caudatus were collected at the Gullmarn fjord, Sweden,
and preserved on RNA later (Invitrogen, Carlsbad, CA, USA) for further total RNA extraction.

2.2. RNA Extraction

The adult priapulid was dissected into small portions and homogenized with PureZOL RNA
Isolation Reagent® (Bio-Rad, Hercules, CA, USA). The extraction of nucleic acids was performed
with chloroform according to the manufacturer’s instructions and the resulting aqueous phase was
used to isolate the total RNA. The illustra RNAspin Mini RNA Isolation (GE Healthcare, Chicago, IL,
USA) kit was used for total RNA isolation. A step of on-column DNAse I digestion was included to
exclude genomic contamination and the RNA was eluted with RNase-free water, starting from the
ethanol step. The iScript™cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) was used for cDNA
synthesis and performed according to the manufacturer’s recommendations, using 1000 ng of the RNA
previously isolated.

2.3. RXR and RAR Gene Isolation

A BLAST approach conducted on the publicly available P. caudatus draft genome
(GCA_000485595.2, Priapulus_caudatus-5.0.1) to investigate the presence of RAR and RXR-like
sequences. The open reading frame (ORF) of P. caudatus RAR and RXR were deduced from the genome
assembly and isolated using a polymerase chain reaction (PCR) with specific primers (Table S1). In
the case of RXR, two partial nucleotide sequences were used to design specific primers (Table S1)
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and a partial P. caudatus RXR containing the termination codon was isolated by PCR. To obtain the
remaining sequence, the partial RXR isolated sequence was extended using the SMARTer™ RACE
cDNA Amplification Kit (Clontech, Mountain View, CA, USA) following the manufacturer instructions,
using specific RACE PCR primers (Table S1). The Phusion Flash High-Fidelity PCR Master Mix
(ThermoFisher, Waltham, MA, USA) was used in all PCR reactions and the obtained products were
purified with NZYGelpure (Nzytech, Lisbon, Portugal), cloned into pGEM-T Easy Vector System
(Promega, Madison, WI, USA). The sequences were confirmed by automated Sanger sequencing
(Eurofins GATC). RAR and RXR P. caudatus sequences have been deposited in GenBank (Accession
numbers MK780070 and MK780071, respectively).

2.4. Sequence and Phylogenetic Analysis

Amino acid sequences of RAR, RXR, thyroid hormone receptor (TR) and peroxisome
proliferator-activated receptor (PPAR) from various Metazoa taxonomic groups were recovered
through BLASTp searches in GenBank, Joint Genome Institute (JGI) Genome Portal and Okinawa
Institute of Science and Technology (OIST) Marine Genomics Unit Genome Browser. Retrieved
sequences and corresponding protein accession numbers are listed in the Supplementary material Table
S2. The collected sequences were aligned with the Multiple Alignment using Fast Fourier Transform
(MAFFT) programme v7 (L-INS-i method) [38], visualized and edited in Geneious ®v7.1.7. Based on
previous studies [25,39–42], the amino acids residues that interact with ATRA were identified. The
columns containing gaps were stripped, resulting in a final alignment contained 71 sequences and
277 positions. A Maximum Likelihood phylogenetic analysis was performed using the PhyML 3.0
server with the amino acid substitution model LG + G + I and the evolutionary model automatically
selected [43]. The branch support for phylogenetic trees was calculated using aBayes. FigTree v1.3.1
was used to visualize the tree.

