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Bacterial chemotaxis in a microfluidic T-maze
reveals strong phenotypic heterogeneity in
chemotactic sensitivity
M. Mehdi Salek1,2,4, Francesco Carrara1,2,4, Vicente Fernandez1,2, Jeffrey S. Guasto3 & Roman Stocker 1,2

Many microorganisms have evolved chemotactic strategies to exploit the microscale het-

erogeneity that frequently characterizes microbial habitats. Chemotaxis has been primarily

studied as an average characteristic of a population, with little regard for variability among

individuals. Here, we adopt a classic tool from animal ecology – the T-maze – and implement

it at the microscale by using microfluidics to expose bacteria to a sequence of decisions, each

consisting of migration up or down a chemical gradient. Single-cell observations of clonal

Escherichia coli in the maze, coupled with a mathematical model, reveal that strong hetero-

geneity in the chemotactic sensitivity coefficient exists even within clonal populations of

bacteria. A comparison of different potential sources of heterogeneity reveals that hetero-

geneity in the T-maze originates primarily from the chemotactic sensitivity coefficient, arising

from a distribution of pathway gains. This heterogeneity may have a functional role, for

example in the context of migratory bet-hedging strategies.
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The habitats of microorganisms are often rich in chemical
gradients, whether in oceans1, soil2, or the human body3.
Swimming cells have evolved advanced sensing strategies

to exploit chemical gradients, and the resulting process—che-
motaxis—allows them to move towards favorable conditions or
away from harmful ones. The life of a motile microorganism is
thus often a sequence of gradient-navigation events, each repre-
senting a chemotactic decision of how rapidly the cell moves up
or down the gradient.

Chemotaxis is a fundamental behavioral strategy in a range of
unicellular biological systems, including cancer cells during
metastasis4, spermatozoa migrating toward an egg5, and neu-
trophils moving toward inflammation or infection sites6. Among
bacteria, examples of chemotaxis are many and diverse, ranging
from Escherichia coli homing in on multiple chemoattractants7, to
Helicobacter pylori migrating toward the mucus lining of the
stomach8, to Vibrio cholerae swimming toward the intestinal
mucosa9, to Vibrio coralliilyticus chemotaxing toward the mucus
of its coral host10, to multiple species of marine bacteria swim-
ming toward dissolved organic matter11,12. The chemotactic
performance of a population also differs greatly among species.
Marine bacteria, for example, typically exhibit higher chemotactic
velocity and tighter chemotactic accumulation than enteric
bacteria13.

Chemotaxis has largely been regarded as an average char-
acteristic of a population. However, it has now become clear for
many biological functions that—even in the absence of genetic
variation or environmental cues—intracellular biochemical noise,
arising from stochastic gene expression and partitioning of pro-
teins and mRNA at cell division, can induce the differential
expression of proteins and functional molecules among cells14–18.
Such purely phenotypic heterogeneity, or nongenetic diversity19,
has been demonstrated in a number of microbial systems, for
processes ranging from growth20 to attachment21. Among these,
one important example of cell-to-cell variation in the distribution
of functional parameters is heterogeneity in the amount of pro-
teins involved in chemotaxis22,23, which could lead to a non-
uniform response to chemoattractants of cells within a
population. Having a distribution of phenotypes can be beneficial
for bacterial populations, for example, in bet-hedging and
division-of-labor strategies, or community self-regulation24,25.

Within the chemotaxis pathway of E. coli, one of the most
extensively characterized chemosensory systems, there are several
potential sources of nongenetic diversity. These include the
number of transmembrane chemoreceptors that bind ligands and
repress the autophosphorylation of the protein CheA; the mes-
senger proteins CheY and CheZ, which regulate the flagellar
switching rate from counter-clockwise to clockwise by phos-
phorylation and dephosphorylation; and the proteins CheR and
CheB, which regulate the adaptation time by altering the sensi-
tivity of the receptors via methylation and demethylation,
respectively7. Variability in the expression of proteins within the
chemotaxis pathway is expected to generate a distribution of
chemotactic performances within a population by affecting
multiple traits that contribute to chemotactic performance19.
Three fundamental phenotypic traits are the tumble bias, which
measures the probability of a cell tumbling, the pathway gain,
which determines how strongly a cell perceives and amplifies a
given gradient, and the adaptation time, which measures the
timescale needed for the chemotactic machinery to rescale the
value of the gradient over the background concentration19,26. The
tumble bias, together with the swimming speed, characterizes the
random walk in the absence of a chemical gradient, and deter-
mines the diffusivity of the bacteria. All these traits contribute to
the chemotactic velocity, which is the average drift of the cells in
the direction of a chemical gradient. The chemotactic sensitivity,

which is the coefficient of proportionality between the chemo-
tactic velocity and the gradient27, is a combined measure of the
chemotactic performance. Recent experiments28 demonstrated
that heterogeneity in the tumble bias induces differential migra-
tion of clonal E. coli cells along a gradient. However, how sources
of heterogeneity in multiple other phenotypic traits within a
population affect the distribution of the chemotactic sensitivity
coefficient among cells is not well understood. Here, we address
this gap and show how nongenetic diversity in the chemotactic
sensitivity coefficient affects the chemotactic migration of cells in
different sensing regimes, namely the linear-sensing regime, when
cells respond to the absolute value of the gradient, and the
logarithmic-sensing regime, when cells respond to the gradient
rescaled by the absolute concentration29,30.

We quantify the degree of heterogeneity in the chemotactic
sensitivity coefficient within a clonal bacterial population by using
a new microfluidic device. The device has a branching maze
geometry that allows the spatial sorting of the better chemotaxers
from within a population while simultaneously assessing their
chemotaxis properties. Branching maze geometries have been
widely used in ecology, including to test chemical preferences in
birds31,32, maze navigation, decision-making, and learning in
nematodes33, collective behavior in microbes34, chemotaxis to
organic chemicals in slime molds35, and the routing of plant roots
in response to volatile chemicals36. In many cases, the funda-
mental geometrical elements of a maze are Y- or T-junctions,
which demands a binary choice from individual organisms, and
the distribution of choices within a population can then be
assessed by counting the organisms within each arm of the
junction.

Inspired by the classic T-maze often used in ecological studies,
we designed an iterative microfluidic T-maze to study the che-
motactic decision-making of bacteria and specifically to quantify
the variability in the chemotactic sensitivity coefficient within a
population. In the maze, bacteria are faced with a series of con-
secutive encounters with a gradient, implemented as a series of
four consecutive T-junctions. Each T-junction necessitates a
decision by the bacteria, consisting of the migration up or down
the gradient of chemoattractant at the junction. The likelihood
that an individual bacterium will successfully navigate the gra-
dient and make the correct decision depends on the sensitivity of
its chemotaxis pathway. Using single-cell video microscopy and
image analysis, we quantified the behavior of hundreds of cells at
each junction by measuring the relative number of cells in the up
or downgradient portion of the junction. A mathematical model
accounting for phenotypic heterogeneity captures the funda-
mental sorting mechanism and provides a quantitative char-
acterization of heterogeneity in the chemotactic sensitivity
coefficient among individual cells. Comparison of the distribution
of cells among consecutive junctions reveals that the chemotactic
abilities of cells are heterogeneous even within a clonal popula-
tion, and that our T-maze is able to sort the highly chemotactic
cells from within a heterogeneous population.

