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Lutein Leads to a Decrease of Factor D Secretion by
Cultured Mature Human Adipocytes
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Purpose. Complement plays an important role in the pathogenesis of age related macular degeneration (AMD) and trials are
currently being conducted to investigate the effect of complement inhibition on AMD progression. We previously found that the
plasma level of factor D (FD), which is the rate limiting enzyme of the complement alternative pathway, was significantly decreased
following lutein supplementation. FD is synthesized by adipose tissue, which is also the main storage site of lutein. In view of these
findings we tested the hypothesis whether lutein could affect FD synthesis by adipocytes. Methods. A cell line of mature human
adipocytes was incubated with 50𝜇g/mL lutein for 24 and 48 h, whereafter FD mRNA and protein expression were measured.
Results. Lutein significantly inhibited adipocyte FD mRNA expression and FD protein release into adipocyte culture supernatants.
Conclusions. Our earlier observations showing that a daily lutein supplement in individuals with early signs of AMD lowered the
level of circulating FD might be caused by blocking adipocyte FD production.

1. Introduction

Age related macular degeneration (AMD) is the leading
cause of irreversible visual impairment among older adults
in industrialized countries and is now recognized as the
third cause of global blindness [1–3]. It is a multifactorial
disease with age as the most important risk factor [4].
Modifiable factors like smoking and nutrition also play a role
in the development of AMD [5–9]. Of the nutrient factors,
the carotenoids lutein and zeaxanthin have been shown to
be beneficial in the maintenance of proper vision [10–14].
Patients withAMDoften exhibit lower dietary intake of lutein
compared to control subjects [15–17]. Further, intervention
studies have proven that intake of antioxidant supplements
containing lutein can affect the progression to the advanced
stages of AMD [10–13].

Lutein and zeaxanthin are the main constituents of the
macular pigment [18, 19]. They absorb light between 390 and

540 nm [20–22], thereby shielding the retina from harmful
blue light that causes photochemical light damage [23]. In
addition, macular pigment is capable of scavenging free
radicals [24] which also results in a protective antioxidant
effect in the retina [18]. Recently it has been shown that
lutein also has anti-inflammatory properties [25], having
beneficial effects in various models of experimental ocular
inflammation, such as endotoxin induced uveitis [26], retinal
ischemia [27, 28], and diabetic retinopathy [29–31]. This may
also have implications in AMD, due to an inflammatory
mechanism involving the alternative complement pathway
that has recently been implicated to play a major role in the
pathogenesis of AMD [32].

Various complement proteins have been found to be
associated with drusen [33].These accumulations of extracel-
lular material are located between Bruch’s membrane and the
retinal pigment epithelium of the eye and their presence is
a common early sign of AMD. Genetic studies furthermore
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revealed that variants in the genes of complement factors,
especially complement factor H (CFH), increased the sus-
ceptibility to AMD [34–36]. In addition, various complement
activation products were increased in the circulation of AMD
patients, providing evidence for a systemic inflammatory
component to the disease pathogenesis [37–39].

Whether lutein administration could affect the inflam-
matory component of AMD is not clear yet. The first clues
came from studies showing that administering lutein had a
beneficial effect in an experimental model of AMD [40, 41].
Recently, we have reported that daily supplementation with
lutein over a time period of twelve months led to a significant
decrease in the plasma levels of the complement factors:
factor D (FD), C3d, C5a, and sC5b-9 [42, 43].

The activation of the alternative complement pathway
involves a number of cleavage reactions and amplification
steps whereby complement components interact with each
other in a strictly regulated manner. FD is a rate limiting
enzyme in the activation sequence of the alternative pathway
and as such a key player in complement homeostasis [44, 45].
FD is also known as adipsin, since its main source is adipose
tissues, where it is secreted by mature adipocytes [46].
Adipose tissue is also a main storage site for carotenoids such
as lutein and zeaxanthin [47–49]. Whether lutein influences
FD secretion by adipose cells is unknown and was the subject
of the study described here.

