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Ultrafast universal quantum control
of a quantum-dot charge qubit using
Landau–Zener–Stückelberg interference
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A basic requirement for quantum information processing is the ability to universally control

the state of a single qubit on timescales much shorter than the coherence time. Although

ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such

methods remains a challenge. Here we demonstrate complete control of the quantum-dot

charge qubit on the picosecond scale, orders of magnitude faster than the previously mea-

sured electrically controlled charge- or spin-based qubits. We observe tunable qubit

dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of

the driven pulse. The observations are well described by Landau–Zener–Stückelberg inter-

ference. These results establish the feasibility of a full set of all-electrical single-qubit

operations. Although our experiment is carried out in a solid-state architecture, the technique

is independent of the physical encoding of the quantum information and has the potential for

wider applications.
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U
niversal single-qubit gates are key elements in a quantum
computer, as they provide the fundamental building
blocks for implementing complex operations1–3. In the

standard circuit model, arbitrary single-qubit rotations1, together
with two-qubit controlled-NOT gates, provide a universal set of
gates. In the alternative measurement-based models, such as the
one-way quantum computer, the ability to carry out single-qubit
operations from the source of a specific multi-particles state can
generate every possible quantum state2 and offer practical
algorithms. Additionally, with only single-qubit operations and
teleportation, one can construct a universal quantum computer3.
In the Bloch sphere model of qubit states, a universal single-qubit
gate requires arbitrary rotations around at least two axes.

The charge4,5 or spin6–9 degrees of freedom of an electron in
quantum dots are particularly attractive for the implementations
of qubits. Owing to the fast charge or spin decoherence times in
semiconductor quantum dots, which are typically less than a few
nanoseconds4–9, control operating on the picosecond timescale
may be necessary. Until now, ultrafast manipulations of a single
qubit in quantum dots have been performed using pulsed laser
fields10–12. Alternatively, electrical pulses can be generated much
more easily by simply exciting a local electrode. Logic gate
operations and readouts can be carried out all-electrically, much
like those in current mainstream semiconductor electronics.
Additionally, this all-electric technique provides a simple pathway
for greater spatial selectivity to locally address the individual
qubits and remove obstacles to scalability. Therefore, universal
electrical control on a picosecond scale is highly desirable to allow
coherence to be maintained during the completion of a large
number of operations.

Over the last few decades, the Landau–Zener–Stückelberg
(LZS) interference has served as a textbook model for quantum
phenomena13, that occurs when a system sweeps through the
anti-crossing of two energy levels. LZS has also gained particular
interest for quantum control8,14 because it is less sensitive to
certain types of noise and might enable the implementation of a
universal gate with high fidelity15–17. Here we experimentally
demonstrate such a scheme for a single-charge qubit in a double
quantum dot (DQD), using a single pulse. We may add that very
recently LZS interference has been observed under a continuous
microwave driving, in both an electrostatic-defined18 and a
donor-based19 semiconductor DQD systems.

Results
Charge qubit in a DQD. Figure 1a provides a scanning electron
micrograph of the sample used in the experiments, in which the
metal gate pattern electrostatically defines a DQD and a nearby
quantum point contact (QPC) detector within a GaAs/AlGaAs
heterostructure. All measurements were conducted in a dilution
refrigerator equipped with high-frequency lines (details of sample
structures and experimental techniques are given in the Methods
section). A single-electron charge in the DQD is used to encode
the charge qubit4,5,20. An excess valence electron in the left and
right dots defines the basis states |LS and |RS, respectively. The
schematic diagram in Fig. 1b illustrates that the energies of the
qubit states can be continuously tuned by the level detuning
e¼ER� EL, in which EL and ER are the energy levels for the
electron in the left and right dots for an uncoupled DQD,
respectively. In the presence of inter-dot tunnelling that couples
two dots, a characteristic anti-crossing occurs between the two-
qubit levels near the resonance (e¼ 0). For our experiments, the
anti-crossing gap 2D is adjusted to 20.7 meV, which corresponds
to a Rabi frequency of 5.0 GHz. We have experimentally
determined the Rabi frequency from the coherent oscillations
excited by a square, non-adiabatic pulse as shown in

Supplementary Fig. S1b. We denote the ground and excited
states as |0S and |1S, which are roughly the charge eigenstates
far from the resonance.