Results
Microfluidic T-maze assay. The microfluidic T-maze consists of
a sequence of T-junctions overlaid on a background gradient of a
chemoattractant (Fig. 1; Methods). Each T-junction comprises a
microchannel segment oriented perpendicular to the chemoat-
tractant gradient that branches into two microchannel segments
parallel to the chemoattractant gradient, where cells face the
decision of swimming up or down the gradient (Fig. 1). The
operational principle of the maze is that, at a T-junction, che-
motactic bacteria statistically bias their swimming preferentially
in the direction of the gradient, so that a fraction of the
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population greater than half will move into the branch of the T-
junction that harbors a higher concentration of chemoattractant.
However, since the chemotaxis process has a stochastic compo-
nent, a fraction of cells will still migrate into the other branch.
The proportion of cells entering the branch of the T-junction with
higher chemoattractant concentration represents a measure of the
strength of the population’s chemotactic sensitivity coefficient.

To sort chemotactic cells in the face of this inherent
stochasticity, the microfluidic maze—unlike traditional T-
mazes31,32 —comprises four T-junctions arranged in series. At
each subsequent T-junction, the absolute concentration of the
chemoattractant is higher, but the concentration gradient is the
same for all T-junctions (Fig. 1b). Cells reaching the branch with
the highest chemoattractant concentration after the fourth T-
junction will have made the correct decision four times. The
distribution of cells at each junction is used to quantify the
chemotactic sensitivity coefficient of that subpopulation of cells
and then compared to other junctions.

Chemotactic cell sorting of a mixed population. To demon-
strate the principle and efficacy of the microfluidic T-maze in
sorting cells by chemotactic sensitivity coefficient, we first per-
formed experiments with a mixture of two strains of Mar-
inobacter adhaerens, a motile marine bacterium that uses
chemotaxis to home in on phytoplankton exudates37. A wild-type

strain (WT) and a mutant strain deficient in chemotaxis (ΔcheA-
cfp) were injected into the maze at a 1:1 concentration ratio. At
each junction, WT cells demonstrated a clear preference for the
chemoattractant (liquid 2216 medium; Methods), consistently
migrating more strongly into the branch of the T-junction con-
taining higher chemoattractant concentration (Fig. 2a). In con-
trast, ΔcheA-cfp cells divided in equal proportions between those
migrating up and down the gradient, resulting in sequential
dilution by a factor of two at each subsequent junction (Fig. 2a).

The difference in the chemotactic behavior of the two strains
was quantified by computing a choice factor, CF= (NUP−
NDOWN)/(NUP+NDOWN), where NUP and NDOWN are the
numbers of cells observed in the branch of the T-junction having
the higher and the lower chemoattractant concentration,
respectively. The choice factor ranges from −1 to +1 and is
proportional to the tendency of cells to swim up the gradient,
with 0 indicating no preference. We found that CF was positive
(0.43 ± 0.16) for WT cells and approximately zero (−0.05 ± 0.14)
for ΔcheA-cfp cells (mean ± s.d. over three experimental repli-
cates; Fig. 2c). The behavioral difference between the two strains
led to sorting of the WT strain, whose concentration increased
with distance into the positive branch of the maze relative to that
of the nonchemotactic mutant, as a result of the stronger dilution
of the latter at each junction (Fig. 2). This sorting is captured by a
second metric, the sorting index Sn, defined as the ratio of the
number of WT cells to the number of ΔcheA-cfp cells at a given
junction, n. The sorting index was normalized to 1 in junction 1
(to account for any small differences in the initial cell
concentration of the two strains) and was found to progressively
increase to 2.6 ± 1.5 in junction 4 (Fig. 2b), denoting an increasing
ratio of WT to mutant cells in subsequent junctions.

Chemotactic cell sorting within a clonal population. Having
demonstrated that the microfluidic T-maze sorts chemotactic
cells in a mixed population, we then used it to investigate and
quantify the heterogeneity in the chemotactic sensitivity coeffi-
cient of cells belonging to a clonal population. For these experi-
ments we used E. coli (HCB 33), because of the extensive
characterization of chemotaxis in this species at the population
level since the seminal work of Berg38 and of the availability of
established mathematical models of chemotaxis39. Chemotactic
sorting experiments were performed using a gradient of methy-
laspartate (MeAsp), a nonmetabolizable analog of aspartate and a
known attractant for E. coli. Two gradients were tested, one
ranging between 0 and 5 µM MeAsp and one between 0 and 500
µM MeAsp (the numbers indicate the level of the chemoat-
tractant for the buffer and the source), to capture two different
chemotactic regimes. In the lower-MeAsp regime (0–5 µM), cells
are in the linear-sensing regime29,30 and respond to the absolute
value of the chemical concentration gradient, ∇C (which is
constant throughout our maze). In contrast, in the higher-MeAsp
regime (0–500 µM), cells are in the logarithmic-sensing
regime29,30, and respond to the relative magnitude of the che-
mical gradient, ∇C/C, i.e., to the MeAsp gradient rescaled by the
MeAsp concentration, C (∇C/C decreases in successive junctions
of the maze).

We quantified the profile of cell concentration, B(y) (with y
being the direction of the gradient), along each junction of the
maze for both the linear-sensing and the log-sensing regimes
(Fig. 3). Cell concentration profiles are skewed in the direction of
the gradient for both regimes, denoting positive chemotaxis, yet
more so in the log-sensing regime because of the 100-fold higher
levels of chemoattractant. Furthermore, in the log-sensing regime
(but not in the linear-sensing regime) the cell distribution skewed
less consistently from junction 1 to 4 (Supplementary Fig. 1). This
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Fig. 1 The microfluidic T-maze. a A microfluidic T-maze device. The scale
bar shown in the figure is 2 mm. b By using source and buffer channels
running parallel to the maze to generate a steady chemoattractant gradient
within the hydrogel base, the device creates concentration gradients that
have the same magnitude through consecutive junctions (here shown for
log-sensing). c Schematic of a mixed population of cells swimming through
the maze. Better chemotaxers (yellow) become increasingly concentrated
at sequential junctions. d Schematic of the device and e cross-section
(corresponding to the red dashed line in (d)). Flow of the chemoattractant
through the source channel generates a gradient in the hydrogel, and hence
also along each T-junction section (vertically oriented channel segments in
(d)) of the maze channel. A droplet containing cells is placed at the inlet
shown in (d), and cells swim from left to right through the maze, making
multiple chemotactic decisions through the consecutive junctions
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decrease is in agreement with theoretical expectations, owing to
the decrease in ∇C/C in subsequent junctions (Methods).