2. Methods

2.1. Cell Culture. Simpson-Golabi-Behmel syndrome (SGBS)
preadipocytes were obtained from Professor Wabitsch (Uni-
versity of Ulm, Ulm, Germany) [50]. These cells originate
from an adipose tissue specimen of an SGBS patient and have
been used for a number of studies on adipose differentiation,
adipocyte glucose uptake, lipolysis, apoptosis, regulation of
expression of adipokines, and protein translocation [51].
SGBS preadipocytes at generation 20 were seeded in 25 cm2
culture flasks in DMEM/F12 (Catalog number 31330, Invit-
rogen) containing 1% penicillin/streptomycin (P/S, Invit-
rogen, Catalog number 15140-122), 3.3mM biotin (Sigma-
Aldrich, Catalog number B-4639), 1.7mM D-pantothenic
acid (Sigma-Aldrich, Catalog number P-5155), and 10% fetal
calf serum (FCS) (Gibco Invitrogen, Breda,TheNetherlands)
and cultured for 6 days to reach 90% confluence. Cells
were washed 3 times with phosphate buffered saline (PBS)
and then changed to a serum- and albumin-free differenti-
ation medium consisting of DMEM/F12 supplemented with
2 𝜇mol/L rosiglitazone (Cayman, Catalog number 71740),
25 nmol/L dexamethasone (Sigma-Aldrich, Catalog number
D-1756), 0.5mM methyl iso-buthylxantine (Sigma-Aldrich,
Catalog number I-5879), 0.1𝜇M cortisol (Sigma-Aldrich,
Catalog number H-0888), 0.01mg/mL human transferrin
(Sigma-Aldrich, Catalog number T-2252), 0.2 nM triiodothy-
ronine (T3, Sigma-Aldrich, Catalog number T-6397), and
20 nM human insulin (Sigma-Aldrich, Catalog number I-
1507) at day 0. Medium was refreshed after two days and
at day 4 the medium was changed and cells were further
cultured in DMEM/F12 supplemented with 0.1𝜇M corti-
sol (Sigma-Aldrich, Catalog number H-0888), 0.01mg/mL

human transferrin (Sigma-Aldrich, Catalog number T-2252),
0.2 nM triiodothyronine (T3, Sigma-Aldrich, Catalog num-
ber T-6397), and 20 nM human insulin (Sigma-Aldrich, Cat-
alog number I-1507). Cells were incubated in thismedium for
several days and the culture mediumwas refreshed every two
days. Small lipid droplets became visible after approximately
7 days. After 10 days, approximately 10% are differentiated
and showed massive triglyceride accumulation. On culture
day 20, the cells were filled with high amounts of intracellular
lipids and the differentiation grade was approximately 50–
60%. During the whole process, all cells were cultured under
humidified atmosphere containing 5% CO

2
at 37∘C.

2.2. Experimental Protocol. To study the effect of lutein
(Sigma, Switzerland, Catalog number X6250, purity > 99%),
the mature adipocytes (for culture detail, see above) were
washed three times with phosphate buffered saline (PBS) and
then further incubated in serum-free DMEM/F12 medium
for one day before treatment.Themediumwas supplemented
with only transferrin, D-pantothenic acid, and biotin. Lutein
was dissolved in dimethyl sulfoxide (DMSO, Sigma, Switzer-
land, Catalog number D8418, BioReagent, for molecular
biology, purity ≥ 99.9%) and then serially diluted to the
working concentrations with DMEM/F12 culture medium.
As vehicle control we used the same medium with 0.5%
DMSO solvent. The lutein concentration of 50𝜇g/mL (v/v)
was chosen after performing pilot experiments compar-
ing different concentrations (0.5 𝜇g/mL–50𝜇g/mL, data not
shown).

2.3. Enzyme-Linked Immunosorbent Assay. Supernatants
frommature adipocytes cultured with or without lutein were
collected after 24 and 48 hours and stored at −80∘C for FD
measurements. The secretion level of FD was measured at
a 1/100 dilution by using a commercially available develop-
ment kit (DuoSet) for human complement factor D (R&D
Systems, Minneapolis, USA) according to the manufacturer’s
instructions.

