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Abstract

A majority of E. coli proteins when overexpressed inhibit its growth, but the reasons behind overexpression toxicity of
proteins remain unknown. Understanding the mechanism of overexpression toxicity is important from evolutionary,
biotechnological and possibly clinical perspectives. Here we study sequence and functional features of cytosolic proteins of
E. coli associated with overexpression toxicity to understand its mechanism. We find that number of positively charged
residues is significantly higher in proteins showing overexpression toxicity. Very long proteins also show high
overexpression toxicity. Among the functional classes, transcription factors and regulatory proteins are enriched in toxic
proteins, while catalytic proteins are depleted. Overexpression toxicity could be predicted with reasonable accuracy using
these few properties. The importance of charged residues in overexpression toxicity indicates that nonspecific electrostatic
interactions resulting from protein overexpression cause toxicity of these proteins and suggests ways to improve the
expression level of native and foreign proteins in E. coli for basic research and biotechnology. These results might also be
applicable to other bacterial species.
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Introduction

Expression levels of proteins can be highly optimized in

bacterial cells to maximize fitness [1], but it may be desirable in

lab to increase the expression level of proteins beyond their normal

cellular levels, which often leads to growth inhibition [2]. Protein

overexpression in model organism Escherichia coli is utilized in

biophysical, biochemical, structural studies of proteins, production

of industrial important enzymes [3] and development of strains for

producing metabolites [4], biofuel [5] and bioremediation [6].

Furthermore, gene duplication and hence protein overexpression

is also important from evolutionary and clinical perspective, where

it can lead to novel phenotypes including antibiotic resistance

[7,8]. Hence it is important to understand the mechanism of

overexpression toxicity of proteins in E. coli.

In yeast, overexpression library of endogenous proteins has been

described [9]. Overexpression leads to reduction in the growth

rate in a subset (,15%) of proteins, which were highly enriched in

structural disorder [10]. Disordered regions and proteins in

eukaryotes are widely associated with protein-protein and

protein-DNA interactions [11–13], so their increased levels may

lead to large number of promiscuous interactions [10] and thus

toxicity. Disorder was also found to be associated with overex-

pression toxicity in other eukaryotes: Drosophila melanogaster and C.

elegans, and with dosage sensitive oncogenes in mice and human

[10]. In addition to disordered proteins, highly expressed proteins

and members of protein complexes are highly sensitive to fold

increase from their normal levels [14]. E. coli, like most bacteria

have few disordered regions and proteins, thus disordered regions

mediated promiscuous interactions could not be the major

mechanism of overexpression toxicity in bacteria.

An overexpression library has been described in E. coli called

ASKA library (A Complete Set of E. coli K-12 ORF Archive) in

which most of its ORFs have been individually cloned with

histidines and seven spacer amino acids at the N-terminal end, and

five spacer amino acids and GFP (Green Fluorescent Protein) at

the C-terminal end in IPTG inducible, expression vector [2].

Effect on growth and GFP fluorescence by IPTG induction was

examined for each of the clone and classified into three categories

each (‘‘almost no growth’’, ‘‘slow growth’’, ‘‘normal growth’’ and

‘‘high fluorescence’’, ‘‘fluorescence’’, ‘‘no fluorescence’’ respec-

tively). Under these conditions, majority of proteins inhibit the

growth of E. coli when overexpressed, while overexpression of a

subset of proteins leads to severe toxicity. Particularly, membrane

proteins are highly toxic on overexpression [2]. Here we study

sequence and functional properties of cytoplasmic proteins of E.

coli which are highly toxic on overexpression to understand its

mechanism and find that number of positively charged residues to

be the most important feature of toxic proteins. Functional classes

also show differential enrichment: transcription factors and

regulatory proteins were overrepresented, while catalytic proteins

were underrepresented in toxic proteins.

Results

Protein overexpression upon IPTG induction (37C, LB) of the

ASKA library leads to growth inhibition in about 79% of clones

(52% ‘‘almost no growth’’ +27% ‘‘slow growth’’), Figure 1. In

‘‘almost no growth’’ class a small fraction of clones do show GFP
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fluorescence (Figure 1), indicating some growth. Since we were

interested in proteins whose overexpression is most toxic to E. coli,

thus even small overexpression is likely to cause growth inhibition,

we defined ‘‘toxic’’ proteins as those classified as ‘‘almost no

growth’’ and ‘‘no fluorescence’’. Overall 40% (1589/3956) of the

clones fall into this category. Rest 60% proteins were labeled as

‘‘non-toxic’’.

