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Abstract

Multiple myeloma is a hematological cancer of plasma B-cells and remains incurable. Two major 

subtypes of myeloma, hyperdiploid (HMM) and non-hyperdiploid myeloma (NHMM), have 

distinct chromosomal alterations and different survival outcomes. Transcription factors (TrFs) 

have been implicated in myeloma oncogenesis but their dysregulation in myeloma subtypes are 

less studied. Here we develop a TrF-pathway co-expression analysis to identify altered co-

expression between two sample types. We apply the method to the two myeloma subtypes and the 

cell cycle arrest pathway, which is significantly differentially expressed between the two subtypes. 

We find that TrFs MYC, NF-κB and HOXA9 have significantly lower co-expression with cell 

cycle arrest in HMM, co-occurring with their over-activation in HMM. In contrast, TrFs ESR1, 

SP1 and E2F1 have significantly lower co-expression with cell cycle arrest in NHMM. SP1 ChIP 

targets are enriched by cell cycle arrest genes. These results motivate a cooperation model of 

ESR1 and SP1 in regulating cell cycle arrest, and a hypothesis that their over-activation in NHMM 

disrupts proper regulation of cell cycle arrest. Co-targeting ESR1 and SP1 shows a synergistic 

effect on inhibiting myeloma proliferation in NHMM cell lines. Therefore, studying TrF-pathway 
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co-expression dysregulation in human cancers facilitates forming novel hypotheses towards 

clinical utility.
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Introduction

Multiple myeloma (myeloma or MM) accounts for 10% of all hematological cancers1. It is a 

cancer of plasma B cells that undergoes monoclonal expansion in bone marrow, leading to 

symptoms such as kidney failures, frequent infections, anemia and bone fractures. The past 

decade has seen effective new treatment of MM such as proteasome inhibitors, but MM is 

still incurable and the median survival time of myeloma patients is 7–8 years2. 

Chromosomal alterations revealed by cytogenetics and genomics techniques divide MMs 

into two major subtypes: hyperdiploid multiple myeloma (HMM, 55–60% of MM) and non-

hyperdiploid multiple myeloma (NHMM, the rest of MM). HMM usually contains trisomies 

of chromosomes 3, 5, 7, 9, 11, 15, 19, and 21 and lacks translocation events; while NHMM 

is often associated with one-copy deletion of chromosome 13 and translocations involving 

the immunoglobulin heavy chain (IgH) locus at 14q32, such as t(4;14), t(11;14), and 

t(14;16)2, 3. The survival outcome of HMM patients is better than that of NHMM2, 4. 

Therefore, it’s of biological and clinical interest to ask whether and how the different 

genomic alteration profiles in the two subtypes contribute to MM pathogenesis and response 

to treatments.

Genome-wide gene expression profiling has contributed to the understanding of 

transcriptional alterations in myeloma and its subtypes compared to normal plasma B cells. 

Dysregulation of cell cycle-related genes Cyclin D1, D2 or D3 by translocation or 

hyperdiploidy, has been found to be a unifying and early pathogenic event in MM5, 6. Chng 

and colleagues have compared the gene expression between HMM and NHMM and found 

that HMM is associated with the activation of NF-κB, MYC and MAPK pathways, whereas 

the NHMM is associated with oncogene-activating translocations7, 8. Agnelli and colleagues 

have reported that differentially expressed genes and pathways between HMM and NHMM 

are mainly involved in protein biosynthesis, transcriptional machinery and oxidative 

phosphorylation9. Most of these genes locate in the trisomy chromosomes of HMM and 

therefore could represent direct dosage effect of copy number gains. However, genomic 

alterations could also have indirect effect in gene expression through dysregulating 

transcription factors (TrFs) and members in signaling pathways10–12. In this project we 

study how dysregulated TrFs in MM contribute to such indirect effect.

TrFs are the downstream effectors of signaling pathways within cells that receive growth 

and other signals from microenvironment. They also survey internal cellular homeostasis 

and make decisions on cell survival and proliferation13. Consequently, mutations in TrF 

genes or dysregulation of TrFs could play significantly roles in cancer pathogenesis and 

drug resistance. In myeloma, over-activation of TrFs such as NF-κB and MYC is frequently 
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observed and targeted as potential therapy14, 15. Several approaches have been developed to 

infer TrF dysregulation from global gene expression profiles. Gene set enrichment analysis 

identifies the enrichment of the target genes of a TrF in differentially expressed genes 

between two biological conditions as indication for the TrF’s own dysregulation16. Co-

expression patterns between genes can also be analyzed to infer network changes between 

biological conditions17–20.