To determine the presence and magnitude of heterogeneity in
the chemotaxis of individual cells within the population, we
compared the experimentally determined bacterial concentration
profiles in the four junctions with the results from two-dimensional
numerical simulations of the bacterial transport equation (per-
formed in COMSOL Multiphysics; Methods), in the same
geometry as in the experiments. In the simulations, the diffusion
component models the random motility of bacteria (with diffusion
coefficient40 D= 330 μm2 s−1), while the advection component
models the chemotactic bias of cells toward the chemoattractant.
The advection term is implemented through a chemotactic
velocity, vc, with vc,G= χG∇C in the linear-sensing regime and
vc,L= χL∇C/C in the log-sensing regime (Methods). Here, χG and
χL are the chemotactic sensitivity coefficient for the linear-sensing
and log-sensing regimes, respectively (not to be confused with the
receptor sensitivity41, Methods). The average chemotactic sensi-
tivity coefficients of the entire population were determined by
fitting the bacterial concentration profile predicted from the
numerical simulations to the experimentally observed distribution
at junction 1 (Supplementary Fig. 1a, b), separately for the linear-
sensing and the log-sensing regimes (Methods). The fit was
accurate for both regimes (Fig. 3a, b and Supplementary Fig. 1a, b),
indicating that the correct functional form of the cell distribution
profiles is predicted by the simulations at junction 1, and yielding
χG= 6.4 × 102 μm2 s−1μM−1 and χL= 1.4 × 103 μm2 s−1 (note that
we here call both χG and χL chemotactic sensitivity coefficients
despite them having different units).

Using these values of the full-population-averaged chemotactic
sensitivity coefficient to predict the cell distribution in junctions
2–4 with the model, we found a consistent deviation between the
predicted and the observed cell distribution profiles. In particular,
a progressively greater number of bacteria in later junctions
accumulated up the gradient in the experiments compared to the
simulations (Fig. 3), for both the linear-sensing and the log-
sensing regimes (Supplementary Fig. 1) and across multiple time
points (Supplementary Fig. 2). This discrepancy points to
heterogeneity in the chemotactic sensitivity coefficient of the
population, whereby cells reaching subsequent junctions do not
represent a uniform subsample of the full population at junction

1, but a subpopulation with a higher chemotactic sensitivity
coefficient than the average.

To quantify the strength of the chemotactic response at each
junction, we estimated a metric proportional to the chemotactic
velocity, vc, which measures the speed at which cells move up a
gradient (Supplementary Fig. 1). These estimates were obtained by
using the relation between vc and the slope of the bacterial
concentration profile, B(y). For a one-dimensional gradient, the
steady-state solution of the bacterial transport equation (Methods)
yields B(y)= B0 exp[(vc/D)y]. We thus compared the slope of log
[B(y)/B0] vs. y, which at steady-state would be equal to vc/D,
between experiments and simulations. Since the experiments did
not reach steady state, at each T-junction we estimated the slope of
the distribution only in the portion of the channel between 750
and 1100 μm (Supplementary Fig. 1, Supplementary Table 1),
which corresponds to the section of the channel running up the
gradient. This choice was made to obtain an estimate of the slope
from the exponential scaling of the concentration profile, away
from the middle of the junction where the diffusive flux of bacteria
over the x-direction creates an accumulation in the bacterial
profiles. This accumulation tends to dissipate over time (Supple-
mentary Fig. 2) as the flux dissipates (at steady state the
equilibrium solution converges to the exponential profile). For
the linear-sensing regime, the slope of log [B(y)/B0] (calculated
over the branch leading up the gradient, see Methods for details)
in the simulations decreased more than 20-fold from junction 1
(8.8 ± 0.4 × 10−4 μm−1) to junction 4 (0.35 ± 0.07 × 10−4 μm−1),
whereas in the experiments the opposite trend was found, with
the slope increasing more than 5-fold from junction 1 (4.5 ± 1.5 ×
10−4 μm−1) to junction 4 (25 ± 3 × 10−4 μm−1).

The increase in the slope of the bacterial concentration profile
(i.e., the higher value of vc/D) is caused by cells with a higher
chemotactic sensitivity coefficient—and not by cells with a lower
diffusivity—reaching subsequent junctions. Given that the
diffusivity D is proportional to v2τ0, where v is the swimming
velocity and τ0 is the typical reorientation time42, a cell can
modulate its diffusivity by changing its velocity or its reorienta-
tion time. Tracking cells swimming in the T-maze revealed
variation in the swimming velocity of the seeding population at
the inlet (Supplementary Fig. 3), with faster cells reaching later
junctions at earlier times. Yet, after an initial transient, the mean

Junction 1

Junction 2

Junction 3

Junction 4

Non-chemotactic mutant, ΔcheA

Wild type, WT

S
n

6

0

3

a
b

1 2 3 4

Junction, n

–0.5

0

0.5

1

C
F

c

4321

Junction, n

C
he

m
oa

ttr
ac

ta
nt

 c
on

ce
nt

ra
tio

n

Fig. 2 Demonstration of cell sorting in the microfluidic T-maze using marine bacteria. a The microfluidic T-maze sorts Marinobacter adhaerens wild type
(red) from a nonchemotactic mutant (ΔcheA; blue) in an initial 1:1 mixture as cells migrate through the device. Chemoattractant concentration (liquid 2216
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over three replicates
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swimming speeds for the cells within the four junctions were
observed to converge to the same value (Supplementary Fig. 3),
whereas the spatially skewed distributions of cells caused by
chemotaxis were preserved over time along the junctions
(Supplementary Fig. 2). The increase in the swimming speed
observed at later junctions (Supplementary Fig. 3) could be
induced by an increase in the reorientation time τ0 or by an
increase in the run speed vr (see Supplementary Discussion). The
early wave of cells that show a higher velocity could in general be
a product of either a higher run speed or a lower tumble bias (the
latter would be in agreement with previous results28).

Our detection of a positive change in the bacterial concentra-
tion profile and hence in the chemotactic sensitivity coefficient
must be a product of an increase in the pathway gain
(Supplementary Fig. 1). We note that the chemotactic sensitivity
coefficient still depends on the swimming speed, on the
adaptation time, and on the tumble bias, but we do not expect
these dependences to affect our conclusions. First, changes in
swimming speed would not affect the slope of the bacterial
concentration profile, because the chemotactic sensitivity coeffi-
cient and the diffusivity have the same quadratic dependence on
the swimming speed, and the slope is determined by their ratio
(Methods, Eqs. (3)–(7)). Physiological variation in the swimming
speed generates a distribution of diffusivities. Numerical simula-
tions accounting for this distribution of diffusivities yielded a

minor decrease in the slope of the bacterial concentration profile
in subsequent junctions, compared to a population with a single,
average diffusion coefficient (Supplementary Fig. 4, Supplemen-
tary Table 2). Second, in our model we assumed that cells have a
constant adaptation time that is smaller than the residence time
of cells in the junction (~150 s) and greater than the run time
(which is in the order of 1 s). This assumption is supported by
typical values of the adaptation time43,44 ranging from 1 to 30 s.
Under such conditions, variations in the adaptation time are
rather inconsequential for the chemotactic velocity (see Supple-
mentary Discussion). Third, an increase in the run time (i.e., a
decrease in the tumble bias) would also not change the slope of
the bacterial concentration profile, as revealed by Eq. (7)
(Methods). These considerations strongly indicate that the
bacteria that reached higher-order junctions in our experiments
were more chemotactic—as a result of increasing the pathway
gain—compared to the average of the entire population at
junction 1. The T-maze platform thus revealed heterogeneity in
the distribution of the pathway gain among a bacterial
population, a result that is complementary to recent work
reporting heterogeneity in the distribution of the run time or the
tumble bias28. Through our two-dimensional branching design
we could quantify the slope of the bacterial concentration profile
at each junction (something that is not possible to obtain with
previously used one-dimensional experimental assays28), and
thus determine the relative change in the phenotypic traits of cells
reaching each junction by disentangling their relative contribu-
tions to the slope. Together, the combination of recent results and
ours show that multiple sources contribute to phenotypic
heterogeneity in chemotactic sensitivities of individual cells
within a population of bacteria.

