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Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the 
reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, 
induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed 
by tumour cells and circulating in the blood are involved in all stages of tumour progression. 
Among the important tumour-associated RNAs are intracellular coding RNAs that determine 
the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis 
and pathways responsible for transformation, and intracellular and extracellular non-coding 
RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing 
mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes 
evident that extracellular RNAs represent important regulators of cell-to-cell communication 
and intracellular cascades that maintain cell proliferation and differentiation. In connection 
with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading 
enzymes has increased. Natural ribonucleases (RNases) participate in various cellular 
processes including miRNA biogenesis, RNA decay and degradation that has determined 
their principal role in the sustention of RNA homeostasis in cells. Findings were obtained 
on the contribution of some endogenous ribonucleases in the maintenance of normal 
cell RNA homeostasis, which thus prevents cell transformation. These findings directed 
attention to exogenous ribonucleases as tools to compensate for the malfunction 
of endogenous ones. Recently a number of proteins with ribonuclease activity were 
discovered whose intracellular function remains unknown. Thus, the comprehensive 
investigation of physiological roles of RNases is still required. In this review we focused 
on the control mechanisms of cell transformation by endogenous ribonucleases, and the 
possibility of replacing malfunctioning enzymes with exogenous ones.
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TUMOUR-ASSOCIATED RNAS AND THEIR ROLE IN 
CARCINOGENESIS

Tumour development is accompanied by rapid cell proliferation, loss of differentiation, the 
reprogramming of energy metabolism, loss of adhesion between tumour cells and matrix, evasion 
of immune surveillance, angiogenesis induction, infiltration growth, and metastatic spreading 
(Hanahan and Weinberg, 2011). Tumour-associated RNAs play an important role at all stages 
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of tumour progression: intracellular coding RNAs determine 
the route of metabolic pathways (Zheng, 2012), cell cycle 
control, angiogenesis, adhesion, apoptosis (Suizu et al., 2000; 
Wadehra et  al., 2005; Rocnik et al., 2006; Segura et al., 2007; 
Liu et al., 2013; Yan et al., 2016) and pathways responsible for 
transformation, such as PI3K/AKT (phosphatidylinositol-3-
kinase/protein kinase B), TGF-β (tumor growth factor beta), 
JAK/STAT (Janus kinase/Signal transducer and activator of 
transcription) and MAPK (mitogen-activated protein kinase) 
(Ikushima and Miyazono, 2010; Ciuffreda et al., 2014; Thomas 
et al., 2015; Doi et al., 2017; Ouyang et al., 2017). Intracellular 
and extracellular non-coding RNAs participate in the regulation 
of the expression of target proto-oncogenic and oncosuppressive 
mRNAs as well (Dalmay and Edwards, 2006; Esquela-Kerscher 
and Slack, 2006).

Different groups unequivocally demonstrated the presence of 
various RNAs, including tumour-derived and tumour-associated 
RNAs, in the blood samples of patients with oncological diseases 
(Wieczorek et al., 1985; Kopreski et al., 1999; Vlassov et al., 
2010). The range of RNAs discovered in blood plasma samples 
is rather wide and includes fragments of ribosomal RNA 
(rRNA), messenger RNA (mRNA), transport RNA (tRNA), 
mitochondrial RNA, small non-coding RNA particularly miRNA 
being detected in plasma or serum in RNA/protein complexes 
and within extracellular membrane vesicles (EV) (Valadi et al., 
2007; Savelyeva et al., 2016; Savelyeva et al., 2017).

Data are accumulated that EV of cancer origin comprise 
pathogenic components, including mRNA and miRNA, 
that together with other components such as DNA proteins, 
transcriptional factors and lipids can take part in paracrine 
signalling in the tumour microenvironment (Fujita et al., 2016). 
These evidences also predict the role of EV-mediated transfer of 
cancer-associated biomolecules to distant organs contributing 
to the initiation of pre‐metastatic niche formation. In support of 
this, an increasing number of publications has demonstrated the 
contribution of EV RNA in events of cancer development, namely, 
cell proliferation (Hong et al., 2009; Kogure et al., 2011; Zhang et al., 
2015a), drug resistance (Challagundla et al., 2015), angiogenesis 
(Kosaka et al., 2013), immune modulation (Fabbri et  al., 2012), 
and pre‐metastatic niche formation (Fong et al., 2015).

Extracellular Circulating mRNAS
Among the extracellular miRNA (ex-miRNA), mRNA fragments 
encoding tumour-associated antigens were detected, i.e. proteins 
that are expressed at low level in the cell, but overexpressed upon 
tumour progression. In the blood samples of patients with breast 
and thyroid cancer, malignant melanoma, and hepatocellular 
carcinoma, elevated levels of mRNA fragments encoding the 
telomerase components HTR (telomerase RNA component) and 
HTERT (telomerase reverse transcriptase) were detected (Chen 
et al., 2000; Novakovic et al., 2004). Overexpression of telomerase 
in cells can lead to epithelial-mesenchymal degeneration and 
tumour progression.

High levels of mRNA encoding mammaglobin, CK-19 
(keratin 19) (Silva et al., 2001) and HER2/neu (Erb-B2 receptor 
tyrosine kinase 2) (Nicolini et al., 2017), which are specific 

markers of breast cancer (Lianidou et al., 2015), are also found 
in the blood plasma of patients with given disease. CK-19 is 
involved in maintaining the stability of epithelial cells and high 
expression levels are detected in tumour tissue (Lianidou et al., 
2015). The HER2/neu oncogene is amplified at a high level in 
approximately 20% of all breast cancer cases and is related to 
rapid tumour proliferation and a poor prognosis.

In the case of lung cancer, the elevated levels of mRNA 
fragments encoding HER2/neu, hnRNP-B1 (heterogeneous 
nuclear ribonucleoproteins B1) and 5Т4 (oncofetal trophoblast 
glycoprotein) were detected in blood (Kopreski et al., 2001; 
Fleischhacker et al., 2001; Sueoka et al., 2005). hnRNP-B1 
was found to play a significant role in the splicing of tumour 
suppressors and is considered an oncogene. It has also found to 
be crucial in the development of glioblastoma, hepatocellular 
carcinoma and lung cancer (Zech et al., 2006; Golan-Gerstl 
et al., 2011; Shilo et al., 2014). Oncogene 5T4 is involved in the 
modulation of cell adhesion and is over-expressed in many types 
of cancer cells, as along with such oncogenes as MYC (proto-
oncogene c-Myc) and NRAS (NRAS proto-oncogene, GTPase).

For patients with malignant melanoma, the presence in 
blood of mRNA encoding for tyrosinase, MAGE-3 (melanoma-
associated antigen 3), MCAM (melanoma cell adhesion 
molecule), p97 (transitional endoplasmic reticulum ATPase) 
and HMBS (hydroxymethylbilane synthase) is typical (Hoon 
et al., 2000; Hasselmann et al., 2001). Tyrosinase is involved 
in the synthesis of melanin, MAGE-3 is involved in malignant 
transformation and is the main tumour-specific melanoma 
antigen, and MCAM is involved in cell adhesion.

Circulating Non-Coding RNAs
The pool of non-coding RNAs discovered in the bloodstream 
consists of long non-coding RNAs (lncRNA), short non-
coding RNA including microRNAs (miRNA), and the recently 
discovered piwi-interacting RNAs. Long non-coding RNAs and 
piwi-interacting RNAs are described in detail in a recent review 
(Rapisuwon et al., 2016). Here we will focus on ex-miRNAs, 
which are important in the regulation of tumour development.

In 2008, the presence of extracellular miRNAs (ex-miRNA) in 
human blood was demonstrated by several research groups for the 
first time (Chim et al., 2008; Chen et al., 2008; Lawrie et al., 2008; 
Mitchell et al., 2008). In blood plasma, the main component of 
the ex-miRNAs are preserved enclosed in the ribonucleoprotein 
complexes comprising Ago2 protein, microvesicles and apoptotic 
bodies, and high and low-density lipoproteins (Valadi et al., 
2007; Hunter et al., 2008; Zernecke et  al., 2009; Vickers et al., 
2011; Turchinovich et al., 2011; Arroyo et al., 2011; Bayraktar 
et al., 2017; Pucci et al., 2018). In this regard, miRNAs are highly 
stable and resistant to blood ribonucleases and can be transferred 
throughout the body, which makes their regulatory function 
virtually unlimited.

It is worth mentioning that miRNAs regulate fundamental 
cellular processes, such as proliferation, differentiation, 
metabolism, DNA repair, apoptosis, and transformation and can 
function as mediators in cell-to-cell communication, thereby 
acting like hormones (Ambros, 2004; Bartel, 2004; Croce and 
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Calin, 2005; Calin and Croce, 2006; Cortez et al., 2011; Anfossi 
et al., 2018).

Circulating ex-miRNAs include both oncomirs and 
oncosuppressors. Attempts have been made to use elevated 
levels of particular miRNAs in the blood of patients with various 
tumours as biomarkers to diagnose the disease (Chen et al., 2008; 
Cortez et al., 2011; Cui et al., 2013; Lin et al., 2017; Pendlebury 
et al., 2017; Wang et al., 2017; Elghoroury et al., 2018). High levels 
of miR-21-5p were found in the blood of patients with colorectal 
cancer, gastric cancer, pancreatic ductal adenocarcinoma, and 
metastatic breast cancer (Wang et al., 2013; Muller et al., 2014; 
Khan et al., 2016; Emami et al., 2019). miR-155 is indicative of 
chronic lymphocytic leukaemia, breast cancer, and rectal cancer 
(Ferrajoli et al., 2013; Gao et al., 2017; Orosz et al., 2018). miR-
125b-5p is found in blood of patients with metastatic breast 
cancer, non-small cell lung carcinoma and diffuse large B-cell 
lymphoma (Yuan et al., 2016; Cui et al., 2013).The miRNAs miR-
125a-5p, miR-145, and mir-146a can be indicative of non-small 
cell lung cancer (Wang et al., 2015). Other miRNAs can also be 
indicative of other forms of cancer: miR-125a-3p – colon cancer 
(Wang et al., 2017), miR-200c and miR-141 – metastatic breast 
cancer (Zhang et al., 2017a); and the miR-200 family – prostate 
cancer and high-grade serous epithelial ovarian cancer (Lin et al., 
2017; Pendlebury et al., 2017).

miR-21 represents one of the first microRNAs being defined 
as an oncomir, that regulate multiple tumour suppressors like the 
PTEN (phosphatase and tensin homolog), PDCD (programmed 
cell death), p53 (tumor suppressor p53) and TP63 (tumor 
protein p63) pathways (Meng et al., 2007; Asangani et al., 2008; 
Papagiannakopoulos et al., 2008). miR-155 act as an oncogene 
by inhibition of suppressor of cytokine signaling 1 (SOCS1) 
expression (Jiang et al., 2012). Taking into account the well-
known functional link between inflammation and cancer, and the 
fact that inflammation to some extent is mediated by miR-155, 
the oncogenic role of miR-155 becomes clear (Jiang et al., 2010). 
However, although there is a lot of evidence for the oncogenic 
role of miRNA-155, it can also act as a tumour suppressor (Higgs 
and Slack, 2013).

