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Abstract: Jerusalem artichoke is an important natural matrix for inulin production. In this experiment,
response surface methodology (RSM) was employed to optimize the spray-drying parameters in
order to determine the maximal inulin yield. For this study, three independent variables (heating
temperature (Tª, 110–120 ◦C), creep speed (V, 18–22 rpm) and pressure (P, 0.02–0.04 MPa)) were used
in the experimental design. Using the Box–Behnken design, the optimal parameters obtained were:
drying temperature 114.6 ◦C, creep speed 20.02 rpm, and pressure: 0.03 MPa. The inulin yield, water
content and particle size of inulin obtained by spray-drying and freeze-drying were compared. In
this regard, the spray-dried inulin consisted of a white powder having a fine particle size, and the
freeze-dried inulin had a pale-yellow fluffy floc. On the other hand, the drying methods had a great
influence on the appearance and internal structure of inulin powder, since the spray-dried inulin
had a complete and uniform shape and size, whereas the freeze-dried inulin had a flocculated sheet
structure. The analysis showed that the spray-drying led to a higher inulin yield, lower water content
and better surface structure than freeze-drying.

Keywords: inulin; response surface methodology; spray-drying; Jerusalem artichoke

1. Introduction

Jerusalem artichoke is widely planted in northwest China due to its ability to be cold resistant,
containing in its tubers ≈14–19% inulin [1,2]. Inulin is a natural stored carbohydrate, which consists of
2 to 70 fructose repeating units connected by β-(2,1)-d-fructosyl-fructose bonds [3–6]. Inulin is now
widely used in food due to its unique functional properties [7,8]. For example, inulin is now used as a
sugar substitute since it does not cause blood sugar fluctuations [9]. The fructose syrup formed after
the degradation of inulin can promote the growth of beneficial bacteria, especially bifid bacteria with
health and anti-cancer effects in the large intestine [10,11]. Fructose syrup also has a positive effect on
blood sugar and fat reduction, as well as on the bioavailability and immunomodulation of minerals.

The degree of polymerization (DP) and molecular weight of inulin molecules differs according to
the plant material used, with inulin of DP <10 being known as fructo-oligosaccharides or short-chain
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inulin, and inulin of DP > 23 called polyfructose or long-chain inulin [3,12]. Moreover, as a non-digestible
carbohydrate, inulin can be also used as a fat substitute for food [13].

Inulin is mostly sold in powder form for easier handling, transportation, storage and
consumption [14]. The drying technology applied to obtain inulin powder is very important in
determining its quality. Currently, the drying methods for inulin preparation are mainly freeze-drying
and spray-drying [15]. Freeze-drying includes sublimation and desorption, and usually takes two or
three days, obtaining a porous product and loose structure [16]. Freeze-drying is relatively demanding
for packaging and storage, since the product absorbs moisture and can be easily oxidized when
exposed to air [17,18]. Moreover, it is a process with high production cost and limited efficiency.
Therefore, the most common drying method used in food industry is spray-drying mainly due to its
high cost-effectiveness and high flexibility [19].

Spray-drying uses a nebulizer to disperse the liquid into fine droplets and rapidly evaporates the
solvent in a hot drying medium to form a dry powder product. Custom production can be achieved
by varying parameters such as temperature, viscosity, feed rate or atomization pressure [20]. The
particle size of the resulting product has a uniform size and good sphericity. For instance, in a previous
study, the properties of Jerusalem artichoke pectin using different drying methods (freeze-drying,
spray-drying and vacuum drying) were evaluated, and the authors obtained the best conditions after
spray-drying, leading to pectin with the highest strength [21].

Therefore, the purpose of this study was to optimize the spray-drying process parameters using
response surface methodology in order to obtain the maximal inulin yield. Moreover, the effect of
different drying technologies on morphological properties of inulin were evaluated and compared.

2. Results and Discussion

The extraction yield of this study under the applied extraction conditions (ultrasound power of
120 W, temperature of 70 ◦C) was determined as ~9.5%.

2.1. Optimization of Spray-Drying Process by Response Surface Methodology

The test design of spray-drying and the results obtained after using response surface methodology
to optimize inulin extraction are shown in Table 1. Moreover, the ANOVA analysis is listed in Table 2.