In contrast to the increase in the slope of log [B(y)/B0] in the
linear-sensing regime, in the log-sensing regime, the slope
decreased almost 30-fold in the simulations (22 ± 1 × 10−4 μm−1

in junction 1 to 0.8 ± 0.4 × 10−4 μm−1 in junction 4), but remained
approximately constant in the experiments (17 ± 4 × 10−4 μm−1 in
junction 1 to 18 ± 3 × 10−4 μm−1 in junction 4) (Supplementary
Fig. 1, Supplementary Table 1). An analysis of covariance of the
slopes among junctions confirmed that there was no difference
among the slopes for the log-sensing regime (ANOVA, F3,20=
0.18; P= 0.91), whereas there was a difference among the slopes
for the linear-sensing regime (F3,20= 18.4; P < 10−4). The
difference in the trends between the two sensing regimes derives
from the differences between the chemotactic velocity in these
regimes, which for any given cell is predicted to remain constant
across subsequent junctions in the linear-sensing regime as a result
of the constant gradient (vc,G= χG∇C), but to decrease in the log-
sensing regime (vc,L= χL∇C/C), in view of the increase in C
(Fig. 1b). The near-constancy across consecutive junctions of the
slope of log [B(y)/B0] in the log-sensing regime thus arises from the
compensatory effect of the decrease in ∇C/C and the increase
expected from the selection of more strongly chemotactic cells in
subsequent junctions, whereas the selection of these cells is
apparent on the background of the constant gradient in the linear-
sensing regime.

To provide direct evidence for population sorting, we also
compared the behavior of an unsorted population in a
gradient corresponding to that in the last junction (junction
4) of the T-maze with the behavior of sorted bacteria in junction
4. In this single-junction experiment (Supplementary Fig. 5),
the cells were exposed from the onset to a level and gradient
of chemoattractant equal to that occurring in junction 4 of
the full T-maze experiment. The results show a higher slope
in the bacterial profile for the sorted population (i.e., the full
T-maze experiment) compared to the unsorted population (i.e.,
the single-junction experiment) (Fig. 4), for both the log-sensing
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Fig. 3 Accumulation profiles of bacteria at the four maze junctions for a
monoclonal E. coli population responding to a methylaspartate gradient.
Panels show the absolute number of bacteria observed at points along each
T-junction (circles, mean ± s.d. from three replicates) in the linear-sensing
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at t= 0min (see Fig. 1) and disperse over time into the maze (see
Supplementary Fig. 2 for the accumulation profiles at two different time
points). The chemotactic sensitivity in the simulations was fitted to best
match the experimental profiles at junction 1. Higher numbers of bacteria
are found at later junctions in the maze compared to the simulations
performed with a chemotactically homogeneous population of cells, as a
consequence of the sorting mechanism
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regime (18 ± 3 × 10−4 μm−1 vs. 9 ± 0.8 × 10−4 μm−1) and
the linear-sensing regime (2.5 ± 0.3 × 10−3 μm−1 vs. 1.4 ± 0.1 ×
10−3 μm−1). An analysis of covariance of the slopes between
sorted and unsorted populations confirmed that there was a
statistically significant difference between the slopes for the two
populations for both log-sensing (F1,10= 8.29; P= 0.02)
and linear-sensing regimes (F1,10= 8.35; P= 0.02). This con-
firms that the cells that reached junction 4 in the T-maze
experiments had indeed been sorted, i.e., they had a chemotactic
performance above the average of the unsorted (i.e., initial)
population.

Taken together, these results indicate the existence of
phenotypic heterogeneity in chemotaxis in E. coli, with a
distribution of chemotactic sensitivity coefficients among indivi-
dual cells of the population. Thus, while the effective chemotactic
sensitivity coefficient averaged over the full population in
junction 1 was χG and χL for the linear-sensing and log-sensing
regimes, respectively, the sorting of the better chemotaxers along
the maze resulted in an increased effective chemotactic sensitivity
coefficient of the fraction of the population arriving at subsequent
junctions.

Quantification of chemotactic heterogeneity. To quantify the
magnitude of the variability in the chemotactic sensitivity coef-
ficient within the population, we developed an analytical model of
maze navigation that accounts for phenotypic heterogeneity by
varying both tumble bias and pathway gain. The model allowed
us to study how these two phenotypic traits, which affect the
diffusivity and chemotactic sensitivity coefficient, contribute to
the experimentally observed cell concentration profiles and che-
motactic performances in the maze junctions (Methods, Supple-
mentary Fig. 6). By working in coordinates directed along the
individual branching channels, the model collapses the two-
dimensional geometry of the maze to a one-dimensional (1-D)
formulation (Methods; Supplementary Fig. 7) that is amenable to
an explicit analytical prediction of the number of bacteria present
at each junction over time, as a function of the distribution of
chemotactic sensitivity coefficients in the population. In this
model, the spreading of the population through the maze consists
of a diffusion solution along the maze segments perpendicular to
the chemoattractant gradient and an advection-diffusion solution

along the segments parallel to the gradient. The 1-D model was
successfully validated by comparison with numerical simulations
in the 2-D branching geometry (Fig. 5a, Supplementary Figs. 6a, 8)
for a chemotactically homogeneous population (in which each cell
had the same swimming speed and chemotactic sensitivity
coefficient).

In the absence of chemotaxis, when only the random motility
of bacteria (with diffusivity D) is considered, the expected
number of bacteria after junction n is computed as the solution to

a diffusion equation (Methods), yielding Bn(t)=
B0
2n

e�d2n=ð4DtÞffiffiffiffiffiffiffi
4πDt

p , where

B0 is the initial concentration of bacteria and dn is the one-
dimensional distance from the inlet to that junction (Supple-
mentary Fig. 7). Chemotaxis can be incorporated into this
solution by multiplying Bn by a sorting index,

Sn ¼ e�
Pn

i¼1

iyv vci
4D ; ð1Þ

which represents the ratio of the advection-diffusion solution and
the diffusion solution (see Methods for derivation), calculated at
the end of junction n, where yv is the length of the semibranch of
each junction in the y-direction. Note that the predicted
exponential increase of the sorting index Sn with the junction
number n (Eq. (1)) is in qualitative agreement with the increase of
the sorting index observed in the experiments with M. adhaerens
(compare Fig. 2b with Supplementary Fig. 6b). The exponential
dependence of the ratio of the two populations on the junction
number in Eq. (1) indicates that sorting could be further
improved by increasing the number of junctions in the device.