Besides oncomirs, increased levels of which are identified in 
the blood of patients with various oncological diseases, tumour 
suppressor miRNAs can also be found in the blood stream. In this 
regard two or more miRNAs are used as diagnostic (by the level 
of oncomirs) and prognostic (by the level of tumour suppressor 
miRNAs) markers (Yang et al., 2015; Elghoroury et al., 2018).

The levels of tumour suppressor miRNAs are usually 
decreased in the blood of cancer patients, such as miRNAs 
belonging to let-7 family. Specifically, let-7 miRNAs directly 
interact with mRNAs encoding proteins involved in the cell cycle 
and signal transduction pathways that lead to carcinogenesis 
(Büssing et al., 2008). The decreased expression of let-7b is 
usually observed in lymph node metastases of breast cancer cells 
(Thammaiah and Jayaram, 2016). In addition, down-regulation 
of let-7b/g is evidenced during gastric cancer development 
being associated with poor survival and lymph node metastasis 
(Kang et al., 2014). A decreased level of miR-152 has been 
also detected in various human cancer cell lines and tumour 
tissues, such as gastrointestinal (Chen et al., 2010), endometrial 

(Tsuruta et al., 2011) and ovarian cancer (Zhou et al., 2012), as 
well as hepatocellular carcinoma (Huang et al., 2010), indicating 
that miR-152 might act as a tumour suppressor in these tumours.

Role of Tumour-Associated Extracellular 
RNA (ExRNA) in Transformation
The secretion of RNAs in ribonucleoprotein complexes (RNP) 
by cells, and the transfer of those RNP between mammalian 
cells, was for the first time established in the 1970s (Kolodny 
et al., 1972). RNAs in RNPs can be a specific product released 
from tumour cells that may mediate host-tumour interaction 
and regulation of gene expression (Rosenberg-Nicolson and 
Nicolson, 1994). The recent discovery of regulatory RNAs, 
particularly miRNAs, has led to a revolutionary hypothesis that 
ex-miRNAs can mediate cell-to-cell signalling by paracrine or 
even endocrine manner, especially playing a crucial role in the 
context of cancer and metabolism. This hypothesis arose because 
several research groups found a large amount of miRNA in the 
bloodstream and was largely supported by numerous subsequent 
publications demonstrating that miRNAs in RNPs or EV can enter 
the recipient cells, change gene expression, and cause functional 
effects (Valadi et al., 2007; Skog et al., 2008; Mittelbrunn et al., 
2011; Montecalvo et al., 2012).

Cell-to-cell communication by ex-miRNA has also been 
proven for cells of the immune system. Exosomal-transfered 
pro-inflammatory miR-155 and immunosuppressive miR-146a 
from dendritic cells was demonstrated to reduce the level of 
their mRNA targets, and reprogrammed the response of cells-
recipients to endotoxin (Alexander et al., 2015). The mechanism 
of regulation of the activity and differentiation of mast cells was 
shown to be mediated by the transfer of mRNA and miRNA 
in exosomes between cells (Valadi et al., 2007). Recent studies 
have demonstrated that adipose-derived EV-circulating miRNAs 
participate in cell–cell crosstalk between adipose and liver tissues 
by altering mRNA expression and translation in target tissue (see 
review Thomou et al., 2017).

Communication between tumour and normal cells provides 
a route for tumours to manipulate their environment, making 
it more favourable for growth and invasion. Glioblastoma 
cells have been shown to secrete exosomes containing mRNA, 
miRNA, including oncogenic miR-21, and angiogenic proteins 
being uptaken by normal cells, including microvascular 
endothelial cells of the brain (Skog et al., 2008). One example is 
the destruction of tight contacts in the epithelial cells of blood 
vessels under the action of exosome-derived miR-105 secreted 
by neighbouring cancer cells, and the subsequent increase in 
metastasis (Zhou et al., 2014). EV-derived miRNA-21 secreted by 
hepatocellular carcinoma cells participates in tumour progression 
triggering the conversion of hepatocyte stellate cells to cancer-
associated fibroblasts (Zhou et al., 2018). MiR-210 obtained from 
hepatocellular carcinoma cells as well, was found to promote 
endothelial cell migration along with angiogenesis, which was 
confirmed by the correlation between the elevated level of miR-
210 in the blood of patients with hepatocellular carcinoma and 
high microvessel density (Lin et al., 2018). Thus, tumour-derived 
miRNAs are the tools for the transformation of the normal cells 
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to malignant, and adjustment of their microenvironment for 
favorable tumor development.

THE ROLE OF ENDOGENOUS 
MAMMALIAN RNASES IN THE CONTROL 
OF INTRACELLULAR EVENTS AND 
SIGNALLING PATHWAYS RESPONSIBLE 
FOR TRANSFORMATION

Benner hypothesized that a certain balance between RNAs, 
RNases, and ribonuclease inhibitors controls tissue development 
in higher organisms (Benner, 1988). Many factors participated in 
regulation of gene expression at the mRNA level. These factors 
are non-coding RNAs, RNA-binding proteins and RNases that 
maintain RNA-homeostasis in cells and discard aberrant RNAs 
through the degradation and turnover of transcripts, control of 
RNA decay, and biogenesis of miRNAs. Disruption of mentioned 
processes is mainly associated with distortion of expression 
or the improper functioning of these factors followed by cell 
transformation and tumour development. Among these factors, 
RNases play quite important role since they regulate the turnover 
of various transcripts at every stage of the cell cycle and participate 
in the processing of RNA involved in translation control.

In a number of studies up to 2009, it was shown that intracellular 
RNases are involved in both induction and suppression of tumour 
progression (see review Kim and Lee, 2009). Nowadays a lot of 
information has appeared expanding the supervisory function of 
exogenous ribonucleases in the RNA world (Tables 1 and 3) and 
their intracellular RNA-targets (Figure 1).

RNases of Conventional RNA Decay
Deadenylation is an essential way of regulation of mRNA 
stability and expression of genes responsible for the fundamental 
functions such as development and differentiation at cell level 
under normal or pathological conditions, including chronic 
inflammation and cancer (Zhang et al., 2010; Zhang et al., 2015b). 
The CCR4-NOT complex, a major deadenylase in mammals, 
plays dual roles in the control of tumour development. The 
mammalian CCR4-NOT complex was described to comprise 
eight subunits: CNOT1, CNOT2, CNOT3, CNOT6 or 6L, 
CNOT7 or 8, CNOT9, CNOT10, and CNOT11 with four of them, 
namely, CNOT6/6L/7/8 and CNOT3 exhibited deadenylase 
properties (Bartlam and Yamamoto, 2010; Figure 1B).

Knockdown of CNOT3, a subunit incorporated in the CCR4-
NOT complex and responsible for deadenylase activity, was 
shown to induce tumour development in a sensitized drosophila 
eye cancer model (Vicente et al., 2018). Moreover, mutations 
of the CNOT3 gene were discovered in samples of T-cell acute 
lymphoblastic leukemia (T-ALL) patients (De Keersmaecker 
et al., 2013), suggesting the tumour suppressor role of CNOT3. 
However, contrary to the tumour suppressive function 
components of the CCR4-NOT complex, it can have an impact 
on cancer progression. For instance, the up-regulation of CNOT3 
promotes the progression of non-small cell lung cancer (Shirai 

et al., 2019) and activity of CNOT7 may stimulate migration of 
mouse breast cancer cells (Faraji et al., 2016; Table 3).

It is known that deadenylases facilitate miRNA-induced mRNA 
decay resulted from their interaction with the miRNA-induced 
silencing complex (miRISC). A vast amount of publications give 
an evidence of participation of deadenylation complexes, such as 
CCR4-NOT and Pan2–Pan3, in miRNA-mediated deadenylation 
being necessary for regulation of gene expression and stability 
of mRNA (see review Zhang et al., 2010). Poly(A)-specific 
ribonuclease (PARN) is an important deadenylase: among its 
targets are migration and adhesion factors, as well as mRNAs 
of proteins involved in p53, FAK (fokal adhesion kinase), and 
MAPK signaling (Lee et al., 2012; Devany et al., 2013; Figure 1A). 
PARN may also participate in miRNA-mediated deadenylation 
due to association with Ago2 in the RNA-induced silencing 
complex (RISC), and promote degradation of the oncogenic 
miR-21 followed by restoration of tumor suppressor activity 
of corresponding protein targets such as PTEN and p53 (Boele 
et al., 2014; Zhang et al., 2015a). PARN inhibition was shown 
to induce p53 accumulation and decrease cancer cell viability 
(Shukla et al., 2019).