In this study, we hypothesize that between the HMM and NHMM myeloma subtypes, 

distinct TrF pathways dysregulate converging cancer pathways. This hypothesis motivates 

us to develop a TrF-pathway co-expression analysis method to identify TrFs that correlate 

with the cell cycle arrest pathway differently between the two subtypes. From this analysis, 

we find robust, subtype-specific co-expression patterns between TrFs and the cell cycle 

arrest pathway. These results support a novel cooperation model of ESR1, SP1 and E2F1 on 

dysregulating cell cycle arrest in NHMM and their potential therapeutic implication. We 

then validate this prediction by drug combination treatments using four NHMM cell lines.

Materials and Methods

Gene expression profiling data sets

We used the following public GEO data sets of myeloma gene expression profiling. 

GSE64777 contains 70 expression samples of HMM and 70 samples of NHMM. 

GSE1978421 contains 201 samples with HMM status out of 320 samples. HMM and 

NHMM status are measured by FISH in these two studies. Samples with ambiguous HMM 

status such as those with both FISH-measured trisomies and translocations were excluded 

from our analysis. GSE636522 has 90 samples without information of HMM status. We 

applied a KNN-based method to classify samples into HMM and NHMM by their 

expression profiles23. The accuracy of this method is more than 85% when compared to 

FISH-based and copy number microarray-based HMM status. All the data sets were 

normalized and processed by the RMA method of Bioconductor to obtain expression values.

We used a transcription factor list containing nearly 200 common TrFs24, which is 

downloaded from the UCSC Genome Browser database.

The TrF-pathway co-expression algorithm

1. Paired t-test and correlation calculation—Paired t-test was used to compare the 

overall expression change of cancer related pathways between the two subtypes of myeloma 

(Figure 1A). Each pathway gene has a pair of average expression value across the samples 

in the two subtypes, and the test assesses the overall expression difference of pathway genes 

between the two subtypes of myeloma.

Next, we apply Spearman’s rank correlation to calculate the correlation coefficient between 

TrF and each pathway’s genes in the HMM and NHMM subtypes respectively (Figure 1B). 

Defined as Pearson’s correlation between rank-transformed values, Spearman’s correlation 

can detect non-linear correlation and reduce bias caused by outlier samples.
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2. Define Pattern Score to quantify TrF-pathway co-expression changes—In 

the next step, we have developed a formula to measure the change of TrF-pathway 

correlation pattern between the two myeloma subtypes. In the co-expression plot between a 

TrF and pathway genes (Figure 2A and 2B), the X value and Y value of each point 

represents the co-expression coefficient of a TrF and a gene in HMM and NHMM, 

respectively, rather than expression levels. Our analysis compares the co-expression 

alteration between the two subtypes.

We then define a score for the scatterplot pattern based on individual pathway genes (x, y) 

as:

Pattern Score = Sum of all blue points {Distance between (x, y) and the diagonal line * 

sign(|y|-|x|) } * −log(p-value of Hotelling test)

The Hotelling p-value tests whether the correlation coefficients between the TrF and the 

pathway genes (blue points in Figure 2A) are differently distributed compared to the 

correlation coefficients between the TrF and all the other genes (black points). Hotelling's T-

squared test is a multivariate version of the t-test25 and tests for the difference between the 

multivariate means of two populations. A significant p-value suggests that the TrF has a 

different functional relationship with this pathway compared to all other genes. The distance 

to the diagonal line of a point measures its degree of correlation coefficient change between 

the two subtypes, while the sign indicates in which subtype the point has higher absolute 

correlation with the TrF. For example, a gene point (x, y) in region A or B of Figure 2C has |

y|>|x|, so this gene has higher absolute correlation with the TrF in NHMM (the Y-axis 

subtype) than in HMM (the X-axis subtype).