The characterization of the system is shown in the charge-
stability diagram for the DQD (Fig. 1c), which integrates the few-
electron regime so that B2–3 electrons occupy each dot (for the
full diagram, see Supplementary Fig. S1a). Our experiments are
performed for a variety of charge states. As they contain identical
physics, for consistency, we present only the data collected from
one charge configuration. The system can be conveniently
described in a valence electron number configuration that
consists of four relevant charge states: (0,0), (1,0), (0,1) and
(1,1). A prominent boundary can be observed between (1,0) and
(0,1) and marks the inter-dot transition line corresponding to the
e¼ 0 resonance.

Observations of LZS interference. Our scheme to control a
single-charge qubit using a Gaussian-shaped short pulse is shown
in Fig. 2a. The system is initially prepared in the |RS state at a
positive detuning e0, which is far from the resonance. During the
rising phase of the pulse, the sweeping pulse takes the system
adiabatically to the anti-crossing point at t¼ t1 at which a sig-
nificant probability exists for a non-adiabatic transition to the
excited state |1S. This probability is the Landau–Zener transition
represented by the following formula:

PLZ¼ expð� 2pD2/u�hÞ
in which u is the sweep velocity of the driven pulse through the
anti-crossing point.

As the pulse takes the system further past e¼ 0, two different
trajectories at different energies can coherently interfere. Upon
returning to e¼ 0 at t¼ t2, the two trajectories, caused by the
coherent interference, have also accumulated a phase difference of
magnitude

fi¼ �
1
�h

Zt2

t1

E1ðtÞ� E0ðtÞdt:

A projective read-out is performed at the end of the pulse to
measure the |LS state for a constructive interference and the |RS
state for a destructive interference, known as the LZS interference.
Thus, the LZS process consists of both the non-adiabatic level
transition and the adiabatic phase accumulation.

The Bloch sphere model provides a convenient picture to
understand the quantum control of a charge qubit. Using this
model, the charge state is represented as a vector, in which the
ground and excited states |0S and |1S are at the north and south
poles, respectively. In this model, the dynamics of the qubit can
be represented by applying the appropriate sequence of unitary
operation matrices to the initial state. The matrices

RxðyÞ¼ expð� iysx/2Þ;
RzðfÞ¼ expð� ifsz/2Þf;

give rise to a rotation on the Bloch sphere around the x axis by an
angle y and around the z axis by an angle f.

At a Landau–Zener transition, the initial state becomes a
coherent superposition of |1S and |0S with a phase fLZ related
to the Stokes phenomenon13. The relative amplitudes of |1S and
|0S depend on PLZ. This behaviour corresponds to the
transformation Rz(�fLZ)Rx(yLZ)Rz(�fLZ), seen as successive
x and z-rotations (see the Supplementary Discussion for details),
and yLZ¼ 2 sin� 1OPLZ. In the phase accumulation stage, the
qubit undergoes a single rotation about the z axis, referred to as
the phase-shift gate operation Rz(fi). Thus, the combination of Rx
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and Rz enables arbitrary one-qubit rotations R(y, f) on the Bloch
sphere and the LZS pulse rotates the input state on the Bloch
sphere to the output state

Coutj i ¼Rzð�fLZÞRxðyLZÞRzð�fLZÞRzðfiÞRzð�fLZÞ

�RxðyLZÞRzð�fLZÞ Cinj i ¼Rðy;fÞ Cinj i
as illustrated in Fig. 2a.

The coherent control of our charge qubit is evident in the
stability diagram (Fig. 2b), which is considerably altered as
compared with that without an applied pulse. We observe many
additional lines parallel to the inter-dot transition line. These
additional lines are a signature of the excitation of the LZS
interference by the pulse. In our device, the right barrier to the
bath is slightly more open than the left barrier, and one can
observe that the charge-addition lines (0,0)—(1,0) and (0,1)—
(1,1) are less visible. As a result, an interesting triangular-shaped
area exists in which the electron has a high probability of escaping
to the reservoir before the inter-dot transition is completed.

The additional lines in Fig. 2b can be easily understood. For the
line labelled 0, the pulse takes the system just past the anti-
crossing point. At the next line, the pulse can take the qubit
further, passing e¼ 0 and accumulating a total phase of 2p.
Therefore, the lines represent the constructive interference fringes
between the successive Landau–Zener transitions that correspond
to an accumulated total phase of 2pN.