Table 1. Drying response surface analysis test design and results (each test was done 3 times).

Run
Coded Variables Actual Variables

Yield (%)
A B C X1 X2 X3

1 0 1 −1 115 22 0.02 6.86 ± 0.03
2 0 0 0 115 20 0.03 7.49 ± 0.13
3 1 1 0 120 22 0.03 6.23 ± 0.06
4 −1 0 1 110 20 0.04 5.77 ± 0.02
5 −1 0 −1 110 20 0.02 7.35 ± 0.02
6 1 0 1 120 20 0.04 5.65 ± 0.04
7 0 1 1 115 22 0.04 5.31 ± 0.07
8 0 −1 1 115 18 0.04 5.97 ± 0.05
9 1 0 −1 120 20 0.02 6.58 ± 0.17
10 0 0 0 115 20 0.03 8.31 ± 0.11
11 0 −1 −1 115 18 0.02 6.48 ± 0.01
12 −1 1 0 110 22 0.03 6.56 ± 0.08
13 0 0 0 115 20 0.03 7.96 ± 0.10
14 0 0 0 115 20 0.03 8.03 ± 0.11
15 1 −1 0 120 18 0.03 7.03 ± 0.01
16 0 0 0 115 20 0.03 8.13 ± 0.15
17 −1 −1 0 110 18 0.03 6.13 ± 0.04

A, X1 represents temperature (◦C); B, X2 are the number of creep speed(rpm) and C, X3 are the pressure (MPa).
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Table 2. ANOVA analysis of experimental data.

Source Sum of
Squares DF Mean

Square F-Value p-Value
Prob > F Significance

Model 13.35 9 1.48 15.56 0.0008 **
A 0.013 1 0.013 0.13 0.7248 N
B 0.053 1 0.053 0.55 0.4809 N
C 2.61 1 2.61 27.39 0.0012 **

AB 0.38 1 0.38 3.97 0.0866 N
AC 0.11 1 0.11 1.11 0.3274 N
BC 0.27 1 0.27 2.84 0.1360 N
A2 1.82 1 1.82 19.07 0.0033 **
B2 2.97 1 2.97 31.14 0.0008 **
C2 4.12 1 4.12 43.26 0.0003 **

Residual 0.67 5 0.095
Lack of Fit 0.29 3 0.098 1.04 0.4645 N
Pure Error 0.37 4 0.094
Cor Total 14.01 16

R2 0.9524
AdjustedR2 0.8912

A represents temperature (◦C); B represents the number of creep speed (rpm) and C represent the pressure (MPa).
In the table above the ** means significant differences at p < 0.01, N: not significant at p > 0.05.

The test results in Table 1 are regression fitted, and the final equation for obtaining the coding
factor by data analysis is shown in Equation (1). The regression of the actual factor is shown in
Equation (2).

Y = 7.98− 0.04×A− 0.081× B− 0.57×C− 0.31×AB + 0.16×AC− 0.26× BC− 0.66×A2
− 0.84× B2

− 0.99×C2 (1)

y = −496.291 + 6.554×X1 + 12.281×X2 + 422.825×X3 − 0.031×X1X2 + 3.250×X2X3 − 13×X1X3 − 0.026×X1
2
− 0.210×X2

2
− 9895×X3

2 (2)

The overall model p-value is 0.0008 < 0.01, demonstrating that the regression equation is very
significant, and the “Lack of fitting p-value” is 0.4645 > 0.05, indicating that the lack of fitting is not
significant. It shows that the fitting degree of the equation is relatively good. Regression analysis of
the experimental regression equation (Table 2) showed that A2, B2 and C2 terms had a very significant
effect on inulin yield. The pressure had a significant effect on inulin yield (p < 0.05). Moreover, the
influence of the factors can be ordered according to the importance in the following row: heating
temperature < creep speed < pressure.

Figure 1 provides a good view of the contour plot and the 3D response surface profiles, clearly
showing the effect of the interaction of the three factors on the response. Figure 1A–C shows the
effects of temperature, creep speed, and pressure on inulin yield. When the temperature increased
from 110 ◦C to 120 ◦C, the yield was observed to first increase, and afterwards decrease. This fact can
be attributed to an enhanced drying process when heating temperature was increased. However, it
can also lead to the decomposition of inulin molecules. In addition, the increase of creep speed and
pressure led to the same trend regarding inulin yield variation.