We used the model to predict how chemotactic heterogeneity
affects the spatial distribution of cells and the navigation
performance in the maze (Eq. (9)), compared to a chemotactically
homogeneous population. We considered a population having a
distribution fg;TB

of pathway gains, g (Eq. (10), and tumble bias,
TB (Eq. (11), Supplementary Fig. 9). This translates into a
distribution of chemotactic velocities with mean �vc0 (the number
in subscript indicates the junction considered, with 0 being the
inlet) (Eq. (12), Fig. 5b, Methods). For the homogeneous
population, the chemotactic velocity was taken to be equal to
�vc0 . Note that in the linear-sensing regime, working in terms of
chemotactic velocity is equivalent to working in terms of
chemotactic sensitivity coefficient, because there is a linear
relationship between the two, i.e., vc,G= χG∇C (the gradient is a
constant). We then used the model to compare the number of
cells reaching the end of the maze with the highest chemoat-
tractant concentration for the two populations. To compute the
navigation performance throughout the maze—and thus under-
stand how the maze sorts cells with different chemotactic
sensitivity coefficient—we multiply the diffusion solution Bn by
the sorting index (Eq. (9), Methods). For the linear-sensing and
log-sensing regimes, this comparison yielded 7.4-fold and 2.9-fold
more cells of the chemotactically heterogeneous population in
junction 4 compared to the homogeneous population (Fig. 5c,
Methods), showing that the shift in the distribution of
chemotactic velocities towards higher values deeper into the
maze (Fig. 5b) produces a greater accumulation of cells in the
highest-concentration regions. In the linear-sensing regime, cells
reaching the end of the maze (junction 4) had considerably higher
chemotactic velocities than the average of the entire population at
the inlet. Cells arriving at consecutive junctions in the maze
are predicted to have substantially higher mean values of
the chemotactic velocity (�vc1;G = 1.1 µm s−1, �vc2;G = 1.4 µm s−1,
�vc3;G = 2.1 µm s−1, �vc4;G = 3.3 µm s−1; Fig. 5b).

The model allowed us to reconstruct the distribution of
phenotypes as a function of pathway gain and tumble bias for
cells reaching each junction in the T-maze (Fig. 5d) and to
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Fig. 4 Accumulation profiles of E. coli from an unsorted and a sorted
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estimate the chemotactic heterogeneity in the pathway gain of the
population for the two different regimes. To this end, we fitted the
ratio between the number of cells reaching the end of each
junction for the chemotactically heterogeneous population from
the experiments and the chemotactically homogeneous popula-
tion from the simulations (Fig. 3) to the prediction of the
analytical model. In this fitting, the only free parameter was the
width of the distribution of the pathway gains for the full
population. By combining experimental data with the model, we
find that variation in both tumble bias and pathway gain affect
the navigation performance in the T-maze (Methods). Cells are
selected for both lower tumble bias and higher pathway gain at
later junctions in the T-maze. However, cells with low tumble bias
are predominantly selected at earlier time points, whereas the
selection of cells with high pathway gain is stable over time
(Supplementary Fig. 10). This selection is reflected in a shift
towards higher values of the distribution of chemotactic velocity.
In addition, we find that both tumble bias and pathway gain
contribute to the increase in the sorting index, but that the
pathway gain is the main contributor to the increased slope
observed at later junctions in our experiments (Supplementary
Discussion). In summary, we conclude that the chemotactic
sensitivity coefficient, arising from the pathway gain, is the
predominant contributor to the heterogeneity in chemotactic
performance that we observed in the T-maze.

Discussion
Heterogeneity in the biological functions of bacteria may con-
siderably impact their response to environmental stimuli as well
as the collective performance of a population. Our results show
that a wide spectrum of chemotactic sensitivity coefficients are
maintained within a clonal population of E. coli, suggesting
considerable levels of intrinsic noise in the expression of the
surface receptors or proteins that are part of the chemotaxis
pathway7, in line with recent theoretical findings19.

Intrapopulation heterogeneity in the climbing of chemical
gradients might be beneficial for a clonal population of bacteria.
Given the fact that microbial motility is a balance between
exploring (diffusion) and exploiting (chemotaxis) of chemical
landscapes, heterogeneity in chemotaxis implies that a population
will have a spectrum of functionalities ranging from explorers to
exploiters. This diversity will increase the chances of the popu-
lation responding optimally to a given chemoattractant gradient.
Better chemotaxers will be the first responders to ephemeral
hotspots of nutrients, such as those occurring in the gut micro-
environment for E. coli45 or in seawater for marine bacteria1. Less
strongly chemotactic cells will remain more evenly distributed in
space, potentially decreasing the impact of catastrophic events
such as localized chemical insults or predation. More broadly,
these results suggest that bet-hedging strategies—where a fraction
of the population performs less well in a specific task but is
adapted to alternative environmental conditions—could be
important in chemotaxis46, as it is already known to be important
in quorum sensing and biofilm formation47, the evolution of
virulence in pathogens25 and antibiotic persistence48.

Our observations of heterogeneity in the chemotactic sensi-
tivity coefficient, arising from a distribution of pathway gains,
combined with the recently reported heterogeneity in the tumble
bias28, demonstrates that multiple elements of chemotactic
behavior in E. coli are subject to nongenetic heterogeneity. The
two sources of heterogeneity—in tumble bias28 and pathway gain
(this work)—pertain to different biological functions and have
specific ecological relevance, as also predicted theoretically19: the
tumble bias is most relevant in the response of cells to unsteady
sources, whereas the pathway gain is most relevant in
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Fig. 5 Cell sorting of a chemotactically heterogeneous population of
bacterial cells. a Predictions from a 1-D advection-diffusion model at
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velocity within the expected range for E. coli (0.8–2.5 µm s−1). b Based
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from a heterogeneous population compared to those from a
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velocity. Filled circles show the mean Hn over the three experimental
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accumulation around sources in steady gradients. In this work, we
have focused on the heterogeneity in pathway gain, isolating it
from the effects of motility through the use of sorting junctions:
while fast swimmers with low-tumble bias will navigate the maze
more quickly, their sorting still occurs on the basis of their
enhanced chemotactic sensitivity coefficient, rather than simply
their speed.

Methodologically, the microfluidic T-maze device has potential
applications in chemotactic cell sorting for a broad range of
environmental, medical, and industrial applications. For example,
in spermatozoa, chemotactic ability and swimming speed are
correlated with fertility49, making methods to sort cells based on
these functions desirable compared to labor-intensive conven-
tional microscopy methods. In this respect, microfluidics provides
a powerful alternative, in particular the range of microfluidic
chemotaxis assays that in recent years have enabled the genera-
tion of steady chemical gradients by eliminating flow through the
use of hydrogels50, as used here. Existing one-dimensional
microenvironments for bacteria28 and spermatozoa51 segregate
cells according to their motility characteristics (e.g., tumble bias28

and swimming speed51). The T-maze, in contrast, provides a
noninvasive approach for purifying a population, because non-
chemotactic cells are progressively diluted out, junction after
junction. This mechanism results in the sorting and physical
separation of the stronger chemotaxers along the maze, so that
the accumulation of cells in the last branch of the maze provides
sorting on the basis of both motility and chemotactic sensitivity
coefficient.