5′–3′ exonuclease XRN1 is an enzyme being involved in 
conventional RNA decay (Long and McNally, 2003), which is 
also implicated in cancer as a tumour suppressor (Table 3). The 
decreased expression and/or complete depletion of XRN1 mRNA 
were found in primary samples of osteogenic sarcoma (Zhang 
et al., 2002). XRN1 realized additional control over epithelial 
to mesenchymal transition (EMT) on the level of ex-miRNA 
decay. It was found that XRN1 degrades ex-miRNA-223 derived 
from extracellular vesicles of polymorphonuclear leukocyte 
neutrophils after penetration into tumour cells, thus promoting 
transient epithelial-mesenchymal transition (Zangari et al., 
2017; Figure 1C). Recently obtained data show that XRN1 
negatively regulates autophagy in mammalian cells that thus 
reduces cell survival, which reinforces the evidence that this is 
a suppressor (Delorme-Axford et al., 2018). Contrary to this, 
5′–3′ exonuclease XRN2 promotes EMT and metastasis through 
regulation of the processing of pre-miR-10a to mature miR-10a, 
and is a candidate inducer of spontaneous lung cancer (Zhang 
et al., 2017b; Figure 1C).

Stress Signal Induced RNases
A number of endogenous RNases (RNase L, IRE1α, and PMR1) 
are normally silent in the cell and are induced under specific 
stress signals to effect tumour-modulating functions. Human 
RNase L displaying endoribonuclease activity expressed in 
many types of normal and cancerous mammalian cells (Zhou 
et al., 2005). RNase L is single-stranded ribonuclease able 
to cleave viral RNA, rRNA, and some cellular RNA both in 
cells and cell-free systems, at phosphodiester bonds in UU 
and UA sequences (Wreschner et al., 1981; Li et al., 1998; 
Figure 1D). In human and mouse cells, RNase L controls the 
stability of mRNA encoded in mitochondria and destabilizes 
the mRNA of genes induced by the interferon response to a 
viral infection (Li et al., 1998; Le Roy et al., 2001). RNase L is 
normally involved in innate immunity and antiviral defence 
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(Malathi et al., 2007), however besides these functions it also 
plays a role as a tumour suppressor. Mutations in the RNase L 
gene were found to contribute to enhanced cell migration 
and invasion, and knockdown of RNase L in human prostate 
cancer cell line PC3 resulted in increase of tumour growth rate 
and metastases spreading in vivo (Banerjee et al., 2015; Dayal 
et al., 2017; Table 3). Cleavage of mRNAs encoding proteins 
involved in cell adhesion and migration appears a more likely 
mechanism for the inhibition of cell migration by RNase L 
(Banerjee et al., 2015). Interestingly, RNase L can discriminate 
and eliminate exogenous miRNA mimics (Nogimori et al., 
2019; Figure 1D).

IRE1α is a serine/threonine kinase, an endoribonuclease, 
which is one of the major participants in endoplastic reticulum 
(ER) proteostasis and plays a dual role in cancer development 

(Table 3). It carries out both tumour-inducing and tumour-
suppressing activity. Activation of IRE1α was observed in several 
types of tumors and was associated with overexpression of 
such oncogenes as BRAFV600E (mutant form V600E of B-Raf 
proto-oncogene, serine/threonine kinase gene), MYC, and 
HRAS (HRAS proto-oncogene, GTPase) (Croft et al., 2014). In 
turn, activation of IRE1α and its functioning as ribonuclease 
may lead to the process named RNA regulated IRE1‐dependent 
decay (RIDD) that represent degradation of mRNA and miRNA 
targets (Maurel et al., 2014). In mammalian cells, the substrates 
for IRE1α are its own mRNA, mRNA encoding XBP1 and CD59, 
and other mRNAs encoding proteins involved in the regulation 
of angiogenesis (see review Kim and Lee, 2009; Figure 1E).

Several studies demonstrated that inhibition of the expression 
or the RNase activity of IRE1 suppresses the development of 

FIGURE 1 | Endogenous RNases providing the maintenance of RNA homeostasis in the eukaryotic cell. (A–C) RNases of conventional RNA decay. (D–F) Stress 
signal induced RNases. (G) Angiogenin. (H) Proteins with ribonuclease activity participating in maintenance of DNA integrity. (I) RNases of miRNA biogenesis. The 
figure shows the targets of RNases and their activity at the level of RNA. Targets for GRBPs are presented in detail in rev. Alam and Kennedy (2019).
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several types of tumours, mostly because of the ablation of pro-
survival effects of XBP1 on tumour growth (Chevet et al., 2016; 
Obacz et al., 2017). Recently inhibition of IRE1 ribonuclease 
activity was found to influence the tumour cell secretome and 
enhance its sensitivity to chemotherapy (Logue et al., 2018). 
The tumour suppressive function of IRE1 was also detected. In 
several studies on genome screening, it was found that IRE1α is 
often found in the mutant form in various types of malignancies 
(Parsons et  al., 2008; Guichard et al., 2012). Overexpression 
of IRE1 leads to a decrease in the expression of CD59, being 
implicated in the progression of lung cancer (Oikawa et al., 
2007). Thus, IRE1 is an important RNase that exhibits a dual 
role in cancer progression by directing cancer progression and 
cell death.

PMR1 exhibits the properties of a proto-oncogene and is 
an effector of the EFGR (epidermal growth factor receptor) 
signalling pathway. Recently obtained data shows that increased 
migration activity and invasiveness of MCF-7 breast cancer 
cells is associated with high PMR1 activity, the targets of which 
are miRNAs of the miR-200 family, which are responsible for 
controlling adhesion and invasion (Bracken et al., 2014; Gu et al., 
2016; Perdigão-Henriques et al., 2016; Figure 1F).

Proteins Regulating mRNA Stability
RAS-GTPase-activating protein (SH3 domain)-binding proteins 
(G3BPs) represent a family of proteins capable of RNA binding 
and able to regulate mRNA stability and translation in response 
to environmental stresses (Table 1). The mammalian G3BP 
family consists of homologous proteins G3BP1, G3BP2a, and its 
splice variant G3BP2b with a similar molecular structure, which 

are located in the nucleus and cytoplasm. The different functions 
of G3BPs are summarized in a range of reviews (see revs Kim 
and Lee, 2009; Alam and Kennedy, 2019). From the point of view 
of its influence on the RNA world, it is important to note that 
GB3P1 participates in RNA metabolism including regulation of 
various cellular mRNAs and miRNAs. G3BP1 controls certain 
transcripts either due to its ability to stabilize mRNA like mRNA 
tau and CDK7 (cyclin dependent kinase 7) (Atlas et al., 2004) 
or to cause mRNA degradation as in the case of mRNA MYC, 
BART (Epstein-Barr virus derived RNA encoding a set of 
miRNAs), CTNNB1 (catenin beta 1), PMP22 (peripheral myelin 
protein 22), GAS5 (growth arrest specific 5), and IGF2 (insulin 
like growth factor 2) (Gallouzi et al., 1998; Tourrière et  al., 
2001; Zekri et al., 2005; Taniuchi et al., 2011a; Taniuchi et al., 
2011b; Winslow et al., 2013; Table 3). In earlier papers G3BPs 
were suggested to play a role in tumour development since their 
elevated levels were found in different types of proliferating cells 
and tumours (Guitard et al., 2001; Barnes et al., 2002; French 
et al., 2002). Moreover, G3BPs were found to be participants of 
key cell-growth associated molecular pathways important for 
tumorigenesis including RAS, the NF-κB, and MAPK pathways, 
and the ubiquitin proteasome system (Gallouzi et al., 1998; 
Prigent et al., 2000; Soncini et al., 2001; Table 3).

Proteins With Ribonuclease Activity 
Participating in Maintenance of  
DNA Integrity
In addition, it was found that enzymes involved in DNA 
replication and repair, such as APE1, and FEN1, also exhibit 
RNase activity. Under stress, or when a nuclear localization 

TABLE 1 | Endogenous RNases and other proteins with ribonuclease activity participating in maintenance of normal RNA homeostasis of eukaryotic cells.

RNases Function Intracellular role Reference

CNOT3 deadenylase Conventional RNA decay Bartlam and Yamamoto, 2010
CNOT7 deadenylase
PARN poly(A)-specific RNase Martinez et al., 2000
XRN1 5′–3′ exonuclease Long and McNally, 2003
XRN2 5′–3′ exonuclease Miki and Grosshans, 2013
RNase L 2′-5′-oligoadenylate-dependent endoribonuclease Stress signal induced RNases Li et al., 1998
IRE1α a serine/threonine kinase, an endoribonuclease Sidrauski and Walter, 1997
PMR1 endoribonuclease Kim and Lee, 2009
ANG endonuclease RNA metabolism

Neovascularization events
Sheng and Xu, 2016

G3BP1 RAS-GTPase-activating protein (SH3-domain)-binding protein Regulation of mRNA stability and translation Atlas et al., 2004
Taniuchi et al., 2011b; Winslow 
et al., 2013

APE1 apurinic/apyrimidinic endodeoxynuclease DNA repair
RNA turnover

Vascotto et al., 2009

FEN1 flap endonuclease DNA replication
RNA turnover

Shen et al., 2005

Drosha endoribonuclease RNases involved in miRNA biogenesis Murchison and Hannon, 2004
Dicer endoribonuclease
Ago2 endoribonuclease

CNOT3, CCR4-NOT transcription complex subunit 3; CNOT7, CCR4-NOT transcription complex subunit 7; PARN, poly(A)-specific ribonuclease; XRN1, 5’-3’ exoribonuclease 1; 
XRN2, 5’-3’ exoribonuclease 2; RNase L, ribonuclease L; IRE1a, serine/threonine-protein kinase/endoribonuclease IRE1; PMR1, ATPase secretory pathway Ca2+ transporting 1; 
ANG, angiogenin, ribonuclease, RNase A family, 5; G3BP1, GTPase activating protein (SH3 domain) binding protein 1; APE1, apurinic/apyrimidinic endodeoxyribonuclease 1;  
FEN1, flap structure-specific endonuclease 1; Drosha, double-stranded RNA-specific endoribonuclease, nuclear; Dicer, double-stranded RNA-specific endoribonuclease, 
cytoplasmic; Ago2, Argonaute RISC catalytic component 2.
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signal is lost, these enzymes redistribute between the nucleus and 
the cytoplasm, where they can affect the level of cellular RNA. 
Two enzymes, APE1 and FEN1, have recently attracted close 
attention because of their ability to cleave RNA and the fact that 
their expression is associated with oncogenesis.