Pattern Score has larger absolute value when the scatterplot deviates from y=x (Figure 2E 

and 2F) than when it is close to y=x (Figure 2D). The significance of the Pattern Score is 

determined by permuting the subtype labels of the samples and comparing the observed 

Pattern Score to the distribution of the maximal score obtained from 1000 permutations (in 

the Bayesian model below we performed 100 permutations).

3. Linear regression to test the co-expression scatterplot’s deviation from y=x
—A typical co-expression plot between a TrF and pathway genes is shown in Figure 2A, 

where blue points (pathway genes) and black points (the rest genes) represent the correlation 

coefficient between a specific TrF and a gene in HMM subtype (X-axis) and NHMM 

subtype (Y-axis). To detect the overall change of TrF-pathway co-expression between 

HMM and NHMM, we also checked whether or not the slope is 1 for the blue points 

(pathway genes) in Figure 2A. If the slope is significant different from 1, it indicates that the 

co-expression of TrF and pathway genes has a global change between the two subtypes of 

myeloma. We rotated the coordinates of all points by 45 degrees clockwise and then tested 

whether the regression slope in the new scatterplot is 0. A significant p-value indicates the 

change of TrF-pathway co-expression between the two subtypes.

4. Bayesian meta-analysis of multiple data sets—In the meta-analysis step, we used 

a Bayesian method to pool information across multiple data sets and down-weight the results 

specific to a single-data set26. Briefly, in each data set we first computed the correlation 
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coefficient r between a transcription factor and a pathway gene, and then converted r into a 

standard normal statistic using Fisher’s r-to-z transformation, with associated variance 

determined by sample size. Next, a hierarchical Bayesian model was used to combine the z 

values from different data sets to arrive at the TrF-gene correlation coefficient pooled across 

multiple data sets. We followed the formulas in Choi et al. 200526. This meta-analysis was 

also performed on the null data generated from 100 permutations of sample group labels to 

assess the statistical significance of identified top TrFs.

Drug treatment, cell proliferation assay and isobologram analysis

U266, MM1S and RPMI-8226 myeloma cells were obtained from the American Type 

Culture Collection (ATCC). OPM2 were obtained from the German collection of 

microorganisms and cell cultures (DSMZ). The INA6 cell line was provided by Renate 

Burger. All the cell lines are NHMM-characterized subtype: INA-6 is a IL-6-dependent 

human myeloma cell line27, while U266, OPM-2, RPMI-8226 and MM1S contain Ig locus 

translocation28, 29.

The MM cell lines were cultured in RPMI 1640 supplemented with 10% fetal bovine serum. 

In the combination treatment experiments, cells were cultured with or without Tamoxifen 

(TMX) in the absence or presence of Terameprocol (TMP) for 48 hours. MM cell 

proliferation was measured by DNA synthesis through [3H]thymidine (Perkin-Elmer) 

incorporation assay, as previously described30. All experiments were carried out in 

triplicates.

The interaction between TMP and TMX was analyzed using the CalcuSyn software program 

(Biosoft, Ferguson, MO), which is based on the Chou-Talalay method31. When combination 

index (CI) = 1, it represents the conservation isobologram and indicates additive effects. CI 

< 1 indicates synergism and CI > 1 indicates antagonism.

Results

Motivations for studying the cell cycle arrest pathway and its co-expression with TrFs

Using the Chng data set and major cancer pathways32, 33, we found that the cell cycle arrest 

pathway is significantly up-regulated in HMM compared to NHMM (Figure 1A), and is up-

regulated in both subtypes compared to normal plasma cells. We also observed co-

expression changes between TrFs and their target genes. For example, the co-expression 

pattern between a TrF SP1 and cyclin-dependent kinase CDK2, a transcriptional target of 

SP134, is much stronger in HMM than in NHMM (Figure 1B). The co-expression analysis 

can detect such changes that are not obvious from gene-wise differential expression analysis 

of either SP1 or CDK2 (p-value is 0.11 and 0.053, respectively). These results and existing 

knowledge of cell cycle’s dysregulation in myeloma motivated us to develop a TrF-pathway 

co-expression analysis method to identify TrFs that differently correlate with the cell cycle 

arrest pathway between the two subtypes.
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TrF-pathway differential co-expression analysis

We developed a statistical analysis method to detect co-expression changes between 

transcription factors and genes in cancer-related pathways. Figure 1C outlines the analysis 

pipeline. Differentially expressed, cancer-related pathways between two biological 

conditions were first identified. We next scored TrFs that have significant co-expression 

changes with pathways of interest between two sample conditions. This method ranks TrFs 

by the degree of TrF-pathway co-expression changes between the two conditions. Finally, 

permutation of sample group labels was used to generate null data sets and call significantly 

TrFs.