Through microscale approaches such as the T-maze, our ability
to detect and quantify heterogeneity among single cells within
microbial populations will continue to be enhanced in traits from
growth20 to antibiotic resistance48 to navigation28. This under-
standing of intrapopulation variability in biological functions that
to date have been investigated primarily at the population scale
will be an important element in advancing our ability to mitigate
the harm and harness the potential of diversity within the
microbial world.

Methods
Bacterial cultures. For the E. coli used in this work, a clonal population was
cultured from a frozen stock of E. coli HCB 33 (also known as RP437) by first
inoculating a culture plate. A single colony was picked from the plate to inoculate
2 ml of tryptone broth (TB) medium for overnight culture at 30 °C on an orbital
shaker (300 rpm). This culture solution was resuspended and diluted (1/100) in TB
and incubated for ~4 h to reach midexponential phase (OD600= 0.4). The cells
were then washed twice by centrifuging at 2300g for 5 min and resuspended in
motility medium (10mM potassium phosphate, 0.1 mM EDTA, 1 μM methionine,
10 mM lactic acid, pH 7)52. Finally, the cells were kept at 4 °C for 15 min to stop
growth before experiments.

TwoM. adhaerens strains37, a WT strain labeled with yellow fluorescent protein
and a chemotaxis-deficient mutant that constitutively expressed cyan fluorescent
protein (ΔcheA-cfp), were also used. Each strain was inoculated onto 2216 agar
plates from frozen stocks and incubated overnight at 30 °C. One colony was then
picked for each strain and inoculated into liquid 2216 medium (5 ml) containing
ampicillin (50 μg/ml) and incubated overnight at 30 °C on an orbital shaker (300
rpm). Prior to experiments, cells were checked under a microscope to confirm
fluorescence. Cells were washed twice in filtered autoclaved seawater by
centrifuging at 5000g for 1 min, then resuspended in 1 ml filtered autoclaved
seawater. The growth of each strain was determined via spectrophotometry (OD600

= 0.7) and, from this, cells from the two strains were diluted in filtered autoclaved
seawater and combined at approximately equal proportions before they were
introduced into the maze.

Microfabrication of the microfluidic T-maze. The microfluidic T-maze device
was fabricated using soft lithography53. A mold for the maze geometry and the
auxiliary source and buffer channels (Fig. 1) was fabricated with SU8 on a silicon
wafer. Microfluidic channels were then created by casting polydimethylsiloxane
(PDMS; Sylgard 184 Silicone Elastomer Kit, Dow Corning, Midland, MI) onto the
mold. The cured PDMS was then removed and punched at the maze entrance to
provide access for tubing.

To complete the device construction, the PDMS channel structure was placed
onto a hydrogel (agarose) slab without bonding, so that each microchannel
consisted of three PDMS walls (top and sides) and one agarose wall (base) (Fig. 1).
The hydrogel layer was prepared from a 3% (wt/vol) solution of agarose
(SeaKem®LE Agarose, Lonza) in buffer medium (consisting of motility medium for
E. coli and filtered autoclaved seawater for M. adhaerens). This solution was heated
in a microwave oven, then injected between two glass slides separated by a 1 mm
silicone gasket at the edges, and allowed to cool. The PDMS slab was placed onto
the agarose slab and held in place during the experiment by applying gentle
pressure using clamps. Flow was driven through the source and buffer channels
using a syringe pump in withdrawal mode to create negative pressure and thus
avoid delamination.

Experimental setup and imaging. The microfluidic T-maze consists of three
parallel sections, with two parallel channels for the chemoattractant source (MeAsp
for E. coli and 2216 medium for M. adhaerens) and buffer (consisting of motility
medium for E. coli and filtered autoclaved seawater forM. adhaerens) and the maze
test section located between them (Fig. 1). The three channels were separated from
each other by thin layers of PDMS (≤300 μm). The chemoattractant diffuses
through the underlying hydrogel from the source to the buffer, which creates a
steady concentration field in the hydrogel (linearly decaying between source and
buffer) and consequently in the test section.

In preparation for an experiment, the PDMS channel was placed in a vacuum
chamber (−0.6 bar) for 6 min and the PDMS-on-hydrogel device was then filled
with buffer medium (motility medium for E. coli and filtered autoclaved seawater
for M. adhaerens). The chemoattractant gradient was allowed to develop through
the device over 2.5–3 h in the absence of bacteria to allow time for diffusion from
the source to the buffer channel. This time was sufficient to allow the concentration
field to become established in the device, as verified experimentally by conducting
tests using fluorescein (Supplementary Fig. 11). Each chemotaxis experiment began
by placing a droplet of the cell suspension at the inlet and then inoculating the inlet
port by using a thin syringe needle. Cells were then observed as they migrated
through the maze. Each set of experiments was replicated three times. Experiments
were conducted at room temperature.

Bacteria were imaged at the mid-plane of the device using phase contrast
microscopy (10× objective; Andor Zyla camera with 6.5 µm/pixel; numerical
aperture= 0.30; with additional magnification 1.5×) at 25 frames/s. At regular
intervals, each junction in the maze was imaged and cells were tracked using image
analysis routines based on intensity thresholding in custom, automated routines in
MATLAB (The MathWorks). From the tracks, bacterial concentration profiles
were computed at each junction.

Numerical simulations. The behavior of E. coli in the T-maze was modeled with
an advection-diffusion model, using the exact experimental geometry, with
reflecting boundary conditions at the T-maze walls. The model reads

∂B
∂t

¼ D∇2B� ∇ � ðvcBÞ; ð2Þ

where the first term on the right-hand side accounts for the diffusion part, and the
second term corresponds to the chemotactic drift. The chemotactic velocity vc is a
function of the chemical concentration C and of its gradient ∇C. The chemical
concentration is a linear function of the y-direction, stationary over time, so that
∇C is a constant. B(x, y, t) is the bacterial concentration in the maze over time.