2.5. Construction of Plasmid Vectors

The hinge region and LBD of RAR and RXR were isolated from human and penis worm by PCR
with specific primers (Table S3) and cloned into pBIND and/or pACT vectors (Promega, accession
numbers AF264722 and AF264723.1), to produce “chimeric” receptors with the yeast transcriptional
activator GAL4 (RAR-LBD-GAL4) or the viral enhancer, VP16 (RXR-LBD-VP16), which acts on proximal
downstream promoters, respectively [44,45]. The priapulid RAR LBD was amplified by PCR from
pGEM-pCauRAR with specific primer (FP: 5′-ACTGGATCCTCGATTATGTCTATGCAACAGCGA-3′,
RP: 5′-GATTCTAGAACTAGTGATTTCACGGTATGCAG-3′) and the product was digested with BamHI
and XbaI. The digested fragment was subcloned into BamHI–XbaI site of pCold-TF vector (TAKARA
bio, accession number AB213654), for the priapulid RAR LBD−His6-tagged trigger factor hybrid
protein. Plasmid sequences were confirmed using automated Sanger sequencing (Eurofins GATC).
The human RARα LBD was previously cloned into pGEX-4T-1 vector (GE Healthcare Life Sciences,
accession number U13853), for the human RARα LBD-Glutathione S-transferase hybrid protein [22].

2.6. Chemicals and Solutions

ATRA, 9cisRA, 13cisRA, endrin, dieldrin, and sterile Dimethyl sulfoxide (DMSO) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). The stock solutions were prepared in DMSO: ATRA, 9cisRA
and 13cisRA at 0.1, 1 and 10 mM, endrin and dieldrin at 10 mM.

2.7. Cell Culture and Transactivation Assays

Cos-1 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (PAN-Biotech,
Aidenbach, Bayern, Germany). A supplementation with 10% fetal bovine serum (PAN-Biotech,
Aidenbach, Bayern, Germany) and 1% penicillin/streptomycin (PAN-Biotech, Aidenbach, Bayern,
Germany)) was used. Cells were maintained at 37 ◦C with a humidified atmosphere and 5% CO2. Cells
were seeded in 24-well culture plates at a density of 2× 105 live cells/well and after 24 h, transfected with
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0.5 µg of pBIND constructs (pBIND-PcauRAR-LBD or pBIND-HsaRARγ-LBD (positive control)) and 1
µg of pGL4.31 luciferase reporter vector (DQ487213; Promega), containing five upstream activation
sequence (UAS) elements, upstream of the firefly luciferase reporter gene or, in the case of heterodimer
transfection assays, with 0.5µg of pBIND constructs (pBIND-PcauRAR-LBD or pBIND-HsaRARγ-LBD),
0.5 µg pACT constructs (pACT-PcauRXR-LBD or pACT-HsaRXRγ-LBD (positive control)) and 0.5
µg of pGL4.31, using lipofectamine 2000 reagent (Invitrogen) in Opti-MEM (Gibco, Carlsbad, CA,
USA), to a final volume of 350 µL. After 5 h of incubation, transfection media was replaced by
DMEM phenol-free supplemented with 10% dextran-coated charcoal-treated serum (Invitrogen) and
1% penicillin/streptomycin (Invitrogen) containing the test compounds. Final concentrations were the
following: 0.1, 1 and 10 µM ATRA, 9cisRA or 13cisRA and 10 µM organochlorine pesticides (endrin and
dieldrin) dissolved in DMSO (0.1%). Cells were lysed 24 h after transfection. Firefly luciferase (reporter
pGL4.31) and Renilla luciferase (pBIND) activities were assayed with Dual-Luciferase Reporter Assay
System (Promega, Madison, WI, USA), according to the manufacturer’s instructions. Two technical
replicates per condition in three independent assays were performed for all transfections. The results
were expressed as fold-induction resulting from the ratio between luciferase (reporter pGL4.31) and
Renilla (internal control for transfection efficiency luminescent activity), and then normalized by the
DMSO control. Transactivation data was calculated as means of the normalized values (n = 3) and the
bars with standard error of the mean (SEM) from the three separate experiments. The means of the
technical replicates were used for statistical analysis with one-way ANOVA, followed by Holm-Sidak
method in the SigmaPlot software v11.0. Data were transformed whenever the normality failed. The
level of significance was set to 0.05.