Apurinic/apyrimidinic endodeoxynuclease 1 (APE1) is an 
enzyme that exhibits both deoxyribonuclease and ribonuclease 
activity (Table 1). APE1 is mainly associated with DNA repair 
and redox regulation of transcription factors. In base excision 
repair (BER), APE1 functions as an apurinic/apyrimidinic 
endodeoxyribonuclease and corrects DNA damage caused by 
oxidizing or alkylating agents. APE1 was also found to exhibit 
endoribonuclease activity targeting MYC mRNA (Barnes et al., 
2009; Figure 1H), and cleaving several other RNAs at UA, UG, 
and CA sites in the single stranded regions in vitro (Bergstrom 
et al., 2006). APE1 participates in rRNA quality control processes 
during cell division (Vascotto et al., 2009). Thus, APE1 performs 
several functions in the cell and can encourage genetic integrity 
and modulate turnover of different mRNAs as a ribonuclease. 
Recently, it has been suggested that this protein can perform 
non-canonical, but, nevertheless, important functions in RNA 
metabolism, regulating post-transcriptional expression of genes 
(Tell et al., 2010; Antoniali et al., 2014; Antoniali et al., 2017a).

Increased expression of APE1 was detected in a number of 
tumours: osteosarcoma (Wang et al., 2004), multiple myeloma 
(Yang et al., 2007), hepatocellular carcinoma (Di Maso et al., 
2007), gastric cancer (Qing et al., 2015) (Table 3). APE1 is a 
normally a nuclear protein, but when cells acquire a cancerous 
phenotype it is redistributed between the nucleus and the 
cytoplasm (Jackson et al., 2005). There is evidence that the 
level of endoribonuclease activity of APE1 in the cytoplasm 
correlates with the aggressiveness of tumour. Of great interest 
are accumulating evidences demonstrating that APE1 may be 
involved in the control of gene expression due to its unsuspected 
activities during RNA metabolism (Antoniali et al., 2014; Jobert 
and Nilsen, 2014; Vohhodina et al., 2016) including miRNA 
expression (Antoniali et al., 2017b), thus enhancing APE1’s 
critical functions in tumour progression.

Human flap endonuclease 1 (FEN1), localized in the nucleus, 
exhibits endoribonuclease activity and is able to cleave in vitro 
both synthetic and natural RNA in double-stranded regions 
(Stevens, 1998). FEN1 functions include flap endonuclease 
activity resulting in the removal of RNA primers during DNA 
replication, 5’-3’-exonuclease activity, and gap-endonuclease 
and RNase H-like activities (Shen et al., 2005; Figure 1H). 
Similar to APE1, the FEN1 protein, in addition to its function 
of removing RNA primers during DNA replication, can also be 
involved in regulation of RNA level in a cell. In the development 
of tumours, FEN1 plays the role of an oncogene (Table 3). 
Overexpression of this protein is found in numerous aggressive 
fast-growing malignancies (Sato et al., 2003; Lam et al., 2006). 
There is a suggestion that the rate of RNA primer removal during 
DNA replication by FEN1 directly affects cell proliferation. 
So, in mouse models, it has been shown that FEN1 deficiency 
significantly contributes to the frequency and multiplicity of the 
occurrence of tumours (Kucherlapati et al., 2007).

RNases Involved in miRNA Biogenesis
A wealth of data is accumulating that indicates a correlation 
between aberrant miRNA expression and tumorigenesis. 
Three RNases: Drosha, Dicer, and Ago are involved in miRNA 
biogenesis (Murchison and Hannon, 2004; Figure 1I), and, 
accordingly, disorders in their expression can influence cancer 
development. The increased levels of Drosha and Dicer, their 
intracellular redistribution, and malfunction, is observed in 
many types of cancer cells. Increased Drosha and Dicer levels 
also correlate with elevated levels of oncogenic miRNAs.

The biogenesis of miRNAs starts by RNA polymerase II (Pol 
II)-mediated transcription of the miRNA gene encoded in the 
genome. This process generates long primary (pri-miRNA) 
transcripts comprising a stem-loop hairpin structure (Kim et al., 
2009). Drosha is an essential part of the microprocessor complex 
(with its cofactor DGCR8) that continues miRNA biogenesis 
via cleavage of pri‐miRNAs with the formation of precursor 
miRNA (pre-miRNAs) (Kim et al., 2009; Figure 1I). Mutations 
in the Drosha/DGCR8 microprocessor complex subunit 
miRNA microprocessor complex are associated with high-
risk of development of blastemal type Wilms tumours (Wegert 
et al., 2015). Reduced expression level of Drosha was found in 
melanoma (Jafarnejad et al., 2013), ovarian cancer (Papachristou 
et al., 2012), neuroblastoma (Lin et al., 2010), endometrial 
cancer (Torres et al., 2011), nasopharyngeal carcinoma (Guo 
et al., 2012), and gallbladder adenocarcinoma (Shu et al., 2012; 
Table 3). Recurrent homozygous deletions of Drosha were 
found in pineoblastoma (Snuderl et al., 2018). Single nucleotide 
polymorphisms (SNPs) in the sequence of Drosha gene were also 
found to correlate with high risk of cancer development (Wen 
et al., 2018). However, elevated levels of Drosha were found for 
a number of neoplasias: basal cell carcinoma, squamous cell 
carcinoma, and smooth muscle neoplasms (Sand et al., 2010).

The second processing step in miRNA biogenesis is realized 
by the cleavage of pre-miRNA with the RNase III Dicer 
endonuclease and RISC-loading complex subunit TRBP, which 
generates an approximately 22-nt miRNA duplex (Kim et al., 
2009; Figure  1I). Dicer, an important RNase III endonuclease 
involved in miRNA processing, is down-regulated in many 
tumours, such as neuroblastoma (Lin et al., 2010), endometrial 
cancer (Torres et al., 2011), nasopharyngeal carcinoma (Guo et al., 
2012), gallbladder adenocarcinoma (Shu et al., 2012), transitional 
cell carcinoma of the urinary bladder (Wu et al., 2012), breast 
cancer (Khoshnaw et al., 2012), lung cancer (Karube et al., 2005), 
gastric cancer (Zheng et al., 2007), colorectal cancer (Sun et al., 
2017), and ovarian cancer (Pampalakis et al., 2010; Table 3). Low 
expression of Dicer is linked to poor prognosis and recurrence of 
cervical cancer (He et al., 2014). In addition, some correlations 
were found between the single nucleotide polymorphisms 
of Dicer and development and prognosis of several froms of 
epithelial cancers and endometrial cancer (Guo et al., 2012; Oz 
et al., 2018). Deletion of Dicer1 in a mouse model enhanced 
tumorigenesis (Kumar et al., 2009). The phosphorylation status 
of Dicer correlates with endometrioid tumour invasion (Aryal 
et al., 2019). Downregulation of Dicer expression was observed 
in human cancers and has been identified in promoting cancer 
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metastasis and tumorigenesis due to repression of global miRNA 
maturation (Kumar et al., 2007; Martello et al., 2010).

Analysis of data from The Cancer Genome Atlas evaluated a 
significant influence of alterations in miRNA machinery genes on 
the development of multiple forms of malignancies. In particular, 
incidence of Ago2 alterations is the highest among the other 
miRNA-machinery genes and its contribution varies from 12.3% 
in case of colon and rectum adenocarcinoma to 20.7–23.30% in 
case of breast invasive carcinoma, bladder urothelial carcinoma, 
and prostate adenocarcinoma (Huang et al., 2014). The 
explanation may be due to the decreased competition between 
different miRNA species in regulation of gene expression and 
facilitation of operation of oncogenic miRNAs following the 
overexpression of Ago2 (Vickers et al., 2007).

EXOGENOUS RIBONUCLEASES 
WITH ANTITUMOR ACTIVITY AND 
MECHANISMS OF THEIR ACTION

The antitumor potential of exogenous RNases has been studied 
for more than 60 years, due to their main function—the 
degradation of nucleic acids. Up to date, the most well-studied 
RNases with established antitumor activity are: BS-RNase from 
bull testes (Pouckova et al., 2004), amphibian RNase onconase 
from oocytes of Rana pipiens (Lee et al., 2000), bovine pancreatic 
RNase A (Patutina et al., 2010; Patutina et al., 2011), modified 
variants of RNase 1 from humans (Rutkoski et al., 2013) that 
belong to the RNase A superfamily, microbial RNase barnase 
from Bacillus amyloliquefaciens (Prior et al., 1996) and binase 
from Bacillus pumilis (Mironova et al., 2013a; Makeeva et al., 
2017) relative to RNase T1 superfamily (Table 2).

A lot of published data confirm that exogenous RNases 
target different RNAs in a tumour cell. As already discussed, the 
degradation of RNAs managed by endogenous RNases plays a 
significant role in controlling gene expression, maturation, and 
turnover of RNA, which may be associated with malignant cell 
transformation and tumour progression. It can be assumed that 
exogenous RNases may restore the expression and/or activity of 
endogenous RNases disturbed in the tumour cell and modulate 
functions of tumour-associated RNAs. The mechanism of the 
cytotoxic action of exogenous RNases, presumed and partially 
confirmed in various studies, consists of series of stages. 
Firstly, the exogenous RNase binds with a tumour cell, is then 
internalised, gains access to the cytosol, and finally degrades 
intracellular RNA. The binding mechanisms of RNases with 

tumour cells, and their following penetration, are described in 
detail in a number of reviews (Makarov and Ilinskaya, 2003; Chao 
and Raines, 2011; Mit’kevich et al., 2014b); here we will focus 
directly on RNA degradation by exogenous RNases. It should 
be noted that in addition to intracellular RNAs, RNases, when 
released into the bloodstream, can also cause the degradation 
of circulating exRNA (Simsekyilmaz et al., 2014; Zernecke and 
Preissner, 2016; Lu et al., 2018).