By employing parabolic scaling techniques, a recent analysis showed that the
chemotactic drift in a (shallow) linear gradient54 (but see refs. 26,55 for a similar
derivation in exponential gradients), such as the one employed in our experiments,
can be expressed as a function of the ligand concentration and gradient K(C, ∇C)
and the chemotactic sensitivity coefficient χ0

vc ¼ χ0KðCÞ ¼ χ0ðKA � KIÞ∇C½ðKA þ CÞðKI þ CÞ��1; ð3Þ
with (see Supplementary Discussion)

χ0 ¼ 1=2v2 1� a0ð Þgτ0 ¼ 1=2v2 1� a0ð Þτtg=TB; ð4Þ
where v is the swimming speed (more precisely, the run speed), vc is the
chemotactic velocity, C is the chemoattractant concentration (methylaspartate), KI

= 18 μM and KA= 2.9 mM are the dissociation constants for inactive and active
Tar receptors, a0 denotes the steady-state kinase activity, and τ0= τt/TB is the
average run time, where TB is the tumble bias and τt is the tumbling time. The
pathway gain is g=NH, where H is the motor amplification coefficient, and N is
the cooperativity, reflecting the number of receptors per cluster. The velocity of a
swimming cell can be expressed as

v ¼ vr 1� TBð Þ; ð5Þ
where vr is the velocity during a run. In deriving Eq. (5) we are assuming that,
because cells swim at low Reynolds numbers, the time required to accelerate from 0
to vr after a tumble is negligible compared to τt56. For a cell swimming in a run and
tumble pattern, the effective diffusivity is

D ¼ v2τ0=½3 ð1� cos θh iÞ� ¼ v2τt=½3TBð1� cos θh iÞ�; ð6Þ
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where the mean of the cosine of the reorientation angle between two successive
runs is hcos θi ~ 1/3 (ref. 42). In the following, we assume no variation in the run
speed vr, and the tumble time τt, taken to be equal to 0.2 s (ref. 55), and that all the
variation in the diffusivity is due to changes in the tumble bias TB.

Importantly, for MeAsp concentrations such that KI≪ C≪ KA, the equation
for vc reduces to vc ≈ (χ0/KA)(KA− KI)∇C/C. Therefore, in this regime the
chemotactic velocity can be written as vc,L= χL∇C/C, which corresponds to the
Keller–Segel formulation57 and exhibits the log-sensing property30 (the subscript L
denotes the log-sensing regime). In this regime, the magnitude of the chemotactic
response depends on (i) the strength of the gradient, ∇C= ΔC/W, where ΔC is the
difference between the concentration in the source and in the sink (the latter is
often 0, since buffer is run in the sink) and W is the distance between the source
and the sink, and (ii) the concentration of MeAsp in the T-maze channels, C(x, y).
Conversely, for MeAsp concentrations such that C≪ KI, both terms (KI+ C)−1

and (KA+ C)−1 are essentially independent of the concentration C, and the
chemotactic velocity can be written as vc,G= χG∇C, which corresponds to linear-
sensing (the subscript G denotes the linear-sensing regime). Note that the ranges
0–500 and 0–5 μM for the log-sensing and linear-sensing regimes express the
ranges in terms of the values of the MeAsp concentration within the sink (here,
buffer in both cases) and the source channels. The minimum and maximum levels
of MeAsp experienced by the cells in the test channel under each regime are CLmin

= 47 μM, CLmax= 469 μM, CGmin= 0.47 μM, and CGmax= 4.69 μM (Fig. 1b). The
cells in the inlet channel experience an average concentration of MeAsp of CL,0=
140 μM and CG,0= 1.4 μM, for the log-sensing and linear-sensing regimes,
respectively. The two chemotactic sensitivity coefficients χL and χG were fitted to
match the bacterial concentration profile in the first junction for the two different
regimes. The diffusion coefficient of E. coli cells40 was taken to be D= 330 μm2 s−1.
We solved the two-dimensional partial differential equations (Eq. 2) with
COMSOL Multiphysics (Burlington, MA), in both the log-sensing (0–500 μM) and
the linear-sensing regimes (0–5 μM).

Fitting the experimental profiles. In order to compare the bacterial concentration
profiles between the experiments and the numerical simulations, we used the exact
experimental geometry of the T-maze, with reflecting boundary conditions at the
T-maze walls. For the initial conditions, a step function was used with bacterial
concentration equal to 1 inside the inlet circle and 0 everywhere, which simulates
the injection of a droplet of cell suspension at the inlet. We fitted the slopes of the
logarithm of B(x, y, t) for the two regimes. This slope is related to the chemotactic
velocity of the bacteria, vc, and their diffusion coefficient, D. Within any T-junction
the solution of the advection-diffusion model (Eq. (2)) at steady-state is B(y)=
B0 exp[(vc/D) y]. The slope of the logarithm of B(y)/B0 is therefore vc/D.

The chemotactic accumulation length Lc=D/vc, which is the inverse of the
slope, reads (see Supplementary Equation (6) for the derivation in
the Supplementary Discussion)

Lc ¼ 2=3 1� cos θh ið Þ�1= KA � KIð Þ∇C xð Þ KA þ C xð Þð Þ KI þ C xð Þð Þ½ ��1g 1� a0ð Þ� �
:

ð7Þ

The experimental profiles were captured for each junction over time, for three
replicate experiments, and their averages are shown in Fig. 3 and Supplementary
Fig. 1.

The sorting index. The diffusion solution for the bacterial concentration along the
branches of the T-maze (Eq. (2)) was approximated by a linear superposition of 1-

D diffusion solutions, Bn=
B0
2n

e�d2n=ð4DtÞffiffiffiffiffiffiffi
4πDt

p , where B0 is the initial concentration of

bacteria, n is the junction number, and d is the distance calculated along the path to
junction n, where the inlet is d0= 0 (Supplementary Fig. 7). The term 2n in the
denominator accounts for the even split of the bacterial concentration at the nth
junction. In this analytical approximation, the solution in each branch is inde-
pendent of that in the other branches; in other words, in the limiting case of
branches of infinite length in the x-direction one can neglect the effects of the
reflecting boundaries at the end of the T-maze. The advection-diffusion solution
along the branches of the maze was calculated at the end of each T-junction by
considering the diffusion solution multiplied by a sorting index, Sn= exp
[
Pn

i¼1 iyvvci /(4D)], where vci is the chemotactic velocity along the y-direction
parallel to the chemical gradient at junction i, yv is the length of the semibranch of
each junction in the y-direction. The sorting index represents the ratio of the
advection-diffusion solution and the diffusion solution, calculated at the end of the
nth T-junction of length yv.

This quantity, calculated at time tn*=
Pn

i¼1 iyv=vci , is

Sn ¼ e�ðnyv�vc t
�
n Þ2=ð4Dt�nÞffiffiffiffiffiffiffiffiffiffiffiffi

4πDt�n
p e�ðnyvÞ2=ð4Dt�nÞffiffiffiffiffiffiffiffiffiffiffiffi

4πDt�n
p

 !�1

jt�n¼
Pn
i¼1

iyv=vci

¼ e�
Pn

i¼1

iyv vci
4D : ð8Þ

Navigation performance in the T-maze. In the T-maze, the navigation perfor-
mance, Pn, up to junction n of a cell, characterized by diffusivity, D, and

chemotactic velocity, vc, is

Pn ¼ B0 4πDtð Þ�1=2e�
d2n
4DtSn ¼ B0 4πDtð Þ�1=2e�

d2n
4Dte�

Pn

i¼1

iyv vci
4D ; ð9Þ

where the first term is the solution of the diffusion equation in the T-maze and Sn is
the sorting index up to the junction n. We note that D and vc are functions of the
two variables, tumble bias, TB, and pathway gain, g (see Eqs. (3) and (6)). In order
to calculate the performance P of a cell based on its phenotype characterized by the
variables g, TB, we need to know the joint probability density function fg;TB

of the
phenotypes for a monoclonal population of E. coli. If we assume that the two
variables g, TB are independent, we can decompose the function fg;TB

into the
independent distributions of the two random variables hg ; bTB

.
The ranges of variation of the two variables are TB 2 [0, 1] and for g=NH, N, H

2 R
þ . The distribution bTB

can be modeled as a beta distribution B(TB;α,β), where
the two parameters α= 5 and β= 17, which determine the shape of the tumble bias
distribution, are fitted from data available in the literature28. In order to derive the
distribution of the pathway gains hg we need to compound the sources of variation
within N and H, since g=NH. We do this below.