2.8. Ligand Binding Assays

The PcauRAR LBD−His6-tagged trigger factor hybrid protein was expressed in Escherichia coli
BL21 (DE3) cells containing the chaperon plasmid pG-Tf2 (Takara bio, Kusatsu, Shiga, Japan) and
purified by using His-select nickel affinity gel (Sigma−Aldrich, St. Louis, MO, USA). The HsaRARα
LBD-Glutathione S-transferase hybrid protein was expressed in Escherichia coli BL21 (DE3) cells and
purified by Glutathione Sepharose 4B (GE Healthcare, Chicago, IL, USA) (positive control). Ligand
binding assay was assessed as previously described [22,46–48]. In brief, the purified protein (12.5
µg/mL) was incubated with 10 nM of all-trans retinoic acid (11, 12-3H) ([3H] ATRA; 1.665 TBq/mmol;
Amersham Biosciences) or 10 nM of Retinoic Acid, (11, 12-3H) 9-cis ([3H] 9cisRA; 1.95 TBq/mmol;
PerkinElmer). Unlabeled ATRA and 9cisRA were used to compete for [3H] ATRA or [3H] 9cisRA in this
assay to determine the binding preferences of PcauRAR LBD or HsaRARα LBD. Hydroxyapatite was
added to precipitate the receptor protein and bound radioactive compounds after an incubation step at
4 ◦C for 1 h. The hydroxyapatite pellet was washed. The radioactivity in the pellet was determined by
liquid scintillation counting.

3. Results

3.1. Phylogenetic and Sequence Analysis of Priapulid RAR

By thoroughly examining a genome draft of P. caudatus, we established the presence of sequences
with high similarity to RAR and RXR respectively. Since RAR sequences are absent from previously
analysed Ecdysozoa genomes, we went on to validate this initial screening. We experimentally isolated
the full-length sequences of both RAR and RXR from P. caudatus cDNA. These encode two protein
sequences with 491 (RAR) and 404 (RXR) amino acids. To determine the orthology of the isolated
sequence a phylogenetic analysis was conducted (Figure 1B), including RAR, RXR, TR and PPAR
amino acid sequences of vertebrates (human and zebrafish), cephalochordates (Florida and European
lancelet), ambulacrarians (acorn worm and purple sea urchin), molluscs (Atlantic dogwhelk and
owl limpet), annelids (Dumeril’s clam worm and polychaete worm), a nemertean (ribbon worm), a
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phoronid (phoronid worm), a brachiopod (common Oriental lamp shell), a rotifer (Korean monogonont
rotifer), and a cnidarian (moon jelly).

The predicted RAR (PcauRAR) and RXR (PcauRXR) sequences of the priapulid worm robustly
clustered in the respective clade (Figure 1B). Next, we examined the amino acid sequence alignment
with PcauRAR (Figure 2), which revealed that, similarly to other RARs, PcauRAR has a conserved
modular structure typical of NRs, with a conserved DNA- binding domain (DBD) and a moderately
conserved LBD [49]. The PcauRAR-DBD shares approximately 80–82% of sequence identity with
human and molluscs RARs, 84% with annelids RARs, 81–87% with nemertean, brachiopod and
phoronid RARs, and 78% with rotifer RAR. Regarding the PcauRAR-LBD, the identity with human
RARs decreases to 39–41%, with molluscs RARs to 47–49%, with annelids, nemertean and brachiopod
RARs to 49–54%, and with phoronid and rotifer RARs to only 33% and 20% respectively (Figure 2).Genes 2019, 10, 985 6 of 15 
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2). Furthermore, the Phe230 residue which was demonstrated to play a crucial role for RA binding, 
enabling transactivation properties [39], is replaced by a Val residue among lophotrochozoans and 
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Figure 2. Amino acid sequence alignment of the RAR DNA- and ligand- binding domains from human,
lancelets, molluscs, annelids, nemertean, brachiopod, phoronid, rotifer and priapulid RAR protein
sequences. Key amino acid residues that interact with ATRA in the human RARγ ligand-binging
pocket (LBP) are highlighted: orange—direct or indirect hydrogen bonds, yellow—hydrophobic and
Van der Waals interactions [25,39–42]. The DBD and LBD are delimited by the upper blue lines.