2.4. Quantitative Real-Time PCR (qRT-PCR). The expres-
sion of FD mRNA was assessed by quantitative real-time
PCR (qRT-PCR). Total RNA was isolated from the mature
adipocytes incubated with or without lutein for 48 hours by
using the RNeasy Mini Kit (Qiagen Westburg, Leusden, The
Netherlands) according to the manufacturer’s protocol. The
quantity and purity of the mRNA were measured by using
the NanoDrop system (Thermo Scientific, USA). 500 ng of
each RNA sample was reverse transcribed for the first-strand
cDNA by using the iScript cDNA synthesis kit protocol (Bio-
Rad Laboratories B.V., The Netherlands) and then diluted
40 times with distilled water. The following primers were
purchased from Operon (Sigma-Aldrich, The Netherlands)
and used for real-time PCR (FD forward 5󸀠-GTCCTGGTG-
GCGGAGC-3󸀠, reverse 5󸀠-AGAACCTGCACCTTCCCG-
TC-3󸀠: 𝛽-actin forward 5󸀠-GACTACCTCATGAAGATC-
CT-3󸀠, reverse 5󸀠-GCGGATGTCCACGTCACACT-3󸀠). The
mixture reaction contained 12.5𝜇L SYBR© Green Super-
mix (Bio-Rad), 5 𝜇L diluted cDNA, and 0.3 𝜇M primers in
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Figure 1: The differentiation process of SGBS preadipocytes to mature adipocytes at days 0, 7, 14, and 20.

a total volume of 25 𝜇L. The two-step qRT-PCR was per-
formed under the following cycling conditions which con-
sisted of an initial denaturation at 95∘C for 3min, followed
by 40 alternating cycles of 95∘C for 10 sec and 55∘C for 45 sec,
respectively. All PCR reactions included a cDNA dilution
curve to assess PCR efficiency and all reactions were followed
by amelt curve (55–95∘C). Datawere analyzed by usingMyiQ
Software system (Bio-Rad) and the amount of target cDNA in
each sample was determined by a fractional PCR threshold
cycle number (Ct-value) and compared to the corresponding
Ct-value for the housekeeping gene 𝛽-actin.The relative gene
expression level for each gene was calculated by using the 2-
Delta Delta C(T) method [52].

2.5. Statistical Analysis. Statistical analysis was performed
using SPSS 20.0.0; one-way analysis of variance (ANOVA)
with Post hoc Bonferroni test was used for data analysis. All
values are expressed as mean ± standard error of the mean
(SEM). A value of𝑝 < 0.05was considered statistically signif-
icant.

3. Results

3.1. The Differentiation Process of SGBS Adipocytes. SGBS
preadipocytes were differentiated into mature adipocytes
during 20 days. Lipid accumulation became visible after 7
days and increased further during the differentiation period
(Figure 1). After 20 days, approximately 50–60% of the cells
were fully differentiated as demonstrated by the massive
triglyceride accumulation.

3.2.The Effect of Lutein on FD Secretion byMature Adipocytes.
Lutein was added to mature adipocyte cultures and the mean
FD concentration in the culture medium was measured at
24 h and 48 h. As control, adipocyte cultures that contain
the similar medium with DMSO only (vehicle control) or
cells with medium only (blank group) were used (Figure 2).
The mean FD concentration increased with time in the
blank group from 155.3 ± 3.1 ng/mL at 24 h to 311.8 ±
10.2 ng/mL at 48 h. In the DMSO vehicle control group the
mean FD concentration increased from 174.1 ± 4.3 ng/mL to
357.6 ± 14.5 ng/mL between the 24 h and 48 h time points,
respectively. Addition of lutein to the cultures resulted in
a decreased concentration of FD as compared to the two
control groups. Particularly, a significantly decreased FD level
was observed when comparing the lutein group with the
vehicle control group: 174.1 ± 4.3 ng/mL (DMSO control)
versus 133.3 ± 11.9 ng/mL (lutein) (𝑝 < 0.0001) at 24 h
and 357.6 ± 14.5 ng/mL (DMSO control) versus 271.1 ±
38.7 ng/mL (lutein) (𝑝 = 0.002) at 48 h. When comparing
the blank control with the DMSO vehicle control, it is clear
that DMSO resulted in a slight increase in the FD production
by the adipocytes: 155.3 ± 3.1 ng/mL (blank control) versus
174.1 ± 4.3 ng/mL (DMSO control) at 24 h (𝑝 = 0.017) and
311.8±10.2 ng/mL (blank control) versus 357.6±14.5 ng/mL
(DMSO control) at 48 h (𝑝 = 0.081).