According to the experimental data and model analysis, the maximized inulin yield, could be
achieved under the optimal conditions: heating temperature of 114.6 ◦C, creeping speed of 20.02 rpm,
and pressure of 0.03 MPa, leading to an inulin yield of 8.52%. To verify the availability and reliability
of the regression model obtained in the design of the response surface test, the above-mentioned
optimal preparation parameters were used for the verification test. For the convenience of operation,
the heating temperature was set to 115 ◦C, the creeping speed was 20 rpm, the pressure was 0.03 MPa,
and three assays were performed in parallel. In these verification experiments, the inulin yield was
8.65 ± 0.69%, which is close to the predicted value, and indicates that the equation fits well with the
real situation.
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Figure 1. Effect of interaction of various factors on inulin yield.

2.2. Comparison between Spray-Drying and Freeze-Drying

The results of test indexes of inulin obtained from spray-drying and freeze-drying are presented
in Table 3.
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Table 3. Effect of drying method on inulin.

Method Yield (%) Water Content (%) Particle Size (nm)

Freeze-drying 7.02 ± 0.56 4.34 ± 0.21 790.9 ± 80
Spray-drying 8.65 ± 0.69 3.49 ± 0.67 567.7 ± 37

As it is clearly shown in Table 3, the inulin yield obtained after applying spray-drying is higher
than that obtained after freeze-drying. This may be due to the large amount of inulin being adhered to
the ware after lyophilization, resulting in loss of inulin. However, the difference between the moisture
contents is not significant. As it is shown in Figure 2a,b, the spray-dried inulin consisted of a white
powder having a fine particle size, and the freeze-dried inulin had a pale-yellow fluffy floc. A similar
phenomenon was also observed after drying loach peptides, where spray-drying led to a less colored
peptide powder compared to freeze-drying [22].
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The SEM images of inulin from different drying methods are shown in Figure 3. As can be seen in
the figure, drying methods had a great influence on the appearance and internal structure of inulin
powder. The spray-dried inulin had a complete and uniform shape and size, no obvious adhesion, and
a granular morphology, but the surface had concave folds, which is mainly caused by the different
drying strength of the different parts of the droplet during the spray-drying process. During the
spray-drying process, the material is dispersed into tiny droplets by the atomizer, quickly contacts
with the hot air, and is dried into a powder in a short time. The rapidly increasing surface tension
and the reduced water diffusion rate led to the formation of dent wrinkle and spherical surface. The
freeze-dried inulin had a more spherical structure compared to the spray-dried inulin, probably due to
the relatively mild change during the freezing process.Molecules 2019, 24, x 6 of 9 
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3. Materials and Methods

3.1. Materials and Chemicals

Fresh Jerusalem artichoke was purchased from a local supermarket of Wuhan, Hubei, China.
The other chemicals used in the present study were of analytical grade and were purchased from
Sinopharm Chemical Reagent Co., Ltd (Shanghai, China).

3.2. Preparation of Jerusalem artichoke Extract

One kilogram of fresh Jerusalem artichoke root (washed using tap water and sliced prior its use)
and 5 liters of tap water were added into an ultrasonic circulating extraction equipment (TGCXZ-10B,
frequency 59 kHz, up to1000 W power, Beijing Hong Xiang Long Co., Ltd, Beijing, China) equipped
with an ultrasound horn-type probe of 20 mm diameter. The ultrasound power was set at 120 W and
the extraction was carried out at a temperature of 70 ◦C for 40 min [23]. The extract was initially filtered
to remove the pulp, then passed through a 1 µm microfiltration membrane to remove large particles of
tissue, and finally filtered with a 50 kDa membrane to obtain the permeate [2], which was stored at
−20 ◦C until further use.