Analysis of the key amino acid residues known to interact with ATRA in human RARγ (Hsa RARγ)
ligand binding pocket (LBP) [39,42], showed that 14 out of 25 are different (Figure 2), a feature also
observed in previous studies: 9 to 11 amino acids in mollusc [24] and 8 in annelids [25]. In nemertean
12 amino acids are not conserved, and, similarly to molluscs, 9 amino acids are not conserved in
brachiopod and phoronid. In rotifer only 3 of the key 25 amino acids are conserved. Regarding these 25
amino acids residues, 4 (Leu233, Lys236, Arg278, and Ser289) participate in stable hydrogen bonds with
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the carboxyl group of ATRA in HsaRARγ. In PcauRAR, as well as, in phoronid and brachiopod RARs,
two of these residues are not conserved (Lys236>Arg, Ser, Asp in priapulid, phoronid, brachiopod;
Arg278>Lys in brachiopod; and Ser289>Ala in priapulid and phoronid), and only one in nemertean
RAR (Lys236>Arg), whereas in the annelid RAR they are all conserved (Figure 2). Furthermore, the
Phe230 residue which was demonstrated to play a crucial role for RA binding, enabling transactivation
properties [39], is replaced by a Val residue among lophotrochozoans and priapulid. The mutation to
a Phe in Platynereis results on a decreased ability of the annelid RAR to activate transcription upon
binding to ATRA [25], suggesting a similar consequence for priapulid.

3.2. Functional Characterization of the Priapulid RAR Orthologue

To unfold the binding properties of PcauRAR and compare with both mollusc and annelid RARs,
we next investigated the binding profile of the priapulid orthologue to transactivate target gene
transcription, performing transactivation assays with GAL4-LBD chimeric receptors. Thus, we tested
the ability of PcauRAR-LBD-GAL4 to bind retinoids (ATRA, 9cisRA and 13cisRA) and to activate a
luciferase reporter gene (Figure 3). Our results show that PcauRAR is able to significantly (P < 0.05)
activate transcription upon binding to retinoids at concentrations of 1 and 10 µM (Figure 3B), but at a
lesser degree than HsaRARγ (Figure 3A). The results obtained with transactivation assays were next
confirmed by a competitive ligand binding assay. The ability of PcauRAR to bind to ATRA and 9cisRA
was clearly demonstrated (Figure 4).
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Figure 3. Luciferase transcription transactivation mediated by chimeric receptors in the presence of
various ligands (ATRA, 9cisRA or 13cisRA at a final concentration of 0.1, 1 and 10 µM). (A) Human
RAR-LBD-GAL4; (B) Priapulid RAR-LBD-GAL4; (C) Human and priapulid RAR/RXR heterodimers.
Data represent means ± SEM from three separate experiments (n = 3). The results were normalized to
the control condition (DMSO without ligand). Significant differences between the tested concentrations
and the solvent control were inferred using one-way ANOVA. Asterisks denote significant differences
(* P < 0.05, ** P < 0.01, *** P < 0.001) between the tested compound and the control.
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shown to bind and activate transcription in the presence of specific toxicants [34,54]. To address 
whether two organochlorine pesticides (endrin and dieldrin) known as endocrine disruptive 
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Figure 4. Competition by ATRA and 9cisRA with [3H]ATRA and [3H]9cisRA for binding to the LBD of
PcauRAR and HsaRARα. The LBD of PcauRAR (#) and HsaRARα protein (�) was incubated with
increasing concentrations of unlabeled ATRA (A) or 9cisRA (B,C) as competitors in the presence of
[3H]ATRA (A,B) or [3H]9cisRA (C) as ligand. Specific binding of the radio ligands was defined as
total binding minus that occurring in the presence of 1000-fold molar excess of unlabeled ATRA (A,B)
or 9cisRA (C). Results were expressed as percentage of specific binding of the radio ligands. The
binding of each radio ligand to HsaRARα in the absence of unlabeled competitors was set at 100%.
Each experiment was performed at least twice, and representative curves are shown.