Regarding the cooperativity, N, which reflects the receptor clusters’ size58, we
inferred the distribution of the cooperativity by analyzing fluorescence resonance
energy transfer experiments at the single-cell level in E. coli. These experiments
revealed strong variability in the composition of receptors at the single-cell level in
a monoclonal population due to nongenetic variability in the gene expression of
chemotaxis molecules. The ratio of the two most abundant chemoreceptors, Tar/
Tsr, was found to be an increasing function of the nutrient concentration58,59.
Given the high number of receptors per cell60 (>10,000), based on the central limit
theorem we assume that all the clusters have the same cooperativity number N and
the same Tar/Tsr ratio. Within each cluster, we are interested in estimating the
cooperativity of the Tar receptors, because the Tsr receptors are unlike to be active
since the binding constants for the Tsr receptor to methylaspartate are considerably
higher (~100 mM) than the chemoattractant values adopted in our experiments (C
< 0.5 mM). We fitted the random variable Tar/Tsr ratio, r=N/(Ntot−N), with a
Gamma distribution G(r;γ,δ) with parameters γ= 2.2; δ= 0.7 (data from Fig. 4 in
ref. 59), where Ntot=N+NTsr is the total size of each cluster. We make the
assumption that the distribution of the cluster size Ntot is a Poisson distribution
}(Ntot;λ) with mean λ= 9. The variable of interest is the number of Tar receptors
per cluster, N= rNtot/(r+ 1), which is itself a random variable by virtue of being a
function of random variables.

Regarding the motor gain, H, recent experiments determined the motor gain at
the single-cell resolution61 and found H= 20, in contrast to previous studies that
estimated H= 10 (ref.62). Since the motor gain in each cell can vary depending on
the number of FliM molecules, a component of the switch complex at the base of
the flagellar motor, we model the motor gain H as a random variable with a
Gaussian distribution F (r;μ,σ) with mean μ= 15 and standard deviation σ, a free
parameter of the model.

By compounding all the sources of variation in the pathway by the transform
rule for random variables63, the distribution of the pathway gains hg can be
expressed as

hg ¼
X1
k¼1

Xk
N¼1

λke�λ

k! e
�N

δ k�Nð Þ N
k�N

� �γ�1 δ�γk
N�kð Þ2

e

� g
N�μð Þ2
2σ2

N
ffiffiffiffiffiffiffi
2πσ2

p : ð10Þ

The joint probability distribution fg;TB
for a cell expressing the phenotype g and TB

reads (Figure S9)

fg;TB
¼ hgBðTB; α; βÞ

¼ P1
k¼1

Pk
N¼1

λke�λ

k! e
�N

δðk�NÞ

´ N
k�N

� �γ�1 δ�γk
ðN�kÞ2

e

� g
N�μð Þ2
2σ2

N
ffiffiffiffiffiffiffi
2πσ2

p

´ ΓðαþβÞ
ΓðαÞΓðβÞ ð1� TBÞβ�1Tα�1

B

; ð11Þ

with α= 5, β= 17, γ= 2.2, δ= 0.7, λ= 9, μ= 15, and σ a free parameter of the
model.

The distribution of the chemotactic sensitivity coefficient, and thus the
chemotactic velocity at the inlet dvc , can be calculated as the ratio g/TB of the two
random variables g, TB

dvc ¼
ΓðαþβÞ
ΓðαÞΓðβÞ

R1
0

P1
k¼1

Pk
N¼1

λke�λ

k! e
�N

δðk�NÞ N
k�N

� �γ�1

´ δ�γk
ðN�kÞ2

e

� g
N�μð Þ2
2σ2

N
ffiffiffiffiffiffiffi
2πσ2

p

´ 1� gε
vc

� �β�1
gε
vc

� �α
v�1
c dg;

ð12Þ

where ε=½v2(1− a0)τt(KA− KI)∇C[(KA+ C)(KI+ C)]−1 groups all the constant
terms of the expression for the chemotactic velocity in Eq. (3).
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The relative performance of phenotypes as a function of junction number n for
both the log-sensing and linear-sensing regimes can be calculated as (Fig. 5d)

fg;TB
Pn ¼

X1
k¼1

Xk
N¼1

λke�λ

k!
e

�N
δðk�NÞ

N
k� N

	 
γ�1

´
δ�γk

ðN � kÞ2
e
� g

N�μð Þ2
2σ2

N
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p

´
Γðαþ βÞ
ΓðαÞΓðβÞ ð1� TBÞβ�1Tα�1

B

´B0ð4πDtÞ�1=2e
�d2n
4Dt e�

Pn

i¼1

iyv vci
4D :

ð13Þ

The number of bacteria NB reaching each junction n in the T-maze for a
population expressing variation in the phenotypes g, TB is

NBðn; tÞ ¼
Z1
0

dT
Z1
0

dg fg;TB
Pn: ð14Þ

The heterogeneous sorting index is given by the ratio

Hn ¼ NBðn; tÞ= Bn TB

� �
Sn �g;TB

� �� �
; ð15Þ

where the denominator is the number of bacteria expected at junction n from a
population with mean values TB = α/(α+ β)= 0.22, and �g = 76, extracted from the
initial distributions B(TB;α,β) and hg, respectively. Since NB is a function of time,
the index was evaluated at the experimental time points ti. The heterogeneous
sorting index at each junction from the experiments (Fig. 5c) was used to fit the
only free parameter of the model, σ= 7.8.

The marginal distributions at each junction of the tumble bias and pathway gain
as a function of time are

bTB
ðn; tÞ ¼

Z1
0

dg fg;TB
Pn ¼ B TB; α n; tð Þ; β n; tð Þð Þ; ð16Þ

and

hgðn; tÞ ¼
Z1
0

dT fg;TB
Pn; ð17Þ

where α(n, t), β(n, t) are the fitted sets of parameters of the marginal
distribution bTB

ðn; tÞ calculated at junction n. We use Eqs. (16) and (17) to
calculate the distribution of the chemotactic velocity (Fig. 5b) at each junction as a
function of time

dvc ðn; tÞ ¼
Γ α n;tð Þþβ n;tð Þð Þ
Γ αðn;tÞð Γ β n;tð Þð Þ

R1
0
hg n; tð Þ

´ 1� gε
vc

� �βðn;tÞ�1
gε
vc

� �αðn;tÞ
v�1
c dg:

: ð18Þ

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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