3.3. Lutein Downregulated the mRNA Expression of FD in
Adipocytes. The aforementioned results showed that lutein
inhibited FD protein secretion. To examine whether lutein
also affects FDmRNA expression in adipocytes we harvested
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Figure 2: Factor D (FD) concentration in culture medium from
20-day differentiated SGBS adipocytes incubated for 24 h and 48 h
in culture medium (blank control), 0.5% DMSO (DMSO vehicle
control), or lutein (50 𝜇g/mL) in the presence of 0.5% DMSO
(lutein).

20-day differentiated SGBS adipocytes that were incubated
for an additional 48 h with lutein. We performed a qPCR
analysis whereby FD mRNA expression was measured rela-
tive to 𝛽-actin mRNA (household gene). The results showed
that incubation of mature SGBS adipocytes with lutein for
48 hours significantly downregulated FD mRNA expression
when compared to both the blank control and the vehicle
control (DMSO) (𝑝 < 0.0001 and 𝑝 < 0.0001, resp.)
(Figure 3). No difference was observed in the mRNA expres-
sion between the DMSO group and the blank group (𝑝 =
0.37).

4. Discussion

In this study we show that lutein suppresses factor D (FD)
expression in mature SGBS adipocytes, both at the level of
protein secretion and at the mRNA level. To the best of our
knowledge, this is the first study to examine the influence of
lutein on the expression of FD in human adipocytes. Adding
lutein to SGBS adipocyte cultures resulted in a 23% reduction
at 24 hours and a 24% reduction at 48 hours of the release
of FD as compared to vehicle controls. Adipose tissue is
the main source of FD [46] and earlier data using SGBS
adipocytes already showed that these cells were able to secrete
FD [53]. At the same time, adipose tissue also serves as the
main storage site for carotenoids such as lutein and these facts
prompted us to study a possible interaction between these
two factors [54]. The in vitro observations from this study
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Figure 3: Factor DmRNA expression in 20-day differentiated SGBS
adipocytes incubated for 48 h with culture medium (blank control),
0.5% DMSO (DMSO vehicle control), or lutein (50 𝜇g/mL) in the
presence of 0.5% DMSO (lutein). Bars represent fold change of FD
mRNA expression compared to blank control (∗∗∗𝑝 < 0.0001).

support our earlier in vivo findings showing that taking a
lutein supplement reduces circulating FD levels [42].

How lutein is taken up by adipocytes is not clear yet.
Lutein biosynthesis only occurs in plants, algae, bacteria,
and certain fungi. Humans cannot make lutein and uptake
is dependent on the dietary intake of certain fruits, leafy
vegetables, or eggs [55]. In the gut, lutein is taken up
by enterocytes, packed into chylomicrons, and then trans-
ported via lymphatics, thoracic duct, and bloodstream to
the liver hepatocytes [56]. In the hepatocytes it is bound to
lipoproteins and then transported via the blood to various
sites in the body including the retina and adipose tissue
[57]. Body fat is an important storage site for lutein and
it may compete with other tissues, thereby making it less
available for the macula [58]. Possible differences in adipose
tissue composition and distribution may explain differences
observed in luteinmetabolismbetweenmen andwomen [59].
Both lutein and factor D have separately been implicated in
the pathogenesis of AMD and our observation linking these
two factors is a novel observation [60].