It is obvious that the central molecular targets of RNases 
are various RNAs: rRNA, mRNA, RNA in the RNP complexes, 
tRNA, and non-coding long and small RNA. In vitro RNases 
destroy rRNA and tRNA in equal amounts, however, a certain 
type of RNA is more preferable in vivo for each RNase: BS RNase 
destroys rRNA (Mastronicola et al., 1995; Liao et al., 1996), 
while onconase preferentially degrades tRNA (Iordanov et al., 
2000; Saxena et al., 2002; Table 4). Other intracellular targets 
of onconase are also rRNA, mRNA, and miRNA (Goparaju 
et al., 2011; Table 4). Thus, the toxic effect of RNases on tumour 
cells is associated with their main function - the ability to 
cleave RNA. However some data indicate that the ribonuclease 
activity of RNases is not the only component that provides an 
impact on their antitumor activity, but it is realized through the 
destabilization of double-stranded RNA (Sorrentino et al., 2003) 
or its irreversible binding (Blaszczyk et al., 2004).

After penetration into the cell, RNases degrade cellular RNA, 
as a result of which protein synthesis is blocked and apoptosis is 
initiated. It was shown for binase that treatment of the cells by 
the enzyme results in a significant decrease in the total amount 
of RNA in the cells, which, nevertheless, does not correlate with 
the level of cytotoxic effect of binase (Mitkevich et al., 2010a). 
It has been suggested that changes in intracellular tumour-
associated RNA levels observed after treatment with exogenous 
RNases may be the result of both direct degradation of mRNA 
and miRNAs that suppress the expression of certain genes, and/
or generation of new siRNA-like molecules that can participate 
in the regulation of intracellular processes by the mechanism of 
RNA interference (Zhao et al., 2008; Saxena et al., 2009). Thus, 
the catalytic activity of exogenous RNases is considered a key 
factor in determining the regulation of intracellular processes 
involving RNA.

RIBONUCLEASES OF RNASE A 
SUPERFAMILY

Bovine pancreatic RNase A and 
Pancreatic RNase 1 of Human
Bovine pancreatic ribonuclease A (RNase A) represents a small 
protein consisted of 124 amino acids with molecular weight equal 
to 13.7 kDa that, nevertheless, has the highest catalytic activity 
among the proteins of its superfamily. RNases belonging to RNase 
A superfamily catalyse the cleavage of RNA at phosphodiester 
bonds after pyrimidine residues in single-stranded regions (Raines, 
1998). RNase A is the first ribonuclease whose antitumor activity 
was studied in vitro (Ledoux and Revell, 1955; Ledoux, 1956) and 
in vivo (Ledoux, 1955a; Ledoux, 1955b; Aleksandrowicz, 1958a; 
Aleksandrowicz, 1958b; Telford et al., 1959).

TABLE 2 | Exogenous RNases of different origin displaying antitumor activity.

RNases Superfamily Origin

Pancreatic RNase A RNase A Mammals/Bos taurus
Seminal BS-RNase
Onconase/Ranpirnase Amphibian/oocytes of Rana pipiens
Barnase RNase T1 Bacillus amyloliquefaciens
RNase Sa 3 Streptomyces aureofaciens
Binase Bacillus pumilus
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However, the obtained results were contradictory. This 
enzyme, at the doses of 40–1,000 mg/kg, caused retardation in 
the growth of solid and ascitic tumours in mice and rats (Ledoux, 
1955a; Ledoux, 1955b). In the other studies, it was shown that 
RNase A does not exhibit cytotoxic and antitumor effects even 
using high doses of the enzyme injected into solid tumours 
(De Lamirande, 1961; Raines, 1998; Leland and Raines, 2001). 
Attempts were made to investigate the pancreatic RNase 1 of 
humans that belongs to the RNase A superfamily, and displays 
high catalytic activity, as an antitumor drug but the enzyme 
showed a very weak cytotoxic effect in cell cultures. The absence 
of cytotoxic activity of RNase A and RNase 1 was explained by 
their inactivation with intracellular ribonuclease inhibitor (RI), 
which form an extremely strong complex with these RNases 
(Kd < 10-15 М) (Johnson et al., 2007).

In a number of studies, an increase in the cytotoxicity of 
RNase A and RNase 1 was achieved by conjugating these RNases 
with peptides, proteins and antibodies, which increased the 
efficiency of their capture by tumour cells (Rybak et al., 1991; 
Newton et al., 1992; Psarras et al., 1998; Futami et al., 1999). 
To obtain RI-resistant RNase A and RNase 1 variants, methods 
of protein engineering, chemical modification, or protein 
conversion with the formation of covalent dimers were used 
(Di Donato et al., 1994; Rutkoski et al., 2005; Rutkoski et  al., 
2011). By means of site-directed mutagenesis D’Alessio and 
colleagues developed artificial dimers of RNase A and RNase 
1 that showed cytotoxicity towards cancer cells (Di Donato 
et al., 1994; Piccoli et al., 1999). This allowed the production 
of derivatives of RNase A and RNase 1 with high antitumor 
activity. High cytotoxic activity against cancer cells was 
achieved by the conjugation of transferrin with mutated variant 
of human pancreatic RNase hRNase (Gly89→Cys) and mutant 
eosinophil-derived neurotoxin (Suzuki et al., 1999). Recently 
obtained data revealed that RI-resistant variants of pancreatic 
RNase 1 of human displayed strong toxic effect toward lung 
cancer and melanoma cells and worked sinergically with protein 
kinases in the ERK pathway (Hoang et al., 2018). A number of 
immunoRNases on the base of variants of pancreatic human 
RNase were developed which being fused with antibodies 
against ErbB2 exhibit strong toxic effects to ErbB2-positive 
tumor cells (D’Avino et al., 2014).

Despite encouraging results, interest in the therapeutic 
potential of RNase A disappeared for a long time, but arose again 
several decades later, when RNase was able to exert cytotoxic 
effects on tumour cells at much lower doses than was used in 
the 1950s. In 2002, conjugation of RNase A with poly [N- 
(2-hydroxypropyl) methacrylamide] led to constructions that 
effectively suppressed the growth of melanoma in nude mice 
(Soucek et al., 2002). In 2004, the first information appeared on 
the cytotoxic effect of RNase variants, which were inactivated 
by RI (Naddeo et al., 2005). A cytotoxic variant of human 
pancreatic RNase PE5 containing a nuclear localization signal 
was developed, which, despite its sensitivity to RI, demonstrated 
high cytotoxicity on a panel of various tumour cells (Bosch et al., 
2004). Further, additional modifications of the PE5 structure led 
to the appearance of variants of RNase 1 with high cytotoxicity 
(Vert et al., 2012).

From 2010 to the present, several clinical studies of pancreatic 
RNase A have been conducted to treat various types of 
tumours. The first study (Phase I, ClinicalTrials.gov Identifier: 
NCT01201018), conducted from September 2010 to June 2012, 
used RNase A in peroral form (O’Shadi R) for the treatment of 
patients with various cancers. Although the official report on 
this study has not yet been presented, four more clinical trials 
of RNase A have since started: for the treatment of metastatic 
non-small cell lung cancer (ClinicalTrials.gov Identifier: 
NCT02134990), mesothelioma (ClinicalTrials.gov Identifier: 
NCT01627795), basal cell carcinoma (ClinicalTrials.gov 
Identifier: NCT02007317), acute myeloid leukemia and lymphoid 
leukemia (ClinicalTrials.gov Identifier: NCT02462265). Variant 
of human pancreatic RNase 1 with 95% sequence identity named 
QBI-139 is studied in a phase I clinical trial for the treatment of 
advanced refractory solid tumors (ClinicalTrials.gov Identifier: 
NCT00818831).

Colleagues in our laboratory used several mouse tumour 
models to demonstrate that RNase A administered in very low 
doses exhibited antitumor and antimetastatic activity (Patutina 
et al., 2010; Patutina et al., 2011). Attempts to find molecular targets 
of RNase A in the tumour and blood of tumour-bearing mice (with 
the example of Lewis lung carcinoma) revealed that antitumor 
and antimetastatic action of RNase A is realized via degradation 
of extracellular circulating miRNAs and is accompanied by 
significant boost of miRNA synthesis in tumour tissue (Mironova 
et al., 2013b). The microRNA boost in the tumour was associated 
with the overexpression of genes involved in microRNA biogenesis 
such as Drosha, Xpo5, Dicer, and Ago2. Ribonuclease activity of 
RNase A was demonstrated to play crucial role both in antitumour/
antimetastatic activity and the influence on the expression of 
microRNA and the microRNA processing genes.

Moreover, it was found that RNase A affected the whole 
transcriptome of murine Lewis lung carcinoma (Mironova 
et  al., 2017) providing the downregulation of 644 transcripts 
and upregulation of 322 transcripts. Major part of the genes are 
involved in signalling pathways that maintain energy metabolism, 
promote cell growth and transformation, modulate the cancer 
microenvironment and extracellular matrix components as 
well as stimulate cellular proliferation and differentiation. As a 
result of RNase A treatment, we also detected an upregulation in 
carbohydrate metabolism, the stimulation of inositol phosphate 
cascade and oxidative phosphorylation as well as re-arrangement 
of apoptosis, transcription, cell cycle control and adhesion 
processes. Taken together, these data suggest that reorganization 
of the intracellular network of tumour cells caused by RNase A 
led to enhancement of energy cascade activity, shift in cancer-
related cell growth and dissemination processes, and partial 
depletion of signalling pathways that have tumour-promoting 
activity (Mironova et al., 2017).

Angiogenin
Angiogenin (ANG) was described as the first proto-oncogenes 
among ribonucleases, and for this reason, researchers have never 
tried to use it as an antitumor drug. Nevertheless, since ANG is 
one of the brightest representatives of the RNase A superfamily, 
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although it belongs to endogenous RNase, we discuss it in this 
section. ANG participated in neovascularization events, and 
an increased level of its expression was noted in many types of 
cancer cells (see rev. Kim and Lee, 2009).