To confirm our identification, we have derived an analytical
expression for the locations, e0

(N), of the constructive interference
fingers for a triangular pulse21. The triangular pulse is a simple
approximation of the actual Gaussian profile of our pulse and
can readily yield an intuitive analytical expression (see the
Supplementary Discussion), eðNÞ0 ¼A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hAN/tr
p

, in which A is
the pulse amplitude with units of energy that can be converted
from voltage using the lever-arm conversion factor and tr is the
pulse-raising time. Figure 2c compares the experimental finger
positions with a theoretical curve obtained using the above
equation, and reasonable agreement can be achieved.
Complete and ultrafast quantum control of the charge states.
The ability to fully control the charge qubit is also studied using
the LZS interference patterns. Controlling the amplitude of the
driven pulse while the time profile of the pulse is fixed sets
the speed u of the passage through the anti-crossing point, thus
the Rx(yLZ) rotation angle yLZ and the Rz(fLZ) rotation angle fLZ.
Tuning the pulse time interval in the phase accumulation stage

sets the Rz(fi) rotation angle fi. The parameters yLZ, fLZ and fi

are sufficient to rotate the input qubit to any point on the Bloch
sphere, or more generally, to implement a universal one-qubit
operation R(y, f) using the LZS pulse profile22,23.

To demonstrate the ability of the LZS method to generate
tunable unitary transformations, we use the amplitude of the
driven source as a control parameter. The charge state probability
P|LS as a function of the qubit detuning position e0 and the
voltage amplitude A under a 150-ps short pulse is provided in
Fig. 3a. Given the detuning and driven pulse amplitude, such
interference patterns exhibit fringes that rise again from the
constructive interference between successive Landau–Zener
transitions at f as a multiple of 2p. A characteristic of the LZS
driving occurs when the z-rotations result in the total phase
f¼ 2pN; the total x-rotation angle y is generally maximized as
2yLZ, which increases monotonically with the driven amplitude
(see Supplementary Discussion for details). We verify this result
by extracting the total rotation angles (y, f) of the Bloch vector
from Fig. 3b (a horizontal cut at e0¼ 400 meV of Fig. 3a) as it
undergoes LZS interference. These rotation angles are also
parametrically plotted in Fig. 3c,d, demonstrating the expected
behaviour as a function of the pulse amplitude. In addition, we
note that the fit of f is better than that of y, indicating that the
phase-shift gates have higher intrinsic resistance to certain
decoherence15,16. These findings suggest that the LZS pulse
amplitude should be an important tuning parameter for
optimizing the quantum control of two-level systems.

The LZS interferences are further studied in the time-domain.
We use a low-pass filter to shape the time-varying, square-driven
pulse into an approximately Gaussian profile for the
investigations. Figure 4 shows the charge state occupation P|LS
as a function of both the detuning energy position e0 and the
pulse width tp. Up to 10 LZS interference fringes can be clearly
observed. The brightest line in the figure can be understood as the
detuning pulse precisely at the anti-crossing point, and the
subsequent finer lines corresponds to full phase accumulations of
2p, 4p and so on. We also simulate the evolution of the charge
qubit by numerically solving the master equations as described in
the Supplementary Discussion. This simulation (as shown in
Supplementary Fig. S2) is in reasonable agreement with the
experimental data. In particular, fast time-evolutions are observed
in the insert of Fig. 4. For example, at a detuning energy of
e0¼ 400 meV, only B10 ps is required to accumulate a phase of
2p that corresponds to a full cycle of Rz operations of the qubit.
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Figure 1 | Experimental set-up to characterize, control and measure single-electron charges. (a) Scanning electron micrograph of the confinement gates

that defined the DQD and the QPC charge-sensing channel. The two dots have a lithographic dimension of B300 nm. (b) Energy diagram of the DQD

charge qubit. The green and yellow solid lines represent the energy levels for the bonding and anti-bonding states, respectively. With a finite inter-dot

coupling, the lines are anti-crossed near the resonance point. (c) Colour scale plot of the charge-sensing signal as a function of the gate voltages VA3 and
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For gate defined GaAs qubits, the phase rotation time can be
electrically manipulated at this time scale.