The presence of FD in adipose tissue has been attributed
to its role in the local cleavage of complement component C3,
thereby forming C3a [61]. The carboxy-terminal arginine of
C3a is subsequently cleaved by carboxypeptidase N to gener-
ate C3a-desarg, also known as acylation stimulating protein
(ASP) [62]. ASP interacts with the ASP receptor (C5L2) on
adipocytes, thereby triggering triglyceride synthesis [62].

How FD expression is regulated in adipose tissue did
not receive much attention yet. FD mRNA expression is
increased during the differentiation of preadipocytes to
adipocytes [63]. In addition, FD secretion was measured in
the medium of SGBS adipocytes but not in the medium
of SGBS preadipocytes [53]. On the other hand, in vitro
stimulation with retinoic acid (RA) resulted in a 4-5-fold
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suppression of FD mRNA expression by mouse adipocytes
[64].

Under normal conditions an adipocyte will already have
a lutein store inside the cells [59]. The amount of lutein in
adipose tissue ranges between 0.09Mol (men) and 0.36Mol
(women) [59], which is a few thousandfold higher than the
dose (50𝜇g/mL is equivalent to 87𝜇Mol) used in our study
to load the cells. The SGBS cells we used were cultured under
lutein-free conditions and will thus not yet have acquired
lutein inside the cells. In our experiments we cultured the
SGBS cells for up to 48 hours with lutein with a dose
that is much higher than that found in human plasma
(0.22 𝜇Mol) [25]. Using this short time period we found
that lower doses than the 50 𝜇g/mL did not have an effect.
Further experiments should be done using both longer and
shorter time intervals and with varying doses of lutein to
investigate how different adipose lutein levels might affect
FD expression in our in vitro model. As mentioned above,
an adipocyte in the human body already contains a certain
concentration of lutein and we believe that the level of lutein
in an adipocytewill control the steady-state production of FD.
Future experiments with adipose tissue taken from humans
whereby lutein content is correlated with FD levels will
provide evidence to show whether this hypothesis is correct.

The blood level of ASP (C3a-desarg) has been shown
to be increased in patients with AMD and this has added
support to the hypothesis that AMD is a disease caused by a
hyperactive alternative complement pathway [65]. FD levels
have also been found to be increased in the blood of AMD
patients [36, 37]. As mentioned earlier, FD is the rate limiting
enzyme of the alternative pathway and small changes in its
concentration can potentially have profound effects on the
generation of biologically active products such as C3a, C3a-
desarg, and C5a.

Obesity has been shown to be a risk factor for AMD but
the exact role of adipose tissue in the pathogenesis of AMD
is not yet clear [7, 66]. Plasma levels of FD are associated
with body mass index (BMI) and were shown to be higher
in obese versus nonobese subjects [67]. The evidence shown
above suggests a possible role for adipocyte biology in AMD
pathogenesis [60].

A role for FD in retinal disease became apparent from
an experimental mouse model showing that photoreceptors
were protected from light induced damage in FD knockout
animals [68]. Control of FD has now been brought to the
clinic with the availability of a humanized IgG Fab murine
anti-factor D antibody (FCFD4514S) that has been shown to
block the formation of the alternative pathway C3 convertase
[69]. The FD antibody was named Lampalizumab, and phase
1 and phase 2 trials, whereby it was given intravitreally in
patients with geographic atrophy, have shown promising
results [70] and are now followed by two phase-3 trials (these
trials are registered with https://clinicaltrials.gov/).

In conclusion, we have shown that lutein suppresses FD
expression in and secretion by human SGBS adipocytes. This
observation may explain the decrease in circulating FD with
daily lutein supplementation that we observed in an earlier
study [42]. It might offer a novel therapeutic approach to

prevent the progression of AMD and other inflammatory
diseases that are modulated by FD.
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