We used this pipeline to ask what TrF’s co-expression with the cell cycle arrest pathway has 

significant difference between the two myeloma subtypes, HMM and NHMM. The Pattern 

Score (defined in Methods) measures whether a TrF-pathway pair has an overall different 

correlation pattern between the two subtypes. If the pathway genes (blue points in Figure 2) 

and a TrF have largely unchanged co-expression between the two subtypes, the scatterplot 

of blue points centers along the diagonal line (y=x) and the Pattern Score is close to zero 

(Figure 2D). If the scatterplot has a slope far from 1, it indicates an overall change of TrF-

pathway co-expression between the two subtypes and the Pattern Score will be much larger 

or smaller than 0 (Figure 2E and 2F). We also used a linear regression to test whether the 

pattern has significant deviation from the diagonal line (see Methods). The p-value of this 

test is 0.896, < 2.2e-16 and 3.7e-08 for the patterns in Figure 2D, E, F, respectively.

TrFs involved in IL-6 and MAPK signaling have significantly lower co-expression with cell 
cycle arrest genes in HMM

We first applied the TrF-pathway co-expression analysis on the data set GSE64777 and 

compared our findings to those in the original study for evaluation of the co-expression 

analysis. Table 1 lists top-ranked TrFs that have significantly lower co-expression with cell 

cycle arrest genes in HMM compared to NHMM, including HOXA9, MYC and NF-κB 

family member c-Rel (REL). Also from Table 1, CEBPB and STAT3 are involved in the 

IL-6 pathway, and NF-κB, MYC and ATF2 are involved in the MAPK signaling 

pathway35, 36. Both pathways promote myeloma initiation and progression2. Furthermore, 

RELA (p65, an NF-κB subunit, score=−138) and FOS (an IL-6 pathway member; score=

−141) also have high scores but their permutation p-values are not as significant. These two 

TrFs also associate with the MAPK signaling pathway and the IL-6 pathway. Our co-

expression analysis arrived at findings consistent with the original study of GSE6477, which 

has reported that MYC, NF-κB, MAPK and IL-6 pathways are over-expressed in HMM than 

in NHMM7.

ESR1, SP1 and E2F1 have significantly lower co-expression with cell cycle arrest genes in 
NHMM

In contrast to HMM, the transcriptional dysregulation in NHMM has been less studied, 

although the translocation events are more associated with NHMM. Table 2 lists top-ranked 

TrFs that have significantly lower co-expression with cell cycle arrest genes in NHMM 

compared to HMM. Among them, ESR1 (Estrogen receptor alpha), SP1 and E2F1 are three 
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TrFs known to influence cellular processes that include proliferation and apoptosis37–39. 

These results have not been reported by the original study of GSE64777.

Bayesian meta-analysis of multiple data sets improves the robustness of analysis

We next asked whether these findings are specific to one data set (GSE6477) or general in 

myeloma. We added two other myeloma expression data sets that have both HMM and 

NHMM samples, GSE636522 and GSE1978421. We used a Bayesian hierarchical model to 

compute correlation coefficients between TrFs and genes by pooling across data sets and 

weighting their respective sample sizes26. The meta-analysis down-weights TrF-pathway co-

expression patterns specific to one data set, even if this pattern may be significant in the data 

set (Figure 3A); and enhances the patterns consistent across data sets but may not be 

significant in any one data set (Figure 3B). Table 3 lists the TrFs with significantly different 

co-expression with cell cycle arrest genes between HMM and NHMM after pooling the 

three data sets. Table 3B and Figure 3B show that both SP1 and ESR1 are still top-ranked as 

having significantly lower co-expression with cell cycle arrest genes in NHMM compared to 

HMM across different patient cohorts.