High toxicity of membrane and periplasmic proteins
Membrane proteins are known to be highly toxic when

overexpressed [2]. About 85% of proteins with at least one

predicted trans-membrane segment are toxic. This fraction

increases further to 89% in proteins with two or more trans-

membrane segments (Figure 2). With respect to localization, outer

membrane proteins and periplasmic proteins are also very toxic

(83% and 72% respectively), even though they rarely have

predicted trans-membrane regions indicating that extreme toxicity

is a general property of secretory proteins, not just proteins with

trans-membrane segments. These results are consistent with the

hypothesis that saturation of Sec translocation machinery (the

major membrane translocation machinery in E. coli) by overex-

pression of secretory proteins is responsible for their extreme

toxicity [15].

Considering the high and potentially different mechanism of

toxicity of secretory from cytoplasmic proteins, we excluded

membrane (outer and inner membrane) and periplasmic proteins

from all further analyses, which leave 2444 proteins, 432 of which

are toxic.

Sequence features associated with toxicity
To better understand the mechanism of toxicity of cytoplasmic

proteins, we considered number of sequence features for their

relationship with toxicity. On average, toxic proteins were found

to have significantly higher number of positively (arginine and

lysine) charged amino acid residues, are longer and have extreme

isoelectric point (pI) (Figure 3a and Figure 3b). Number of

positively charged residues is the most important feature associated

with toxicity of proteins (Figure 3). The effect of length is only

evident for very long proteins (Figure 3b). Significantly higher

number of positively charged residues in toxic proteins indicates

that electrostatic mis-interactions resulting from protein overex-

pression is an important cause of toxicity in E. coli.

Functional classes associated with toxicity
Next we analyzed functional classes significantly associated with

toxic proteins. We considered higher level GO classes in which

about 200 or more proteins were present (18 functional classes).

Functional classes significantly overrepresented in toxic proteins

are ‘‘nucleic acid binding transcription factor activity’’ and

‘‘regulation of cellular processes’’, while the class significantly

underrepresented is ‘‘catalytic activity’’ (Figure 4). Since many

regulatory proteins are also transcription factors, we analyzed

whether regulatory proteins excluding transcription factors are

also enriched in toxic proteins. Excluding transcription factors,

‘‘regulation of cellular processes’’, is still enriched in toxic proteins

(Figure 4), suggesting that toxicity is associated with dysregulation

of cellular processes in general.

Predictive accuracy and independence of sequence and
functional features

In order to assess the predictive power and independence of

sequence and functional features identified, we build a Random

Forest model [16]. Using positively charged residue count, pI,

length, transcription factor, regulatory and catalytic function

information, the model can predict toxicity with area under

receiver operating characteristic curve (ROC-AUC) of 0.72

(Figure S1), showing that these few features have enough

information to predict protein toxicity with reasonable accuracy.

A random predictor would have ROC-AUC of 0.5, while a perfect

predictor would have ROC-AUC of 1. Functional classes

(transcription factor, regulatory and catalytic function information)

alone predict toxicity with ROC-AUC of 0.58, while sequence

features (positively charged residue count, pI, and length) alone

predict toxicity with ROC-AUC of 0.67. Increase in accuracy by

adding functional and sequence features (Figure 5) indicate at least

partial independence of these features in predicting toxicity.

Figure 1. Effects on growth and GFP fluorescence of proteins on overexpression. Protein overexpression was induced by adding IPTG to
ASKA clones grown in LB medium at 37C, and effects on growth and GFP fluorescence was classified into three categories each (‘‘almost no growth’’,
‘‘slow growth’’, ‘‘normal growth’’ and ‘‘high fluorescence’’, ‘‘fluorescence’’, ‘‘no fluorescence’’ respectively) [2]. We defined ‘‘toxic’’ proteins as those
classified as ‘‘almost no growth’’ and ‘‘no fluorescence’’ (marked with blue outline). Overall 40% of clones fall into this category (1589/3956).
doi:10.1371/journal.pone.0064893.g001
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Discussion

Here we analyze a number of sequence and functional

properties associated with proteins that show overexpression

toxicity in E. coli to understand its mechanism. While membrane

proteins are known to be highly toxic when overexpressed [2], we

find that periplasmic proteins, which generally do not have trans-

membrane segments, also show very high toxicity. The Sec

pathway is the major route of protein translocation across and

insertion into inner membrane of E. coli. The fact that most

secretory proteins show very high toxicity is consistent with the

hypothesis that saturation of Sec translocation machinery by

overexpression of secretory proteins is responsible for their

extreme toxicity [15]. Considering the high and potentially

different mode of toxicity of secretory proteins, we focused on

the mechanism of toxicity of cytoplasmic proteins.