Originally, human ANG was isolated as an angiogenesis 
factor of tumour origin; however, the expression of ANG by cells 
of various tissues suggests that its functions are not limited to 
neovascularization. Similar to RNaseA, ANG cleaves RNA in 
single-stranded regions, displaying Pyr-X cleavage specificity 
(Russo et al., 1996), although the ribonuclease activity of ANG 
is 10−5−10−6-times lower than RNase A activity (Lee and Vallee, 
1989). In spite of the very weak ribonuclease activity of ANG, 
this activity is important for its biological functions, allowing 
ANG to drive an orchestra of various RNAs in a cell (Yamasaki 
et al., 2009; Ivanov et al., 2011; Li et al., 2019).

However, ANG exerts its functions not only due to its own 
ribonuclease activity, but also due to ability to bind with certain 
promoter regions of DNA and histone proteins, thus acting as 
a chromatin remodelling activator. ANG induces the synthesis 
of rRNAs by binding with promoter region of ribosomal DNA 
(rDNA), thereby promoting transcription of the precursor of 47S 
rRNA (Sheng et al., 2014). ANG in the nucleus may be involved 
in regulation of mRNA transcription. Using a chromatin 
immunoprecipitation-chip assay, Sheng and colleagues identified 
699 genes that may be regulated by ANG on the mRNA level, 
many of which are related to tumorigenesis, such as proteins of 
Wnt and TGF-β pathways (Sheng and Xu, 2016).

A number of data highlighted the contribution of cellular ANG 
to the metabolism of RNAs, both in the nucleus and cytoplasm. In 
experiments in vitro it was shown that the ability of nuclear ANG 
to cleave 28S and 18S rRNAs, which, together with data on its 
participation in cleavage of the first cleavage site (A0) of the 47S pre-
rRNA, provides evidence that ANG may enhance rRNA processing 
(Shapiro et al., 1986; Monti et al., 2009; Table 3). In addition, ANG 
carry out an important function in the tRNA metabolism that takes 
place in the cytoplasm. Under conditions of oxidative stress, hypoxia, 
and starvation, ANG performs the cleavage of the conserved single-
stranded 3′-CCA termini of tRNA or its anticodon loop inducing 
the formation of so named tiRNA (tRNA-derived, stress induced 
small RNA) (Yamasaki et al., 2009; Figure 1G). ANG-produced 
tiRNA plays a significant role in proliferation of breast and prostate 
cancer cells (Honda et al., 2015; Table 3). It was revealed that ANG 
enhances colorectal cancer growth and metastasis both in in vitro 
and in vivo systems, producing a higher level of a 5’-tiRNA from 
mature tRNA-Val (Li et al., 2019). The resulting tiRNAs reprogram 
the translation of proteins, promoting damage repair and cell 
survival (Ivanov et al., 2011). Among two tiRNAs generated by 
ANG, 5′-tiRNA (but not 3′-tiRNA) inhibits translation in vitro, 
however, not all 5′-tiRNA are active. Preliminary data from Sheng 
and colleagues shows that ANG can also participate in degradation 
of miRNAs (Sheng and Xu, 2016).

Onconase/Ranpirnase (From Oocytes of 
Frog Rana Pipiens)
In the late 1980s, the Alfacell corporation conducted a study on 
an extract of oocytes or early embryos of the Northern Leopard 

Frog (Rana pipiens), which has profound cytostatic and cytotoxic 
activity towards tumour cells (Table 2). The active component of 
the extract was a protein of small size (11.82 kDa), being found 
in unfertilized oocytes as well. The amino acid sequence of this 
protein, originally named P-30, and later onconase or ranpirnase, 
resembled the sequence of enzymes of the RNase A superfamily 
(Ardelt et al., 1991). Onconase is the smallest protein of the 
RNase A superfamily having only 104 amino acids. Onconase 
displays significant ribonuclease activity that is 102-105 times 
lower in comparison with the activity of RNase A (Ardelt et al., 
1991; Ardelt et al., 1994; Boix et al., 1996). Onconase exhibits the 
antiproliferative and cytotoxic activity through interference with 
cell-cycle regulation and induction of programmed cell death by 
a mechanism described in details previously (Lee and Raines, 
2008; Porta et al., 2008).

Onconase is an extremely stable protein that is not inactivated 
by RI (Boix et al., 1996). In the beginning, the cytostatic and 
cytotoxic facilities of onconase were investigated on the cell 
lines of human HL-60 leukemia, carcinoma A-253, and Colo 
320 CM colon adenocarcinoma (Darzynkiewicz et al., 1988). 
Onconase caused a retardation of cell proliferation by increasing 
the duration of the G1 phase of the cell cycle, accompanied by 
a reduction in the DNA replication frequency. Cytotoxicity of 
onconase was shown in tumour cell lines of different histogenesis: 
B cell lymphoproliferative disorders (Smolewski et al., 2014), 
chronic myeloid leukemia (Turcotte et al., 2009), lung carcinoma 
and pancreatic adenocarcinoma (Mikulski et al., 1990a), multiple 
myeloma, adenocarcinoma, and prostate cancer (Ita et al., 2008; 
Table 4).

Initial in vivo studies of onconase were performed on 
the Madison M109 carcinoma model of mice and it was 
demonstrated that the survival rate of tumour-bearing animals 
after treatment with onconase increases 12-fold compared 
with the control (Mikulski et al., 1990b). Recent studies 
on mesothelioma xenograft models have shown significant 
suppression of tumour growth by onconase (Nasu et al., 2011); 
studies on non-small cell lung cancer and mesothelioma 
xenograft models have shown suppression of tumour growth 
and angiogenesis when the combined action of onconase and 
dihydroartemisinin was used (Shen et al., 2016). A number 
of publications have demonstrated the antitumor activity of 
conjugates of onconase with antibodies specifically addressed 
the enzyme to tumour cells (Rybak, 2008; Newton et al., 2009; 
Table 4). In recent studies, a high antitumor activity of onconase 
conjugated with chlorotoxin has been shown on a mouse 
glioma xenograft model (Wang and Guo, 2015). The increase 
of cytotoxicity of onconase to tumour cells was reached via 
obtaining dimers of the enzyme (Fagagnini et al., 2017).

Onconase was one of the first ribonucleases studied in pre-
clinical and clinical trials (Costanzi et al., 2005). Onconase has 
been approved for clinical use as an orphan drug for treatment 
of unresectable malignant mesothelioma in the United 
States, Europe, and Australia (Mikulski et al., 2002; Altomare 
et  al., 2010). Clinical trials have shown that onconase is well 
tolerated by patients, has low immunogenicity, but has high 
nephrotoxicity (Mikulski et al., 2002). However, recent clinical 
trials of onconase for the treatment of patients with non-small 
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TABLE 3 | Endogenous RNases and their role in cancer development.

RNase RNA targets# References# In vitro/in vivo effects* References*

Endogenous RNases

Conventional RNA decay RNases
CNOT3 poly-A tails of mRNA Bartlam and Yamamoto, 

2010
Tumour suppressor
T-cell acute lymphoblastic leukemia
Oncogene
non-small cell lung cancer
drosophila eye cancer model 

De Keersmaecker et al., 2013
Shirai et al., 2019
Vicente et al., 2018

CNOT7 Oncogene
metastasis in mouse breast cancer model

Faraji et al., 2016

PARN mRNAs involved in p53, FAK 
and MAPK signaling
oncogenic miR-21

Lee et al., 2012; 

Devany et al., 2013

Tumour suppressor Devany et al., 2013; Boele 
et al., 2014

XRN1 ex-miRNA degradation 
(ex-miRNA-223)

Zangari et al., 2017 Tumour suppressor
osteogenic sarcoma

Zhang et al., 2002

XRN2 processing of pre-miR-10a to 
mature miR-10a

Zhang et al., 2017b Oncogene
lung cancer

Zhang et al., 2017b

Stress signal induced RNases
RNase L viral RNA, rRNA, 

mitochondrial mRNA, the 
interferone-induced mRNA
exogeneous miRNA-mimics 

Wreschner et al., 1981; 
Li et al., 1998; Le Roy 
et al., 2001; 
Nogimori et al., 2019

Tumour suppressor
human prostate cancer PC3 cells
prostate cancer

Banerjee et al., 2015; 
Dayal et al., 2017

IRE1α mRNA and miRNA
its own mRNA, mRNA XBP1, 
mRNA CD59 and mRNAs 
involved in regulation of 
angiogenesis 

Maurel et al., 2014
see rev. Kim and Lee, 2009

Tumour suppressor
mutant forms of IREα in many types of cancer
Oncogene
transcriptional reprogramming in cancer cells
gioblastoma

Parsons et al., 2008; Guichard 
et al., 2012; 
Chevet et al., 2016; Obacz et 
al., 2017; Logue et al., 2018

PMR1 miRNAs of the miR-200 
family

Bracken et al., 2014; Gu 
et al., 2016; Perdigão-
Henriques et al., 2016

Oncogene
MCF-7 breast cancer cells
mouse breast cancer cells

Gu et al., 2016; Perdigão-
Henriques et al., 2016

RNA metabolism, neovascularization
ANG 47S pre-rRNA

28S rRNA, 18S rRNA
tRNA
miRNA

Monti et al., 2009; Shapiro 
et al., 1986; Fu et al., 2009; 
Yamasaki et al., 2009; Sheng 
and Xu., 2016

Oncogene
breast cancer
prostate cancer
colorectal cancer
bladder cancer

Honda et al., 2015; 
Li et al., 2019; 
Etoh et al., 2000; 
Peres et al., 2016

Proteins regulating mRNA stability
G3BP1 stabilize mRNA like mRNA 

tau and CDK7
degradation of mRNA MYC, 
BART, CTNNB1, PMP22, 
GAS5, IGF2 

Atlas et al., 2004; Gallouzi 
et al., 1998; Tourrière et al., 
2001; Zekri et al., 2005; 
Taniuchi et al., 2011a; 
Taniuchi et al., 2011b; 
Winslow et al., 2013