Cell cycle arrest genes are enriched by SP1 ChIP targets

Although co-expression analysis suggests regulatory role of SP1 on cell cycle arrest genes, it 

cannot determine whether such regulation is direct or indirect. We next analyzed SP1 ChIP-

seq (chromatin immunoprecipitation followed by sequencing) data of GM12878, a 

lymphoblastoid cell line from the ENCODE project, to check if SP1 targets are enriched by 

cell cycle arrest pathway genes (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeHaibTfbs). An enrichment supports a direct regulatory role of SP1 on 

the cell cycle arrest pathway. There are 2150 genes whose transcript starting site (TSS) is 

within 3 kb upstream or downstream of the top 5000 SP1 peaks. Among the 310 cell cycle 

arrest genes we used in the co-expression analysis (Suppl. Table 1), 85 have strong SP1 

binding peaks near their TSS regions (27%). Therefore, cell cycle arrest genes are enriched 

by SP1 targets (p-value = 3.86e-08) in this B lymphocyte cell line. Since myeloma cells 

come from the B cell lineage, SP1 dysregulation is likely to directly affect the gene 

expression of cell cycle arrest pathway in myeloma.

We then analyzed an ESR1 ChIP-seq data in a breast cancer cell line MCF-7 (GSE25021), 

since ESR1 ChIP data are not available for B cells. There is no enrichment of ESR1 targets 

in cell cycle arrest genes. However, ESR is known to regulate genes indirectly through 

interactions with Sp1 transcription factor40, supporting its possible indirect regulation of the 

cell cycle arrest pathway.

A model of cooperation between SP1 and ESR1 on regulating cell cycle arrest

Based on these results and literature evidences, we proposed a model of cooperation 

between SP1 and ESR1 on regulating cell cycle arrest and their over-activation in NHMM 

(Figure 4). Over-activation of ESR1 in myeloma cells induces MAPK/ERK pathways 

through c-SRC41 (Step 1 in Figure 4), which in turn activate SP1, leading to increased 

expression of the downstream factor E2F1 (Step 2). Furthermore, both SP1 and ESR1 

regulate Cyclin D1 (CCND1)42, 43, which is frequently abnormal in myeloma5, and lead to 
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cell cycle progression (Step 3). This model suggests a combination therapy to inhibit both 

SP1 and ESR1 activities to overcome the limitations of single-drug treatments that inhibit 

either SP1 or ESR1 alone. For example, anti-estrogens therapy, especially the most 

commonly used tamoxifen, has major limitations including its partial agonist activity and 

constitutive or acquired resistance44. Tamoxifen resistance has been shown to be a result of 

increased ERα (product of ESR1) and Sp1 interaction that enhances the expression of 

E2F145, 46.

Synergistic growth inhibition effect of co-targeting SP1 and ESR1 in myeloma cells

The cooperation model predicts an approach to preventing cell proliferation by intervening 

SP1 and ESR1’s dysregulation in myeloma cells. We investigated the effect of co-targeting 

SP1 and ESR1 proteins on MM cell growth. Our recent work showed that Sp1 plays a 

regulatory role in multiple myeloma cell growth and survival, and it can be inhibited by the 

anti-MM activity of TMP, a small molecule that specifically competes with Sp1-DNA 

binding in vitro and in vivo30. In addition, tamoxifen (TMX), an antagonist of estrogen 

receptor, has been shown to induce growth arrest and apoptosis in multiple myeloma cell 

lines37, 44. In our combination treatment experiments, NHMM cells were cultured for 48 

hours with TMX (0.5 and 20 µM), TMP (5 and 10 µM) or their combinations, and cell 

proliferation was measured by [3H]thymidine uptake at 48 hours. In four of the five cell 

lines treated, all combinations of TMX and TMP resulted in significant (p-value < 0.05) and 

synergistic anti-proliferative effect (Figure 5), except the treatment TMP 5 uM and TMX 20 

uM for the OPM2 cell line. For example, treatment of TMX at 0.5 and 20 µM alone triggers 

10% and 40% growth inhibition in U266 cells, respectively (Figure 5A), which was further 

enhanced to 40% (combination index = 0.68) and 70% (combination index = 0.5) by 

combined treatment with TMP at 5 µM (Figure 5C, table rows in blue). In MM1S cells, a 

synergistic effect was achieved only at 72 hours (data not shown).