While a number of studies have analyzed sequence features

associated with overexpression of soluble proteins in E. coli and

bacterial cell-free systems [17–27], none has examined the

sequence and functional features associated with overexpression

Figure 2. Percentage of toxic proteins as a function of number of trans-membrane segments. In proteins without any trans-membrane
segment, about 25% are toxic. This percentage increases to ,73% in proteins with one trans-membrane segment and ,85% in proteins with two or
more trans-membrane segments. Number of trans-membrane segments were predicted using TMHMM [35].
doi:10.1371/journal.pone.0064893.g002

Figure 3. Sequence features associated with toxicity. (A) Toxic proteins have on average higher number of positively charged residues
(arginine and lysine), isoelectric point (pI) and length than non-toxic proteins. Wilcox-test p values are 2e-17, 6e-4 and 5e-10 respectively. (B) Proteins
are binned into equal sized 20 bins (thus each bin has 5% of proteins) and percentage of proteins which are toxic is plotted for each bin as a function
of three sequence features. Linear regression lines are plotted for average positively charged residues and average length and quadratic regression is
plotted for pI.
doi:10.1371/journal.pone.0064893.g003
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of endogenous proteins on the growth of E. coli. We find that

number of positively charged residues is the most predictive

feature of overexpression toxicity (Figure 3) of cytoplasmic

proteins. Toxic proteins have significantly higher isoelectric point

overall (Figure 3a), though proteins with very low isoelectric point

are also more toxic (Figure 3b). These results indicate that

electrostatic mis-interactions induced by increased concentration

mediate toxicity of cytoplasmic proteins in E. coli. Toxic proteins

were also significantly longer; particularly very large proteins (top

5% in length, Figure 3b) were highly toxic. The larger surface area

of longer proteins may allow more mis-interactions.

Misfolding and self-aggregation (inclusion bodies) is commonly

observed during protein overexpression in E. coli and may be toxic

[28]. However higher charge on proteins is often associated with

increased solubility and lower self-aggregation [17,19–21,23,25–

27,29], suggesting that misfolding and self-aggregation is not the

major mechanism of overexpression toxicity. Indeed in vitro protein

solubility information [25] did not increase prediction accuracy of

the random forest model trained on length, pI and number of

positively charged residues. Furthermore, toxic proteins do not

have higher hydrophobicity than non-toxic proteins (mean

hydrophobicity 0.472 vs. 0.475 respectively, two tailed t-test

p = 0.03), which is often associated with self-aggregation. Chaper-

one (GroEL) substrates [30,31] are also not enriched in toxic

proteins (Fisher p = 0.5).

It is tempting to speculate that high toxicity of positively charged

proteins is due to their interactions with negatively charged DNA,

which may cause transcription dysregulation (also see below)

preventing the expression of essential proteins. The larger surface

area of longer proteins may allow more mis-interactions. The

importance of charged residues in protein sequence for toxicity

suggests that reducing the charged residues (particularly positively

Figure 4. Functional classes associated with toxicity. Percentage of toxic proteins is much higher in transcription factors (Fisher p = 1e-13) and
in ‘‘regulation of cellular processes’’ (Fisher p = 1e-13). ‘‘regulation of cellular processes’’ was enriched in toxic proteins even after excluding
transcription factors (Fisher p = 3e-5). Catalytic proteins were significantly depleted in toxic proteins (Fisher p = 3e-4). Dotted line indicates overall
average in cytoplasmic proteins.
doi:10.1371/journal.pone.0064893.g004

Figure 5. Independence of sequence and functional properties in predicting toxicity. Prediction accuracy (ROC-AUC) of overexpression
toxicity from sequence (positively charged residue count, pI, and length) and functional features (transcription factor, regulation and catalytic
function information). Combining sequence and functional features increases the predictive power indicating at least their partial independence.
TF = transcription factors, pI = Isoelectric point.
doi:10.1371/journal.pone.0064893.g005
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charged residues) may reduce the overexpression toxicity. This

could be done by removing charged stretches from the protein or

making site directed mutagenesis. Reducing the length of the

protein in cases where protein is very long (e.g. cloning different

domains separately) may also be useful in decreasing overexpres-

sion toxicity. While we have used simple measures of charge of the

protein, utilizing more sophisticated features that take into account

the distribution of charged residues on the sequence and structure

of the protein may allow better prediction of toxicity and may also

be useful in designing of antimicrobial peptides, whose activity is

attributed to their charge [32].