Oncogene
colon cancer
thyroid cancer
breast cancer
head and neck cancer

Guitard et al., 2001; 
Barnes et al., 2002; 
French et al., 2002; 
Zhang et al., 2019

Proteins with ribonuclease activity participating in maintenance of DNA integrity
APE1 MYC mRNA

mRNAs (in vitro)
rRNA
miRNA

Barnes et al., 2009; 
Bergstrom et al., 2006; 
Vascotto et al., 2009; 
Antoniali et al., 2017b

Tumour suppressor
c-myc overespressed tumors

Barnes et al., 2009

FEN1 RNA primers in (DNA 
replication)

Shen et al., 2005 Oncogene
lung and prostate cancer

Sato et al., 2003; Lam et al., 
2006

RNases involved in miRNA biogenesis**
Drosha pri-miRNAs Murchison and Hannon, 

2004
Tumour suppressor
neuroblastoma
endometrial cancer
nasopharyngeal carcinoma
gallbladder adenocarcinoma
ovarian cancer
melanoma
blastemal Wilms tumour
pineoblastoma
Oncogene
basal cell carcinoma
squamous cell carcinoma
smooth muscle neoplasms

Lin et al., 2010
Torres et al., 2011
Guo et al., 2012
Shu et al., 2012
Papachristou et al., 2012
Jafarnejad et al., 2013
Wegert et al., 2015
Snuderl et al., 2018

Sand et al., 2010

(Continued)
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cell lung cancer (ClinicalTrials.gov Identifier: NCT01184287) 
and mesothelioma (ClinicalTrials.gov Identifier: NCT00003034) 
have been prematurely terminated.

Although the main targets for onconase are tRNAs 
(Iordanov et al., 2000), an ability to affect miRNAs has 
also been found (Qiao et al., 2012; Table 4). The model of 
onconase-mediated cytotoxicity predicates that onconase is 
internalized in cytosol of tumour cells and cleaves tRNAs 
followed by ubiquitous inhibition of protein translation and 
apoptosis induction (Lee and Raines, 2008). Biochemical 
studies performed by Qiao and colleagues evaluate miRNAs 
as the direct downstream RNA targets of onconase. 
Onconase was found to downregulate miRNAs by cleavage 
of its precursor forms, thus decreasing the amount of mature 
miRNAs arisen from Dicer activity (Qiao et al., 2012). In 
addition, onconase was demonstrated to exert miRNA-
mediated effects through downregulation of NF-kβ using 
specific miRNAs, particularly, upregulating miR-17 and 
downregulating miR-30c (Goparaju et al., 2011).

BS-RNase (Bovine Seminal)
BS-RNase was revealed independently by Hosokawa and Irie in 
1971 (Hosokawa and Irie, 1971), D’Alessio with colleagues in 1972 
(D′Alessio et al., 1972), and Dostal and Matousek in 1972 (Dostal 
and Matousek, 1972). It is singular among all ribonucleases in 
that it has a quaternary structure. BS-RNase is a natural dimer 
that comprises a couple of identical subunits connected by two 
disulfide bonds and non-covalent interactions (D′Alessio et al., 
1991). The amino acid sequence of the BS-RNase subunit and 
its structure classify this enzyme as belonging to the pancreatic 
RNase A superfamily (Beintema et al., 1988).

The polypeptide chain of the BS-RNase subunit contains 
124 amino acids and has 80% homology with RNase A. 
Two cysteine residues located at 31 and 32 positions of the 
BS-RNase represents the most important difference between 

BS-RNase and RNase A. These two cysteines are involved in the 
formation of an intermolecular disulfide bond between Cys31 
of one subunit and Cys32 of the second subunit, followed by 
dimerization of enzyme (Di Donato and D′Alessio, 1973). The 
dimeric enzyme (27.218 kDa) represents is a composition of 
two different quaternary forms, denoted as M = M and M × M 
(Piccoli et al., 1992).

The enzyme displays cytotoxic activity towards tumour 
cells only in dimeric form, and the ribonuclease activity is 
absolutely crucial (Kim et al., 1995a). However, the groups 
of D’Alessio and Raines showed that a single subunit of 
BS-RNase, which has a higher catalytic activity than the dimer, 
does not exhibit a cytotoxic effect on tumour cells (Vestia et al., 
1980; Kim et al., 1995b). The explanation was that a separate 
subunit, but not a dimeric form of the enzyme, is inactivated 
by cytosolic RI (Murthy and Sirdeshmukh, 1992). In addition, 
the dimeric form of BS-RNase, but not monomeric, was 
shown to destabilize the membranes of tumour cells, and this 
destabilization contributes to the observed antitumor effect of 
the enzyme (Mancheño et al., 1994).

The antitumor activity of BS-RNase has been studied 
mainly on tumour cell lines and, to a lesser extent, on in vivo 
tumour models. BS-RNase exhibited a cytotoxic effect on 
various tumour cell lines: SVT2 and 3T3 fibroblast cells, ML-2 
myeloid cells, neuroblastoma cells and thyroid carcinomas 
(Cinatl et al., 1999; Marinov and Soucek, 2000; Kotchetkov 
et al., 2001; Table 4).

Soucek and colleagues developed conjugates of BS-RNase 
with poly [N- (2-hydroxypropyl) methacrylamide], which 
protects the enzyme from degradation in the bloodstream, and 
demonstrated a significant inhibition of melanoma growth on 
nude mice, whereas intact BS-RNase was ineffective (Soucek 
et al., 2002). BS-RNase PHPMA conjugates also showed high 
efficiency in various human tumour models in CD-1 nude mice: 
melanoma, neuroblastoma, and ovarian cancer (Pouckova et al., 
2004; Table 4).

TABLE 3 | Continued

RNase RNA targets# References# In vitro/in vivo effects* References*

Dicer pre-miRNA Tumour supressor
neuroblastoma
endometrial cancer
nasopharyngeal carcinoma
gallbladder adenocarcinoma
transitional cell carcinoma of the urinary 
bladder
breast cancer
lung cancer
gastric cancer
ovarian cancer 

Lin et al., 2010
Torres et al., 2011
Guo et al., 2012
Shu et al., 2012
Wu et al., 2012 

Khoshnaw et al., 2012
Karube et al., 2005
Zheng et al., 2007
Pampalakis et al., 2010

Ago2 mRNA Oncogene
breast invasive carcinoma
colon and rectum adenocarcinoma
bladder urothelial carcinoma
prostate adenocarcinoma

Huang et al., 2014

#references are done in accordance with RNA target.
*references are done in accordance with in vitro/in vivo effects.
**data are presented in details in review (Hata and Kashima, 2016).
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TABLE 4 | Exogenous RNases displaying antitumor activity.

RNase RNA targets# References# In vitro/in vivo effects* References*

RNase A superfamily
bovine pancreatic RNase A miRNA

mRNA
Mironova et al., 
2013b; Mironova 
et al., 2017

solid and ascitic tumors growth in mice 
and rats
Lewis lung carcinoma
Hepatoma A1

Ledoux, 1955a, Ledoux, 
1955b
Patutina et al., 2010; Patutina 
et al., 2011

bovine seminal BS-RNase rRNA Mastronicola et al., 
1995; Liao et al., 1996

thyroid carcinoma
SVT2 and 3T3 fibroblast cells
ML-2 myeloid cells; neuroblastoma cells 

Cinatl et al., 1999
Marinov and Soucek, 2000 
Kotchetkov et al., 2001

Onconase/Ranpirnase tRNAs
pre-miRNA

Iordanov et al., 2000; 
Qiao et al., 2012

B cell lymphoproliferative disorders
chronic myeloid leukemia
lung carcinoma and pancreatic 
adenocarcinoma
multiple myeloma, adenocarcinoma, and 
prostate cancer
mesothelioma xenograft models
non-small cell lung cancer and 
mesothelioma xenograft models

Mikulski et al., 1990a
Ita et al., 2008
Turcotte et al., 2009
Nasu et al., 2011
Smolewski et al., 2014
Shen et al., 2016

RNase chimeras
bovine pancreatic RNase A coupled to 
human transferrin or antibodies to the 
transferrin receptor

total cellular 
RNA, mainly 
rRNA, mRNA

Rybak et al., 1991; 
Mastronicola et al., 
1995; Liao et al., 1996

K562 (human erythroleukemia-derived 
cell line)

Rybak et al., 1991

bovine pancreatic RNase A 
conjugated with mAb to the transferrin 
receptor or to the T cell antigen, CD5

glioblastoma xenograft Newton et al., 1992

human pancreatic RNase 1 fused with 
human epidermal growth factor

squamous carcinoma cell line
mouse melanoma cell line B16

Psarras et al., 1998
Futami et al., 1999

conjugates of BS-RNase with poly [N- 
(2-hydroxypropyl) methacrylamide]

xenografts of melanoma Soucek et al., 2002

BS-RNase PHPMA conjugates xenografts of melanoma, neuroblastoma 
and ovarian cancer

Pouckova et al., 2004

conjugate of transferrin with mutated 
variant of human pancreatic RNase 
hRNase (Gly89→Cys) and mutant 
eosinophil-derived neurotoxin

n.d. U251 cell line (human glioma)
Wehi 7.1 cell line(mouse T lymphoma)

Suzuki et al., 1999

immunoRNases on the base of 
variants of pancreatic human RNase 
fused with antibodies against ErbB2

n.d. gastric tumor cells
breast cancer cells resistant to 
trastuzumab

D’Avino et al., 2014

Conjugate of onconase with murine 
anti-CD22 antibody RFB4

tRNAs
pre-miRNA

Iordanov et al., 2000
Qiao et al., 2012

non-Hodgkin’s lymphoma (pre-clinical 
model)