Discussion

This study starts from the two myeloma subtypes that have distinct and characteristic 

genomic alterations, which may have been selected during cancer cell evolution and lead to 

different paths to oncogenesis and differential survival outcomes. We hypothesize that the 

dysregulation of TrFs can induce co-expression alteration between a TrF and the genes it 

regulates directly or indirectly. Because the cell cycle arrest pathway has significant 

expression level changes between the HMM and NHMM subtypes among cancer-related 

pathways, and that cell cycle dysregulation could be a common pathogenic mechanism in 

myeloma5, we have focused on the cell cycle arrest pathway. We have developed a co-

expression analysis method to identify TrF-pathway co-expression dysregulation in two 

major myeloma subtypes. Our analysis has revealed specific TrFs that could be dysregulated 

in each myeloma subtype which in turn may lead to their reduced regulation of cell cycle 

arrest. Based on these results and literature evidences, we have proposed a cooperation 

model between TrFs SP1 and ESR1 in contributing to cell cycle dysregulation in myeloma. 

Our experiments show that combination treatment targeting both TrFs has synergistic effect 

on growth inhibition of myeloma cell lines, and therefore support the proposed model.
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Compared to the traditional method of differential expression analysis followed by gene set 

enrichment of pathways or TrF target sets, our co-expression method may identify TrFs 

whose targets are not differentially expressed but are differentially regulated by the TrFs, 

which are biologically relevant and complementary results to existing methods. In addition, 

the co-expression analysis can identify TrFs that dysregulate downstream genes in indirect 

ways, while TrF target enrichment analysis cannot. For example, using predicted TrF target 

information based on TRANSFAC24, we identified only a few TrFs, whose target genes are 

enriched in cell cycles arrest genes and which are also differentially expressed between 

HMM and NHMM in the GSE6477 dataset, including MYC, MYB, CREB1, E2F3 and 

USF2 (Suppl. Table 4). This is in contrast to many TFs that we identified to differentially 

regulate cell cycle arrest genes between the two myeloma subtypes (Table 1 and 2). In 

particular, our analysis identified ESR1’s dysregulation in NHMM. ESR1 had been reported 

to regulate genes through indirect mechanisms such as by interacting with cofactors AP-1 

and Sp140, and our ChIP-seq analysis of ESR1 binding peaks showed no enrichment of cell 

cycle arrest genes. Finally, although TrF target enrichment analysis may suggest direct 

regulation, it is restricted to available target prediction or ChIP-seq data; while the co-

expression does not require such information.

The TrF-pathway co-expression analysis has revealed dysregulated pathways that are 

consistent with previous analysis of HMM. Both our analysis and the original study of 

GSE6477 have found MYC and NF-κB pathways as dysregulated in HMM. In addition, we 

have identified HOXA9 as the top TrF dysregulated in HMM due to its reduced co-

expression with cell cycle arrest genes both in the GSE6477 data and in the Bayesian meta-

analysis (Tables 1 and 3A). Although HOXA9 was not identified in Chng et al.7, it has 

recently been suggested as a candidate oncogene in myeloma by a genome-wide sequencing 

study47. HOXA9 is a transcription factor regulating gene expression, morphogenesis and 

differentiation48. A translocation event causing a fusion between HOXA9 and NUP98 has 

been associated with myeloid leukemogenesis49, 50. In MM, it has high expression level in 

patients lacking IgH translocations47, agreeing with that HOXA9 has a higher expression in 

HMM than in NHMM in the three data sets we analyzed (p-values of 0.076, 0.019, 0.008). 

HOXA9-depleted cells show a competitive growth disadvantage47, suggesting its 

expression-related carcinogenesis role in myeloma. Therefore, HOXA9 with higher 

expression level in HMM is associated with oncogenesis, co-occurring with our analysis 

results of HOXA9’s reduced co-expression with cell cycle arrest pathway in HMM.

We have also identified TrFs SP1, ESR1 and E2F1 as having significantly lower co-

expression with the cell cycle arrest pathway in NHMM compared to HMM (Tables 2 and 

3B). SP1 regulates a variety of processes such as cell growth, apoptosis, differentiation and 

immune responses38. It also mediates the transcription of cyclins and cyclin-dependent 

kinases43, 51. It has been recently shown to play an important regulatory role in MM cell 

growth and survival30. MM cells display increased SP1 protein (Sp1) nuclear levels and 

DNA binding activity compared to normal cells, and their interaction with bone marrow 

stromal cells (BMSC) lead to Sp1 activation via induction of the ERK signaling pathway30. 