In vertebrates, RAR dimerizes with RXR [13,14,50]. Thus, we next assayed the capacity
of RAR to transactivate luciferase transcription as a heterodimer with RXR, using a two-hybrid
protein-protein interaction strategy (pBind/pACT system). The interaction between the chimeric
proteins (RAR-LBD-GAL4 and RXR-LBD-VP16) was first verified (Supplementary material Figure S1)
and then, the activation of the heterodimer was tested with ATRA, 9cisRA and 13cisRA at 10 µM
(Figure 3C). As predicted, the RAR/RXR heterodimer activates luciferase transcription upon binding to
the tested retinoids (P < 0.05) in both human and priapulid (Figure 3C).

3.3. Pesticides Do Not Activate Transcription via the Priapulid RAR

NRs are classical targets of endocrine disrupting chemicals [51–53]. RARs in particular have
been shown to bind and activate transcription in the presence of specific toxicants [34,54]. To address
whether two organochlorine pesticides (endrin and dieldrin) known as endocrine disruptive chemicals
(EDCs) acting via human RARs are also binding to PcauRAR, we performed transactivation assays.
Importantly, these pesticides are persistent in fishes and sediments from the Baltic Sea, where P. caudatus



Genes 2019, 10, 985 9 of 15

occurs [55–58]. As previously shown with mollusc RARs [24], these EDCs were unable to promote
luciferase transcription through PcauRAR activation (P > 0.05) (Figure 5).
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(RAR-LBD-GAL4) in the presence of 10 µM endrin or dieldrin (organochlorine pesticides). Data
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control condition (DMSO without ligand). Significant differences between the tested concentrations
and the solvent control were inferred using one-way ANOVA. Asterisks denote significant differences
(** P < 0.01, *** P < 0.001) between the tested compound and the control.

4. Discussion

The emergence of non-chordate sequenced genomes has significantly modified the evolutionary
consensus of RA signalling as a chordate-specific feature. In effect, RAR and other RA signalling
components were described in non-chordate metazoans, such as ambulacrarians (echinoderms and
hemichordates) [16] and lophotrochozoans (molluscs and annelids) [21–25]. Strikingly, we establish
that a retinoid-activated RAR was retained in the Ecdysozoa P. caudatus. Our findings strongly support
earlier studies, suggesting that RAR originated in the Bilateria ancestor [22,24,25], and substantiate the
likely loss of this transcription factor in most lineages leading to extant Ecdysozoa species examined so
far (Figure 6). Together, these results emphasize the importance of Priapulida to decipher Ecdysozoa
evolution, in particular that of NR biology [35,59].