Rybak, 2008
Newton et al., 2009

Conjugate of onconase with 
chlorotoxin

mouse glioma xenograft model Wang and Guo, 2015

RNase dimers
bovine pancreatic RNase A dimer 
(mutant similar to BS-RNase)

n.d. malignant, SV40 transformed SVT2 
fibroblasts

Di Donato et al., 1994

human pancreatic RNase 1 dimer total cellular 
RNA

human thyroid tumour- derived cells Piccoli et al., 1999

RNase T1 superfamily
Barnase n.d. carcinoma cell lines and human leukemia Edelweiss et al., 2008
RNase Sa 3 n.d. human erythroleukemia cells K-562 Sevcik et al., 2002
RNase Sa, mutants with enhanced 
positive charge

n.d. acute myeloid leukemia Kasumi-1 cells Mitkevich et al., 2014a

Binase mRNA of 
oncogenes 
AML1-ETO, KIT

Ilinskaya et al., 2007; 
Mitkevich et al., 2011

human myelogenous leukemia cells 
R562, transgenic myeloid progenitor cells 
expressing activated KIT-oncogene
human A549 alveolar adenocarcinoma 
cells
mouse Lewis lung carcinoma, 
lymphosarcoma RLS40, melanoma B16
leukemic Kasumi-1 cells
human ovarian cancer cells
SiHa cervical carcinoma cells

Ilinskaya et al., 2007

Cabrera-Fuentes et al., 2013

Mironova et al., 2013a 
Sen’kova et al., 2014
Mitkevich et al., 2014a
Garipov et al., 2014
Mitkevich et al., 2017

(Continued)
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RNases of RNase T1 Superfamily 
(Bacterial and Fungal)
Recently, many RNases of bacterial and fungal origin have been 
discovered that exhibit cytotoxic activity (Table 2). In contrast 
to mammalian cytotoxic RNases, which belong to the RNase 
A superfamily, microbial RNases are related to the RNase T1 
superfamily. The RNase T1 superfamily consists of 25 enzymes 
of fungal and bacterial origin that have a similar amino acid 
sequence and tertiary structure (Yoshida, 2001). RNases of the 
RNase T1 superfamily catalyse RNA cleavage at phosphodiester 
bonds after guanine residues (G↓X) in single-stranded regions.

Fungal RNases, being also denoted as ribotoxins (α-sarcin, 
mitogillin and restrictocin), perform the cleavage of the 
eukaryotic 28S rRNA of the large ribosome subunit at a single 
phosphodiester bond leading to the inactivation of protein 
synthesis, induction of apoptosis and cell death (Endo et al., 
1983; Kao et al., 1998; Olmo et al., 2001; Lacadena et al., 2007). 
Although α-sarcin demonstrated high cytotoxic activity against 
a number of tumours, including sarcoma, it also displayed high 
hepatotoxicity and caused toxic heart damage in healthy animals.

The most well-known of the microbial ribonucleases that 
exhibit cytotoxic activity on tumour cells are RNase Sa (RNase 
from Streptomyces aureofaciens), barnase (RNase from Bacillus 
amyloliquefaciens), and binase (RNase from Bacillus intermedius; 
Tables 2 and 4). According to a recent genotypic identification, 
the strain known as B. intermedius belongs to the B. pumilus 
species, so it has been renamed accordingly (GenBank Accession 
No. HQ650161.1). Binase and barnase have no homology with 
mammalian RNases and are not recognized by RI (Rutkoski 
and Raines, 2008). Barnase and binase are small proteins that 
consist of 110 (12.382 kDa) and 109 (12.213 kDa) amino acids, 
respectively, with 85% structure homology (Hartley and Barker, 
1972; Aphanasenko et al., 1979).

Cytotoxic effects of RNase Sa were demonstrated towards 
acute myeloid leukemia Kasumi-1 cells (Mitkevich et al., 2014a; 
Table 4). The Deyev group is engaged in a comprehensive study 
of the properties of barnase. The ability of barnase to eliminate 
malignant cells was shown in carcinoma cell lines and human 

leukemia (Edelweiss et al., 2008). For targeted delivery of enzyme 
into tumour cells, conjugates were obtained (Balandin et al., 
2011; Table 4). These conjugates were consisted of two barnase 
molecules conjugated to a single-stranded variable fragment 
(scFv) of a humanized 4D5 antibody targeted to the extracellular 
domain of human epidermal growth factor receptor 2 HER2, 
which is overexpressed in many human carcinomas. On the basis 
of barstar, which is an inhibitor of barnase of bacterial origin, 
and barnase conjugated with fragments of various antibodies 
and nanoparticles, the development of multifunctional 
supramolecular structures for the elimination of malignant cells 
was proposed (Nikitin et al., 2010). Based on barnase fused with 
a MYC epitope, immunotoxins able to selectively downregulate 
MYC-specific B cells were developed. They were shown to have 
an important influence on the development of both systemic 
and organ-specific autoimmune diseases (Stepanov et al., 2011; 
Table 4).

The Makarov and Ilinskaya groups studied the cytotoxicity of 
binase using a number of cell lines, distinguished by expressed 
oncogenes: myeloid precursors FDC-P1; FDC-P1-N822K 
cells expressing the KIT oncogene; transduced FDC-P1 cells 
expressing the AML1-ETO oncogene; transduced FDC-P1-
N822K cells expressing the AML1-ETO and KIT oncogenes; 
cells of acute myeloid leukemia Kasumi-1, also expressing both 
oncogenes, and human ovarian cancer cells (Ilinskaya et  al., 
2007; Mitkevich et al., 2011; Garipov et al., 2014; Table 4). The 
sensitivity of cells to binase was shown to be dependent on 
the level of oncogenes, and that the Kasumi-1 cell line was the 
most sensitive (Mitkevich et al., 2011). It was found that the 
high expression level of the oncogene KIT also increased the 
sensitivity of tumour cells to binase (Mitkevich et al., 2010b), 
suggesting that oncogenic mRNAs may be targets for binase. 
However, binase exhibits antitumor activity not only due to its 
own ribonuclease activity, but also due to its ability to bind to 
certain proteins. Direct interaction of binase and the oncogenic 
protein KRAS was demonstrated and resulted in the stabilisation 
of the inactive KRAS conformation and inhibition of MAPK 
signalling (Ilinskaya et al., 2016).

TABLE 4 | Continued

RNase RNA targets# References# In vitro/in vivo effects* References*

Conjugate of two barnase molecules 
with scFv of a humanized 4D5 
antibody 

human breast cancer xenografts Balandin et al., 2011

Immunotoxins on the base of 
barnase, fused with MYC epitope, 
Pseudomonas toxin, Shiga-like toxin 
E.coli and Fc domain of human 
antibody IgGγ1

MYC-specific B-cells Stepanov et al., 2011

Binase immobilized on halloysite 
nanotubes

mRNA of 
oncogenes 
AML1-ETO, KIT

Ilinskaya et al., 2007 
Mitkevich et al., 2011

human colon adenocarcinoma cells. Khodzhaeva et al., 2017

#references are done in accordance with RNA target.
*references are done in accordance with in vitro/in vivo effects.
n.d. – not detected.
PHPMA, Poly[N-(2-hydroxypropyl)methacrylamide]; ErbB2, Erb-B2 receptor tyrosine kinase 2; KIT, KIT proto-oncogene, receptor tyrosine kinase; AML1-ETO, fusion protein 
detectable in patients with acute myelogenous leukemia; RLS40, drug-resistant lymphosarcoma RLS40.
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The Makarov and Zenkova groups first demonstrated the 
ability of binase to retard primary tumour growth and inhibit 
metastases formation in experimental murine tumour models: 
Lewis lung carcinoma, drug resistant lymphosarcoma RLS40, and 
melanoma B16 (Mironova et al., 2013a; Table 4). Treatment of 
animals bearing tumours of various histogenesis with binase 
leads to significant retardation of primary tumour growth and 
dissemination. The therapy was also found to have general 
systemic, immunomodulatory, and hepatoprotective effects 
and did not induce inflammatory response in the organism 
(Mironova et al., 2013a; Sen’kova et al., 2014).

CONCLUSION AND CRITICAL POINT  
OF VIEW

Cell transformation, uncontrolled proliferation, increased 
migration, and invasion are multistage processes, at all steps 
of which tumour-associated RNAs take part. The correct 
balance between intracellular RNAs encoding oncogenes and 
RNA encoding tumour suppressors, as well as the balance 
between regulatory oncogenic or oncosuppressive miRNAs, 
determines the normal cell phenotype, and the imbalance of 
this equilibrium leads to their transformation. Extracellular 
tumour-associated coding and regulatory RNAs make a 
significant contribution to tumour progression through distant 
transfection of normal cells and the formation of new tumour 
foci. So named “house-keeping” endogenous ribonucleases are 
involved in the control of RNA homeostasis and the discarding 
of aberrant RNAs thus providing the proper functioning 
of RNA orchestra in the cell. Therein, an alteration of the 
expression or activity of endogenous nucleases leads to their 
failure in RNA turnover as well as changes in the profile of 
regulatory RNAs, which leads to oncogenesis and progression 
of the tumour.

Thus, it is obvious that exogenous RNases, whose cytotoxic activity 
was discovered at a time when the era of understanding the role of 
regulatory and coding RNA in oncogenesis was just beginning, are 
now recognized participants in control of cell transformation and 
events of tumor progression. Large amount of data is accumulated 
confirming that tumour-associated RNAs inside the tumour cell 
and in the pool of circulating exRNAs, whose levels are significantly 
increased in the process of tumour progression, can be the targets 
for exogenous RNases. Exogenous nucleases reducing the amount 
of both intracellular and circulating tumour-associated RNAs may 
maintain normal untransformed state of the cell and decrease the 
rate of tumour dissemination. Thus, exogenous RNase do not at all 
play the role of a “scavenger,” equally likely cleaving all asseccible 
RNAs, but the role of a supervisor over the tumor development.

In connection with a certain selectivity of natural RNases 
to RNAs, they can be considered as useful tools for searching 
for tumor-associated RNA targets. This strategy let to identify 
a wide range of RNA targets for selective shutdown in a tumor 
cell. Numerous studies of the antitumor activity of natural 
RNases, including preclinical ones, in the long term may provide 
completely new anticancer drugs that work not only at the cell 
level, but also at the level of organism.
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