Moreover, genetic inhibition of Sp1 with siRNA and shRNA technologies and 

pharmacological inhibition with a specific Sp1 inhibitor significantly reduced MM cell 

growth and survival in vitro and in vivo30. Estrogen receptors (ESR1 and ESR2) are nuclear 
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receptors that are activated by the hormone estrogen and then bind to DNA to regulate 

downstream genes52. They are over-expressed in 70% of breast cancer samples, and these 

ER-positive cancers respond to estrogen receptor antagonist such as tamoxifen46, 53. Studies 

show that MM cells often express and over-activate estrogen receptors (ER), and selective 

estrogen receptor modulators induce G1-S cell cycle arrest and apoptosis in MM 

cells44, 54, 55. Moreover, ESR1 interacts with Sp1 to regulate transcription of downstream 

genes, including E2F1, a key regulator of the G1-S cell cycle checkpoint 46, 56.

Drug combination is widely used in treating cancers, helping achieve synergistic therapeutic 

effect and minimizing drug resistance31. Based on the TrF-pathway results and literature 

reviews, we have proposed a cooperation model of SP1 and ESR1’s roles in regulating cell 

cycle arrest and their dysregulation in NHMM. A combination treatment targeting both SP1 

and ESR1 has synergistic growth inhibition effect on NHMM cell lines. These result support 

the SP1-ESR1 cooperation model and point to further experimental follow-up.

There are areas for further improvement on this study. First, since myeloma is a cancer of 

bone marrow, no normal bone marrows are available in large numbers for comparative 

expression profiling. Due to small sample size or lack of normal samples in the data sets 

used, we have not included normal samples in the analysis. In this study, we have used the 

evidence that TrFs such as MYC and HOXA9 are both over-activated in HMM and have 

lower co-expression with the cell cycle arrest pathway to associate a TrF’s lower co-

expression in a subtype with its dysregulation in the subtype. Comparing MM subtypes with 

normal samples in future studies using the co-expression analysis could help confirm this 

association. Comparing to normal samples can also reveal TrFs that are commonly 

dysregulated in both subtypes. The second limitation is the use of TrFs that are based on 

TRANSFAC TrFs, which are well studied58. Although this helps interpreting these TrFs’ 

roles in cell cycle pathways and designing experimental validation, we may miss novel 

mechanisms involving TrFs not in the list. Expanding the analysis to predicted TrFs based 

on their DNA-binding domains will alleviate this limitation59. The third limitation is that 

when a TrF has significant co-expression with a gene in a pathway, relationship between the 

TrF and the gene may not be causal or direct. Other genetic regulators may regulate both the 

TrF and the gene, or the TrF regulates the gene via intermediate regulators. We have 

checked the ChIP-seq based gene targets of SP1 and found that they are enriched by cell 

cycle arrest genes. This lends support that SP1 directly regulates many cell cycle arrest 

genes, but wet experiments are needed to validate these predictions. Bioinformatic 

algorithms such as ARACNE may be used to better distinguish direct and indirect co-

expression relationship60. These limitations point to areas to improve the TrF-pathway co-

expression analysis for better understanding of regulatory alterations in cancer. Another 

interesting direction is to use co-expression signatures as biomarker for patient prognosis57. 

The TrF-pathway co-expression analysis code is available at http://chenglilab.weebly.com/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Differential expression of cancer-related pathways between HMM and NHMM. 
The bars show the gene counts (y-axis) vs. pathways ordered by the number of genes (x-

axis). The gene lists are downloaded from the Gene Ontology database. P-values on the top 

of the bars are computed from paired t-test using each pathway gene’s average expression in 

HMM and in NHMM as paired data points. Data set used: GSE6477.

(B) Co-expression between TrF SP1 and a cell cycle gene CDK2 in HMM and NHMM. 
The gene expression values of SP1 (y-axis) is plotted against that of CDK2 (x-axis) for 

HMM samples (left) and for NHMM samples (right). The correlation coefficient is stronger 

in HMM. Both genes are not significantly differentially expressed between HMM and 

NHMM (CDK2, p-value=0.053, SP1, p-value=0.11). Data set used: GSE6477.