By inspecting a RAR protein sequence alignment, we show that the penis worm orthologue
exhibits the characteristic modular structure of NRs and displays a higher sequence homology with
annelid RARs than with mollusc and vertebrate RARs. The retinoid binding profile of PcauRAR
was corroborated with both transactivation assays and a competitive ligand binding assay that
clearly established the ability of PcauRAR to bind to ATRA and 9cisRA, as it had been previously
demonstrated with the annelid RAR [25], but not in molluscs [22–24]. Yet, our findings consistently
show that PcauRAR exhibits a low affinity for the tested ligands (retinoids)—in the micromolar range,
similar to previous findings for the Platynereis RAR orthologue [25]. This is in stark contrast with the
affinity shown by chordate orthologues (nanomolar scale). In effect, the operating mode of PcauRAR in
the presence of retinoids (ATRA, 9cisRA and 13cisRA) significantly induced luciferase transcription via
PcauRAR activation, but at lower levels than HsaRARγ, as suggested by the LBP composition. Previous
studies with crystallographic analysis of human RARγ [39] and Platynereis RAR [25] in complex with
ATRA revealed a strong divergence in the structural interaction on how ATRA binds the RAR LBP
residues in these species. In human RARs, 25 amino acid residues are crucial for the interaction with
ATRA, with 4 of these residues forming direct or indirect hydrogen bonds with the carboxyl group of
retinoids [39,42]. Despite the conservation of these 4 residues, the interaction of retinoids with annelid
RAR-LBP is dominated by loose van der Waals forces and no hydrogen bond with retinoid carboxyl
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group have been described [25]. Thus, given the similarities of annelid and priapulid RAR sequences
and ligand affinities, we anticipate an annelid-RAR-like structural interaction between ATRA and
the priapulid RAR-LBP. A similar outcome is also expected for the RAR orthologues from nemertean,
brachiopod and phoronid. Moreover, while in Platynereis ATRA displays a higher capacity to activate
transcription via RAR, we find a similar pattern but for 9cisRA. Interestingly, 9cisRA was not detected
in Platynereis tissues [25] and, at present, RA levels are unknown in priapulids. Furthermore, we did
not explore the possibility of other endogenous and uncharacterized ligands to bind and activate
transcription via RAR in priapulids, although this possibility should deserve future investigation.
Overall, it remains a tantalizing question of the exact in vivo functions of PcauRAR and whether these
are conserved between annelids and priapulids (and other protostomes). Additionally, the finding of
RAR in Priapulida raises the interesting possibility that other RA signalling and metabolic components
might be present in other protostome phyla such as Loricifera and Bryozoa. Future studies should be
undertaken to firmly explore these hypotheses.Genes 2019, 10, 985 10 of 15 
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Finally, we examined whether PcauRAR can be exploited by EDCs by testing two organochloride
pesticides, which have low water solubility, but are extremely persistent and particularly stable in
soil [60]. Dieldrin was found in zooplankton and fishes from the Baltic Sea at concentrations between 15
and 170 ng/g lipid [55,56,58]; and <0.2–9.9 g and <0.15–0.8 g of dieldrin and endrin, respectively, were
found per g of sludge and sediments [57]. Significantly, these compounds are known to disrupt the
endocrine system in humans through the modulation of RA signalling pathways [34,54]. In agreement,
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with the study conducted in molluscs [24], we show that the tested pesticides were not able to activate
PcauRAR and consequently induce gene transcription. To understand the mechanisms of action of
EDCs in invertebrate lineages is problematic given the paucity of appropriate comparative approaches.
For instance, of the various Ecdysozoa groups, only three (Insecta, Crustacea and Nematoda) have been
thoroughly examined from an endocrinology standpoint [32]. Moreover, several aquatic pollutants
have been reported to retard growth and moulting and influence mortality in crustaceans [61–63]
and to affect growth, reproduction, life span and gene expression in nematodes [64,65]. Importantly,
one of the clearest examples of endocrine disruption - imposex development in gastropods upon
exposure to organotins, was shown to result from a specific interaction with the highly conserved
NR RXR [66–68]. Moreover, the inclusion of comparative approaches and evolutionary thinking has
highlighted the conserved and divergent biological responses to xenobiotics mediated by NRs (e.g.,
PPAR [69], PXR [70], ER [71]). Thus, defining the gene complement of NRs, their set of “natural”
ligands and in vivo functions across the diversity of protostome phyla is fundamental to comprehend
the impacts of EDCs in the Anthropocene epoch [72].

5. Conclusions

We provide here the first characterization of an Ecdysozoa RAR. Our findings, contribute to
further clarify the early evolution of the RA gene module in Metazoa, supporting the hypothesis that
RAR emerged as RA low-affinity sensor in the Bilateria, with the high-affinity RA binding profile
acquired in chordates.
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Video S1: Live specimens of P. caudatus; Figure S1: Analysis of the interaction between priapulid and human
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ligands. Table S1: List of primers used to isolate P. caudatus RAR and RXR genes, Table S2: List of sequences
used for phylogenetic reconstruction of TR, RAR, PPAR and RXR genes and corresponding accession numbers,
Table S3: List of primers used to amplify hinge region to LBD of RAR and RXR to be cloned into pBIND or pACT
expression vectors.
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