To further highlight the importance of the LZS interference for
a general single-qubit gate, we consider the following example:
Tuning the speed of passage to yield PLZ¼ 1/2, the total rotation
is a Hadamard gate with an arbitrary phase22. As the Rabi
frequency can be reliably tuned to 10 GHz, the total rotation can
be completed in B50 ps.

Decoherence information in the amplitude spectroscopy.
Decoherence of the qubit due to its environment can be readily

extracted from the amplitude spectroscopy24,25 (for details, see
the Supplementary Discussion). It is useful to evaluate the Fourier
transform of the occupation probability

PFTðkA; keÞ¼
ZZ

expð� ikAA� ikeeÞPðA; eÞdedA

in which kA and ke represent the reciprocal-space variables
corresponding to the real-space variables A and e, respectively.
The two-dimensional Fourier transform of the data in Fig. 3a is
provided in Fig. 5. As ke is practically a timescale, decoherence
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leads to an attenuation in the ke direction as follows25:

PFTðkA; keÞ / expð� ke/T2� k2
e /2T�22 Þ:

Therefore, both the intrinsic dephasing time T2 and the
inhomogeneous broadening T2* can be extracted from the overall
amplitude decay. One must emphasize that this amplitude
spectroscopy has an advantage over the two types of dephasing
times because T2 and T2* exhibit different ke dependences.

In our data, the Fourier intensity, three-dimensionally plotted in
a log scale, is apparently dominated by a linear ke dependence.
Therefore, T2 is extracted without requiring spin-echo
experiments. A typical trace form Fig. 5 yields an estimation of
T2¼ 4±0.6 ns, while T2* is difficult to extract as the quadratic
term is relatively small and is masked by noise. Nevertheless, the
T2 decoherence time is much longer than the 10 ps required for a
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2p phase rotation. The decoherence and relaxation times can
greatly effect the single-qubit operation fidelity as shown in
Supplementary Fig. S3.

Discussion
In summary, we have used a shaped electrical pulse to create
LZS interference in a semiconductor DQD charge qubit. The LZS
interference-induced x-rotation operations along with the
dynamic phase-gate operations can form a basis for rapid,
universal, all-electric one-qubit gate operations in a few tens of
picoseconds. These results represent progress towards the
implementation of semiconductor quantum dot-based qubits.
Our results are an important addition to the rapidly growing
toolbox of quantum information processing because they are
generally applicable to systems that avoid crossings, including
both artificial and natural two-level systems. This well-controlled,
solid-state system could also be seen as an analogue quantum
simulator of a real atom undergoing LZS interferometry26.

Methods
Devices. The DQD device is defined by electron beam lithography on a molecular
beam epitaxially grown GaAs/AlGaAs heterostructure. The two-dimensional
electron gas is located 95 nm below the surface. The two-dimensional electron gas
has a density of 3.2� 1011 cm� 2 and a mobility of 1.5� 105 cm2 V� 1 s� 1.
Figure 1a provides the scanning electron micrograph of the surface gates. Six gates—
A1, A2, A3, B1, B2 and B3—shape the DQD. Gates B4 and B2 form a QPC charge-
sensing channel for counting the DQD electron occupations via capacitive coupling.

Control and measurements. The experiments were performed in an Oxford
Triton dilution refrigerator with a base temperature of 30 mK. An Agilent 81134A
pulse generator with a time resolution of 1 ps was used to deliver fast pulse trains
through semi-rigid coaxial transmission lines to the A3 side gate of the device. The
conductance through the QPC, GQPC, depends on the change in local charge
configuration and provides a sensitive metre for the number of electrons in the left
and right dots. The charge state probability is determined by normalizing the
charge sensor conductance to the adjacent plateaus in the charge-stability diagram.
This measurement technique has been reportedly used in single-charge qubits and
offers the experimental convenience of integrating initialization, manipulation and
measurement in the same pulse7. In our experiment, a pulse repetition rate of
30 MHz was chosen to ensure that the qubit is relaxed to the initial state and to
carry out a sufficient number of projective measurements (B107 times) for an
adequate signal-to-noise ratio. The ensemble averaging of these measurements, in
terms of the average charge detector conductance, allows us to directly obtain the
probability of the qubit states.
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