(C) Overview of the TrF-pathway co-expression analysis. Using gene expression 

profiling data, we identify differentially expressed cancer pathways between two biological 

conditions. Next, we use a formula to score TrFs for their differential co-expression patterns 

with pathways of interest between the two conditions. Permutation of sample group labels 

was used to assess the statistical significance of top-ranked TrFs.
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Figure 2. Scoring significant TrF-pathway co-expression changes between two myeloma 
subtypes
Key ideas are illustrated using GSE6477, a myeloma expression data set that compares 

global gene expression differences between HMM and NHMM. (A) The co-expression 

scatterplot between a TrF (COMP) and genes. Each point stands for the correlation 

coefficients between the TrF and a gene in HMM samples (X-axis) and in NHMM samples 

(Y-axis). Blue: genes in the pathway of interest (cell cycle arrest); black: all other genes. (B) 
A cartoon version of (A). Blue points stand for cell cycle arrest genes while black ones stand 

for other genes. The point (X1, Y1) indicates a gene that has respective correlation 

coefficients with the TrF in HMM (X1) and NHMM (Y1). The blue arrow stands for the 

distance between (X1, Y1) and the diagonal line, Y=X. (C) Two diagonal lines divide the 

correlation space into four regions. For the points (genes) in regions A and B, the absolute 

Y-axis value is larger than the absolute X-axis value. The opposite is true for the points in 

regions C and D. Panel C–E: Three typical TrF-pathway co-expression patterns. (D) The 

TrF COMP has no significant co-expression changes with cell cycle arrest genes between 

HMM and NHMM. (E) SP1 has a lower overall correlation with the pathway genes in 

NHMM (Y-axis) than in HMM (X-axis). (F) MYC has a lower overall correlation in HMM 

(X-axis) than in NHMM (Y-axis).
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Figure 3. The co-expression patterns of TrFs AHR and ESR1 in individual data sets and in the 
meta-analysis
Meta-analysis averages out conflicting patterns in (A) and strengthens consistent patterns in 

(B). (A) The TrF AHR does not have a robust co-expression alteration between HMM and 

NHMM across the three individual data sets. The red and green dots represent two pathway 

genes and their correlation coefficients with the TrF. Because the coefficients of the same 

genes are quite different in the three data sets, the meta-analysis does not lead to a 

significant Pattern Score. (B) ESR1 has a robust co-expression alteration between HMM and 

NHMM across the three data sets. Most pathway genes such as those highlighted by the red 

and green dots remain at similar correlation coefficient positions in the three data sets, so the 

meta-analysis leads to a significant Pattern Score.
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Figure 4. A model of cooperation between SP1 and ESR1 on regulating cell cycle arrest and their 
over-activation in NHMM
ESR1, SP1 and their target E2F1 all have significantly lower co-expression with the cell 

cycle arrest pathway in NHMM compared to HMM. See Discussion for details. Blue arrows 

refer to literature-supported regulation in breast cancer, and red arrows in myeloma. “+p” 

stands for phosphorylation. Black dotted arrows indicate indirect regulation. Red and blue 

crosses and corresponding downward thick arrows indicate literature-supported knock-down 

of upstream genes or TrFs and the corresponding effects in reducing downstream genes’ 

activity or expression in breast cancer (blue) and in myeloma (red).
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Figure 5. Synergistic growth inhibitory effect of Sp1 inhibitor TMP and ESR1 antagonist 
tamoxifen (TMX) on MM cells
Cell proliferation is measured as percentage of untreated cells at 48 hours for four different 

MM cell lines: (A) U266, and (B) INA6, RPMI-8226 and OPM2. Data are means ± SD (n = 

3). (C) Combination indices (CI) and the fraction of cells affected by drug concentration 

(Fa) for the combinations of TMX and TMP are shown in the tables. CI < 1, CI = 1, CI 

values >1 indicate synergism, additive effect and antagonism, respectively. For analyses of 

combinations, different doses of each drug were used, but only the most representative doses 

of each combination were included in the figure.
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