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ABSTRACT Rising antimicrobial resistance severely limits efforts to treat infections
and is a cause for critical concern. Renewed interest in bacteriophage therapy has
advanced understanding of the breadth of species capable of targeting bacterial
antimicrobial resistance mechanisms, but many questions concerning ideal applica-
tion remain unanswered. The following minireview examines bacterial resistance
mechanisms, the current state of bacteriophage therapy, and how bacteriophage
therapy can augment strategies to combat resistance with a focus on the clinically
relevant bacterium Pseudomonas aeruginosa, as well as the role of efflux pumps in
antimicrobial resistance. Methods to prevent antimicrobial efflux using efflux pump
inhibitors and phage steering, a type of bacteriophage therapy, are also covered.
The evolutionary context underlying antimicrobial resistance and the need to include
theory in the ongoing development of bacteriophage therapy are also discussed.

KEYWORDS Pseudomonas aeruginosa, antibiotic resistance, bacteriophage therapy, ev-
olutionary rescue

Antimicrobial resistance (AMR) is a major threat to modern medical advancements.
Although antimicrobial drugs create a hostile environment for bacteria, antimicro-

bials cannot change their mechanism of action, while bacteria can evolve defenses and
experience evolutionary rescue. Evolutionary rescue causes even new antimicrobials to
often become ultimately ineffective against the most resistant bacteria (1). The rise of
resistance requires us to develop novel solutions to combat infection. Bacteriophage,
or phage, therapy uses viruses that infect bacteria to treat human infections, often in
conjunction with antimicrobial treatment (2–4). Phage not only provide an alternative
method to kill pathogens and an additional selective pressure, but also coevolve with
their bacterial hosts.

While phage therapy was used widely prior to the discovery of antibiotics (5), the initial
availability of antibiotics exclusively to the Allies in World War II, confusion about the science
of phages, and suspicion of Soviet scientific results after the war led to the lack of adoption
outside the former Soviet Union (3). In Tbilisi, Georgia, the George Eliava Institute of
Bacteriophage, Microbiology and Virology has been conducting phage therapy research
and treatment for almost a century (6). Although Georgia, Russia, and a few other Eastern
European countries widely use phage-based treatments (7), there are no Food and Drug
Administration (FDA)-approved phage therapies, and use in the United States is reserved for
compassionate treatment (8).

One type of phage therapy that considers evolutionary pathways of resistance is
phage steering. Phage steering intentionally combats resistant infections by forcing
bacteria to resist the selection pressure of either phage or antimicrobials (9). Currently,
most phage steering applications use natural phages that are prescreened for efficacy
against a specific bacterial target. Using phage steering to target AMR mechanisms can
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potentially extend the life span of current antimicrobials by anticipating that bacteria
will develop resistance (10). AMR in Pseudomonas aeruginosa is particularly concerning
because it is a common cause of acute and chronic infections in humans and is predis-
posed to the development of resistance (11, 12).

The following review focuses on countering resistance in P. aeruginosa and how
bacteriophage therapy can improve existing approaches. A brief overview of bacterial
resistance methods, including efflux pumps, and the evolutionary theory behind anti-
microbial resistance is provided. How these mechanisms influence bacteriophage ther-
apy, and the potential repercussions, will be considered along with improvements to
phage treatment. The use of phage steering and how it enhances current strategies
targeting the bacterial efflux system, as well as its use with other phage and antimicro-
bial treatments, will be highlighted.

BACTERIA USE BOTH BIOCHEMICAL AND PHYSICAL STRATEGIES TO RESIST
ANTIMICROBIALS

Resistance to toxic substances is an intrinsic protective strategy that has long predated
clinical use of antimicrobials (13). Increased clinical, industrial, and agricultural use of antimi-
crobials such as b-lactams, aminoglycosides, and quinolones has promoted multidrug resist-
ance in many clinically relevant bacterial organisms, including P. aeruginosa (14).

Bacteria employ many resistance strategies such as production of degradative
enzymes, formation of biofilm structures regulation or alteration of outer membrane
proteins, and antimicrobial secretion through efflux pumps. Bacteria can inactivate
antimicrobials using enzymes like adenylyltransferase ANT(99)-Ia, which results in resist-
ance to three antimicrobials in the aminoglycoside family (gentamicin, tobramycin,
and kanamycin) (15). However, the mechanisms and regulation of enzyme-induced
AMR, such as AmpC b-lactamase overproduction (16) or the influence of protein
CATB7 in chloramphenicol resistance (17), are not always well understood.