3.3. Preparation of Inulin Powder

Inulin powder was prepared using both spray-drying and freeze-drying. Response surface
methodology (RSM) was used to optimize the spray-drying parameters. The coding and actual level of
independent variables of the process are shown in Table 4. Based on previous single factor experiments,
the three independent variables used in the experimental design were heating temperature (Tª,
110–120 ◦C), creep speed (V, 18–22 rpm) and pressure (P, 0.02–0.04 MPa). According to Box–Behnken
design, the experimental runs performed are listed in Table 1.

Table 4. Coded levels of temperature, creep speed and pressure.

Variables
Code Level

−1 0 1

Heating temperature (A) ◦C 110 115 120
Creep speed (B) rpm 18 20 22

Pressure (C) MPa 0.02 0.03 0.04

The test data was statistically analyzed using Design-Expert 7.0.0 (Stat Ease Inc., Minneapolis,
MN, USA). The inulin yield (Y) was fitted to a quadratic regression model for response surface analysis.
As shown in Equation (3):

Y = β0 + β1A + β2B + β3C + β4AB + β5AC + β6BC + β7A2 + β8B2 + β9C2 (3)

where A, B and C correspond to the coded independent variables, namely heating temperature, creep
speed and pressure. The β0 value represents the corresponding regression coefficient. The experiment
was randomized to maximize the effect of unexplained variability on observed responses due to
exogenous factors.

Five hundred milliliters of clarified inulin juice were used for the drying experiment with a
spray-dryer (YC-2000), purchased from Ningbo Haoyu Instrument Co., Ltd (Ningbo, Zhejiang, China).
The sample solution was pumped through a nozzle to the countercurrent drying chamber using a
peristaltic pump. Each solution of inulin was preheated to a certain temperature before each feeding
(inlet temperature is higher than 60 ◦C, and outlet temperature > 50 ◦C). Spray-drying parameters for
maximal inulin yield were obtained using a response surface methodology assay.
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As a control sample, 500 mL of inulin juice were used for freeze-drying. The juice was pre-frozen in
a refrigerator at −20 ◦C for over 24 h, and then freeze-dried at −50 ◦C for 72 h, using an ALPHA 2-4 LD
plus freeze dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Oster ode am Harz, Germany) [14].

3.4. Characterization and Analysis

3.4.1. Determination of Inulin Yield

The yield of inulin was calculated as follows:

Y =
mp

M
× 100% (4)

where mp (kg) is the mass of inulin powder obtained from 5 L extract, M (kg) is the mass of Jerusalem
artichoke used in the extraction to obtain 5 L of extract.

3.4.2. Determination of Water Content

The water content in the inulin solution was calculated using the mass difference method. Samples
were dried in an oven at 105 ◦C for a certain period of time and then weighed within 30 seconds. The
above procedure was repeated until weight was constant (the difference in weight of two consecutive
weightings was less than 2 mg). The water content (W) of the sample was calculated according to
Equation (5):

W =
m−m0

m
× 100% (5)

where m (kg) is the mass fresh material, m0 (kg) is the mass of dried material.

3.4.3. Analysis of Particle Size and Surface Structure of Inulin Powder

The particle size of inulin powder was measured using a Malvern Zen 3600 Zeta sizer instrument
(Malvern Instrument, Malvern, UK). The surface structure of inulin obtained by both freeze-drying
and spray-drying was analyzed using scanning electron microscopy (SEM), S-300N (Japan Hitachi,
Japan) [12,14,15,24].

3.5. Statistical Analysis

An ANOVA analysis was performed to evaluate the differences between freeze-drying and
spray-drying. Differences at p < 0.05 were considered to be significant.

4. Conclusions

Inulin powder was prepared through spray-drying and freeze-drying. The results showed that
inulin yield firstly increased when heating temperature, creeping speed and pressure were increased,
but then decreased. After applying response surface methodology, the maximal inulin yield was 8.52%,
which was obtained under the optimal conditions of heating temperature ≈114.6 ◦C, creeping speed of
20.02 rpm, and pressure of 0.03 MPa. The inulin yield obtained from spray-drying was slightly higher
since loss of inulin may occur after lyophilization during the freeze-drying process. The moisture
content of inulin—which is related to the shelf-life—obtained from both processes did not show any
significant differences. Freeze-drying resulted in a more spherical structure while spray-drying led to
fine inulin particles.
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