In the functional classes, transcription factors are highly toxic on

overexpression (Figure 4). Transcription factors have only

marginally higher positively charged residues than non-transcrip-

tion factors (median 30 vs. 27 respectively, Wilcox p 0.03) and are

not different in length (median 264 vs. 265 respectively, Wilcox p

0.8), thus this effect is not dependent on these features. We

hypothesize that overexpression of transcription factors may allow

them to bind to non-native DNA sites, which may saturate the

transcription machinery and prevent transcription of proteins

important for cell survival. Regulatory proteins excluding

transcription factors were also enriched in toxic proteins, though

less than transcription factors (Figure 4). Overexpression of

regulatory proteins may also eventually cause transcription

dysregulation leading to growth inhibition. Catalytic proteins is

an interesting class because it shows significantly less toxicity

despite the fact that these have significantly higher positively

charged residues than non-catalytic proteins (median 33 vs. 21

respectively, Wilcox p 3e-74) and are longer (median 327 vs. 180

respectively, Wilcox p 5e-113). As expected, within catalytic

proteins, toxic proteins have significantly higher positively charged

residues than non-toxic proteins (median 48 vs. 31 respectively,

Wilcox p 3e-20) and are longer (median 430 vs. 315 respectively,

Wilcox p 1e-17). At present it is unclear as to why catalytic proteins

are less sensitive to overexpression toxicity than non-catalytic

proteins.

Dosage balance hypothesis posits that imbalance in the relative

amount of proteins in protein complex (over/under expression)

would disrupt its functionality [33]. Thus complexes should be

enriched in toxic proteins. While we find that ‘‘macromolecular

complexes’’ are enriched in toxic proteins (28% toxic proteins in

‘‘macromolecular complexes’’ vs. 17% in rest, Fisher p = 1e-4),

these proteins also have significantly more positively charged

residues (Wilcox p = 8e-5). Further, adding protein complex

information did not increase the predictive power of random

forest model. These observations suggest that enhanced toxicity of

proteins in complexes is also due to electrostatic mis-interactions

rather than dosage imbalance.

How does mechanism of overexpression toxicity compare

between yeast and E. coli? In yeast, proteins showing overexpres-

sion toxicity are highly enriched in structural disorder, which is

widely associated with protein-protein and protein-DNA interac-

tions in eukaryotes [11–13], so their increased levels may lead to

large number of promiscuous interactions [10] and toxicity. E. coli,

like most bacteria have few disordered regions and proteins, so a

priori it might be expected that mechanism of overexpression

toxicity be very different in E. coli and yeast. However, we find that

in E. coli, sequence features associated with promiscuous electro-

static interactions are significantly associated with overexpression

toxicity. These results show that basic mechanism of overexpres-

sion toxicity by mis-interactions is common between yeast and E.

coli (and hence elephants [34]), suggesting that this may be a

universal phenomenon.

Materials and Methods

The development of ASKA library is described by Kitagawa et

al. [2]. Data on overexpression toxicity of proteins was download-

ed from http://ecoli.naist.jp/GB8-dev/index.

jsp?page = resource_download.jsp. Trans-membrane segments

were predicted using TMHMM [35]. Gene ontology class and

localization information (‘‘membrane’’, ‘‘outer membrane’’ and

‘‘periplasmic space’’) was obtained from ECOCYC database [36].

For functional analyses we considered all GO function and process

classes with about 200 or more proteins. There were 18 such

classes. Protein hydrophobicity was calculated with Kyte and

Doolittle hydrophobicity scale normalized from 0 to 1.

We used Random forest to test the predictive power and

independence of sequence and functional features. Random forest

is a statistical learning algorithm that uses an ensemble of decision

trees [16,37]. In random forests, prediction error is estimated

internally without the need for explicit cross-validation as each

decision tree is constructed using a different bootstrap sample of

the original data and approximately one-third of the cases are left

out from the training sample and not used in the construction of

the tree. Thus, these left-out cases can be used to estimate

prediction error. As number of toxic proteins was much smaller

than non-toxic proteins, we randomly selected equal number of

non-toxic proteins to build the classifier. This was done 10 times

and average area under receiver operating characteristic curve

(ROC-AUC) is reported as an accuracy measure.

Supporting Information

Figure S1 ROC curve illustrating the accuracy of
toxicity prediction based on sequence and functional
features. Considering all sequence (positively charged residue

count, pI, and length) and functional features (transcription factor,

regulation and catalytic function information), the area under the

ROC curve is 0.72.
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