Biofilm growth is often associated with increased AMR compared to that of planktonic
growth of bacteria, in part because not all members of the biofilm need to express drug-
inactivating enzymes to protect the community as a whole. Commonly, susceptible bacteria
will reside alongside drug-resistant bacteria within the structure, creating an internal diversi-
fication of bacterial activities, which can be an impediment to successful antimicrobial ther-
apy (18). While biofilms are considered generally recalcitrant to antimicrobials (19, 20), not
all studies have found significant differences in resistance (21).

Both biofilm growth and biofilm resistance have been linked to efflux systems em-
bedded in the membrane (22–25). Regulation of membrane proteins is a common re-
sistance strategy. Analysis of the P. aeruginosa membrane proteome found a strong
association between the abundance of certain outer membrane efflux transporters and
the degree of resistance to ampicillin, kanamycin, and tetracycline (18). These results
suggest that among the outer membrane protein markers found, some appear to be
upregulated across antimicrobial classes while other markers show more regulation
specificity, which is dependent on the specific antimicrobial substrate, hence making a
case for the future investigation of shared homologous targets.

Efflux pumps are a focus of resistance treatment due to their substrate promiscuity.
Efflux systems located in the cell membrane have both generalized and specific
responses to antimicrobials. P. aeruginosa possesses multiple efflux pump systems
that have been extensively characterized, including MexAB-OprM, MexCD-OprJ,
and MexXY-OprM, which often promote resistance to multiple antimicrobials
(26–28). Both pharmaceutical and biological methods for efflux inhibition have
been investigated. This includes efflux pump inhibitors (EPIs), which prevent re-
moval of antimicrobials through methods such as downregulation of efflux pump
expression, efflux competition, or blocking the outer membrane channel (Fig. 1A to D).
Efflux competition between the EPI Phe-Arg-b-naphthylamide (PAbN) and antimicrobials
leads to PAbN being preferentially pumped out and allows antimicrobials to reach lethal
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concentrations (29). Other EPIs such as spermine are thought to physically block the mem-
brane channel of OprD in P. aeruginosa (30).

EPIs can have knock-on effects that further reduce pathogenicity. For example, efflux in-
hibition in P. aeruginosa and other pathogens affected quorum sensing-dependent viru-
lence factors (31), invasiveness (32), and biofilm growth (25, 33), which could further increase
antimicrobial efficacy. While EPIs are a potential method to combat resistance, some
research outcomes highlight the question of whether efflux pumps are always a main driver
of P. aeruginosa resistance (34, 35). Additionally, both EPIs and antimicrobials require contin-
ued development in response to the evolution of bacterial resistance.

The evolutionary context underlying AMR is important to develop treatments.
AMR can be considered a form of evolutionary rescue (36). Evolutionary rescue occurs when
adaptation allows a declining population to recover and avoid extinction (37). Treatments that
minimize the probability of evolutionary rescue are expected to be the most effective (38).

The probability of rescue can increase due to existing mutations within a popula-
tion, periods of environmental quality restoration, and gradual decay of environmental
conditions (36). Additionally, extreme environmental changes, such as an application
of concentrated antimicrobials, can be beneficial for the survival of mutants within the
population (39). The role of migration, or horizontal gene transfer in antimicrobial re-
sistance, can also favor evolutionary rescue, as seen by the transfer of a plasmid con-
taining a b-lactamase gene from one Escherichia coli strain to a b-lactam-susceptible
strain, allowing the latter to survive high levels of ampicillin (40).

Greater population size and initial genetic diversity have also been correlated with
a higher likelihood of antimicrobial resistance evolution (41). Maintenance of genetic
diversity through multiple adaptations moving as a “soft sweep” through a population
may also increase the likelihood of evolutionary rescue (42). Diversity could be one pre-
dictor of drug efficacy, with diverse populations being more likely to survive (42).

Survival through evolution is a trait of not only bacteria but also their phage preda-
tors. Infection of “suboptimal” bacterial hosts by cyanophages led to diverse evolution-
ary outcomes in phage, which suggested that host availability affected bacteriophage
evolution (43). The coevolution of phage and bacteria is a central concept behind the
development of bacteriophage therapy.

THE PRINCIPLE OF BACTERIOPHAGE THERAPY AND ITS PLACE IN MODERN
MEDICINE

Phage and bacteria coevolve, with host efflux pumps often being used for
recognition. Bacteriophages are DNA or RNA viruses that infect specific bacterial hosts
through recognition of one or multiple receptor binding proteins (RBPs) on the cell

FIG 1 Efflux pump inhibitor (EPI) mechanisms (A to D) compared to phage steering (E). The figure
illustrates (A) substrate competition causing efflux of EPIs (black circles) while retaining antimicrobials
(red circles), (B) altered antimicrobial structure by EPIs (red squares) prevents recognition by the
efflux system, (C) disruption of pump assembly, (D) disruption of the proton motive force required for
efflux, and (E) phage steering using the outer efflux protein as a receptor to block efflux in addition
to actively destroying pathogens.
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surface, including efflux systems (44). Efflux pump proteins are the RBPs for multiple
phages. Examples include P. aeruginosa phage OMKO1, which uses the M protein (45),
Vibrio cholerae phage VP3, and E. coli phages U136B and TLS, which use the TolC protein as a
coreceptor (46–48). TolC is also a receptor for the ST27, ST29, and ST35 bacteriophages, which
are active against several Salmonella serovars, many with high TolC sequence similarity (49).
However, despite TolC sequence similarity in some Enterobacteriaceae, the ST27, ST29, and
ST35 are inactive against many Enterobacteriaceae species, demonstrating the host specificity
of phages (49).

In response to phage predation, bacterial hosts have evolved both broad and speci-
alized strategies to resist infection through inhibition of phage adsorption, injection, or
replication. Adsorption can be prevented through biofilm production, as observed in
biofilm protection of embedded Staphylococcus epidermidis from phage Sepunavirus
phiIBB-SEP1 (50). Additionally, adsorption can be blocked by RBP modification, even
while maintaining antimicrobial efflux dependent on the same protein (47). RBP muta-
tions not only block phage attachment, but can also confer cross-resistance to multiple
phage species targeting the same binding site (51). Furthermore, several phage resist-
ance mechanisms can coexist, as observed in E. coli O157:H7 where exposure to phage
PP01 changed in both the outer membrane lipopolysaccharides and outer membrane
protein C channel expression (52).

While bacteria evolve to resist attack, phage coevolve to overcome defense mechanisms.
Parallel evolution of four cloned bacteriophage PP01 populations converged to have the
same point mutations, which improved binding to the E. coli O157:H7 outer membrane pro-
tein C receptor (53). Phages can even influence host quorum sensing to increase the ease of
infection, as demonstrated by phage DMS3 lysogeny in P. aeruginosa that inhibited quorum
sensing-controlled biofilm production, swarming behavior, and even anti-phage defenses
(54, 55). The ability of phage to evolve in response to bacterial resistance is one reason
bacteriophage treatment is appealing compared to fixed antimicrobial formulas.

Resistance to bacteriophage and antimicrobials can be synergistic or antagonistic.
An appealing aspect of phage therapy is that it uses the host specificity that phages
naturally possess to target pathogens of interest. However, in the context of divergent
evolution of pathogens, this specificity is a double-edged sword. A substantial barrier
to effective phage therapy is understanding how pathogens evolve resistance, both to
phage and antimicrobials.

Biofilm formation is one resistance mechanism that could provide protection against
both phage and antimicrobials. P. aeruginosa PAO1 was resistant to phage 14/1 in sublethal
concentrations of gentamicin (56). The outcome was hypothesized to be a result of the
generalized resistance promoted by biofilms (56), which commonly develop in sublethal
antimicrobial conditions (57, 58).

Although biofilm formation can inhibit both antimicrobials and phage activity, some
studies have identified certain phage enzymes as potential biofilm treatment agents. P. aer-
uginosa biofilms experienced a 99% reduction in bacterial exopolysaccharide viscosity
through exposure to phages producing polysaccharide depolymerase (59). An enzyme pro-
duced by phage PT-6 hydrolyzed biofilms of P. aeruginosa strains isolated from patients
with cystic fibrosis, a finding which could ultimately improve patient outcomes by disrupt-
ing biofilm growth (60). Additionally, biofilm degradation using P. aeruginosa phage LKA1
lysate did not affect ciprofloxacin or gentamicin activity (61), which is an important factor to
consider when combining phage and antimicrobial treatment. Thus, phage enzymes
directed toward biofilm degradation could become important auxiliary aids in bacterio-
phage therapeutics. However, due to the complexity of bacterial biofilm structures, phage
enzymes require additional research to investigate their potential clinical applicability.

THE DUAL ROLE OF EFFLUX PUMPS IN ANTIMICROBIAL RESISTANCE AND PHAGE
SUSCEPTIBILITY

Bacteriophage steering deliberately uses the coevolution of phage and their hosts
to treat bacterial infections (62). There have been multiple studies focused on phage
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steering of OMKO1 in P. aeruginosa (9, 45, 63). In one therapeutic investigation, phage
OMKO1 directed evolutionary changes in multidrug-resistant P. aeruginosa to make it
susceptible either to phage or to one of four antimicrobials of different classes (63).
Through downregulation of the efflux system protein OprM, which OMKO1 uses as a
receptor, the bacteria developed resistance to OMKO1, but also became susceptible to
antimicrobials (Fig. 1E) (63). In computational modeling of in vitro phage-antimicrobial
synergy, combination therapy of antimicrobials with phage OMKO1 against P. aerugi-
nosa resistant to either phage or antimicrobials resulted in a treatment efficacy higher
than that of either therapy individually (64). Successful therapeutic application of
OMKO1 to treat a chronic P. aeruginosa infection in a patient demonstrated that prior
knowledge of the evolutionary resistance pathways against antimicrobials and phage
is critical for positive outcomes (45). Outcomes can be improved using screening meth-
ods, such as intentional overexpression of outer membrane proteins, to identify phage
that target the ideal host receptor to introduce antimicrobial susceptibility (49).

Other phage steering mechanisms have been identified, such as the use of Acinetobacter
baumannii phages UFG02 and UCO01 (65). Phage resistance resulted in bacterial capsule
loss and subsequent susceptibility to certain antimicrobials and other phages (65). An earlier
study found that Acinetobacter baumannii with multidrug resistance to more than three
antimicrobials, either within or across classes, were significantly more likely to be phage
susceptible, with phage infection rates over 80% compared to around 50% for cells with
no AMR (66). However, due to the multitude of resistance strategies, including enzyme
production, and the possibility that some anti-phage adaptations could still maintain
AMR (46), application of a single phage in conjunction with a single antimicrobial is
unlikely to be the most effective treatment. Treatment combining f PA01 and f PA02 in
a phage cocktail suppressed P. aeruginosa growth for 20 h compared to between 8 and
9 h for either phage applied individually (67). Furthermore, the use of the phage cocktail
combined with either ciprofloxacin or meropenem was even more effective than the
cocktail alone and suppressed growth for 96 h (67). Designing phage cocktails to contain
multiple phages that steer evolution toward antimicrobial susceptibility would improve
phage therapy outcomes. The evolutionary design is in contrast to selection of phages
based only on host specificity or growth inhibition, which are some of the most common
methods currently used to choose cocktail candidates (68, 69).

Bacteriophage as a therapeutic agent faces production and delivery challenges.
Current limitations to bacteriophage therapy include the lack of purity and stability in
solution as well as the reduction in concentration between the point of administration
and the site of bacterial infection (70). Phage purification has been achieved using nat-
urally occurring phage aggregation and microfiltration (71, 72). Microencapsulation of
precipitated phages has been suggested to protect phages from stomach acid after
oral administration (73). As the number and availability of phage products increase, production
standards and regulatory frameworks must be created to provide the same safe outcomes
and ease of access expected of antimicrobial therapeutics (74–76).

Successful clinical outcomes using phage treatment have been reported (45, 75, 77,
78), but to date there has been a lack of robust, double-blind phase III trials (76, 78). A
double-blind phase I/II clinical trial for phage treatment of P. aeruginosa ear infections
demonstrated reduced infection levels (79). Conversely, another double-blind phase I/
II clinical trial that treated burn wounds using a P. aeruginosa phage cocktail cream
resulted in slower recovery compared to that of conventional treatment (80). Ideal
treatment schedules also remain relatively unexplored, although one study found that
the application of streptomycin 12 h after phage led to the greatest reduction in P. aer-
uginosa POA1 density in vitro (81). Mixed outcomes in studies are caused by wide varia-
tions in experimental design, including phage species used, concentrations of phage
or antimicrobial applied, application methods, and timing of therapy. To adopt phage
therapy, it is imperative that more high-quality clinical trials are undertaken and barriers
to implementation are resolved.
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DISCUSSION

Evolution continues to play a central role in the rise of antimicrobial resistance. If re-
sistance is a form of evolutionary rescue, phage steering can decrease the probability
of rescue. Rather than simply identifying phages that target bacteria of interest, in silico
experiments and screening to invoke evolutionary pathways as well as direct treatment
to specifically inhibit the evolution of resistance will bring a more directed approach to
phage therapy (82, 83). Phage steering with antimicrobials has been investigated in
only a few host-phage combinations (46, 63, 65). Expanding the host strains and types
of phage included in studies will lead to a greater understanding of phage steering
applications as well as phage-antimicrobial synergies (84, 85). Phages are advanta-
geous due to their abundance, natural antibacterial activity, bacterial specificity, and
ability to evolve. Ultimately, a better understanding of phage ecology and evolution
will establish phage steering as a major tool for clinicians and researchers to not only
combat AMR, but further explore the mechanisms of resistance development.
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