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The effect sizes of studies included in a meta‐analysis do often not share a

common true effect size due to differences in for instance the design of the

studies. Estimates of this so‐called between‐study variance are usually impre-

cise. Hence, reporting a confidence interval together with a point estimate of

the amount of between‐study variance facilitates interpretation of the meta‐

analytic results. Two methods that are recommended to be used for creating

such a confidence interval are the Q‐profile and generalized Q‐statistic

method that both make use of the Q‐statistic. These methods are exact if

the assumptions underlying the random‐effects model hold, but these

assumptions are usually violated in practice such that confidence intervals

of the methods are approximate rather than exact confidence intervals. We

illustrate by means of two Monte‐Carlo simulation studies with odds ratio

as effect size measure that coverage probabilities of both methods can be

substantially below the nominal coverage rate in situations that are represen-

tative for meta‐analyses in practice. We also show that these too low cover-

age probabilities are caused by violations of the assumptions of the

random‐effects model (ie, normal sampling distributions of the effect size

measure and known sampling variances) and are especially prevalent if the

sample sizes in the primary studies are small.
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1 | INTRODUCTION

Meta‐analysis refers to a set of statistical techniques for
combining the estimates of similar studies providing
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commensurable evidence about some phenomenon of
interest (eg, the effectiveness of a treatment, the size of
a group difference, or the strength of the association
between two variables). By combining the evidence, we
aim to increase statistical power to find effects or relation-
ships that individual studies may fail to detect. Moreover,
by examining the variability in the estimates, we can
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draw more generalizable conclusions about the consis-
tency of the effect or relationship over multiple studies
and/or examine the degree to which effects or relation-
ships vary and under what conditions.

If the included studies in a meta‐analysis share the
same common true effect size, any differences between
the studies' effect size estimates are in theory only caused
by sampling variability. However, the true effect sizes can
also vary and sampling variability alone can then not
explain the differences in effect size estimates. The effect
sizes are then said to be heterogeneous. Such between‐
study variance may be due to systematic differences
between the studies (eg, differences in the sample charac-
teristics or differences in the length or dose of a treat-
ment). If information on how the studies differ is
available, it may be possible to account for the between‐
study variance by incorporating this information in the
model with a meta‐regression analysis.1

The Q‐test2 is commonly used to test the null hypothe-
sis of no between‐study variance. A drawback of the Q‐test
is that the test can have low statistical power if a small
number of studies are included and can have very high
power if a large number of studies are included even if
the amount of variability in the true effects is negligible.3,5

These undesirable statistical properties of the Q‐test call
attention to the importance for estimating the amount of
between‐study variance. The amount of between‐study
variance as well as the average effect size of the set of stud-
ies can be estimated by means of a random‐effects model.
Estimating the between‐study variance is equally impor-
tant as estimating the average effect size because it indi-
cates the amount of consistency among the effects.6

However, estimates of the between‐study variance are
rather imprecise if the number of studies in a meta‐
analysis is small.7,9 Hence, reporting a confidence interval
(CI) around the estimate is highly desirable and improves
interpretability.6,10-12

Numerous methods for constructing a CI around the
estimate of the between‐study variance have been
proposed, including the profile likelihood method,13

Wald‐type methods,14 bootstrapping,15,16 a method by
Sidik and Jonkman based on weighted least squares esti-
mation,17 the Q‐profile method,18 two different methods
that approximate the distribution of the test statistic of
the Q‐test,14,19,20 and also Bayesian methods to estimate a
corresponding credible interval.21 Since the method pro-
posed by Biggerstaff and Jackson19 is a special case of the
method described by Jackson,20 we will refer to this
method as the generalized Q‐statistic method (GENQ
method for short). A recent review of the aforementioned
methods22 recommended to use the Q‐profile method if
the between‐study variance is large and the GENQmethod
if the between‐study variance is small.
The Q‐profile and GENQ methods make use of the
distribution of the test statistic of the Q‐test to compute
a CI. If the assumptions underlying the random‐effects
model hold, the null distribution of the Q‐statistic is χ2

with the number of studies minus one as the degrees of
freedom.2 However, violations of these assumptions are
likely to occur in practice. For instance, an assumption
of the random‐effects model is that the sampling
distribution of each study's effect size is normally distrib-
uted (see Jackson and White23 and the corresponding
commentaries for a general discussion on normality
assumptions in meta‐analysis). This assumption is
violated in most meta‐analyses because the sampling dis-
tribution of most effect size measures is only asymptoti-
cally normal (ie, approximates a normal distribution as
the primary study's sample size gets large).4,23-25 Another
assumption is that the sampling variances are known,
whereas they are usually estimated and then simply
assumed to be known.14,26 These assumptions become
more acceptable if the primary studies' sample sizes
increase, because the sampling distributions are then bet-
ter approximated by normal distributions and the primary
studies' observed sampling variances are closer to the true
sampling variances. Nevertheless, violations of the
assumptions of the random‐effects model will result in a
Q‐statistic that does not exactly follow a χ2 distribution
under the null hypothesis. Hence, theQ‐profile and GENQ
methods may not yield exact CIs (ie, coverage probability
equal to 1 − α) if these assumptions do not hold.

The aim of our paper is to study the performance of
the Q‐profile and GENQ methods under conditions that
are representative for meta‐analyses in practice. We
selected the log odds ratio as the effect size measure
in our analyses, because it is often used in medical
research. Note that the above discussed assumptions of
normal sampling distributions and known sampling var-
iances are violated if the log odds ratio is the effect size
measure and that these violations can be substantial
particularly if the primary studies' sample sizes are
small. The statistical properties of the Q‐profile method
have already been examined under conditions that are
representative for meta‐analyses in practice where the
assumptions of the random‐effects model are violated.18

However, statistical properties of the GENQ method
have only been studied under conditions where all
assumptions of the random‐effects model hold.20,27 Our
paper is therefore the first that compares the statistical
properties of the Q‐profile and GENQ methods when
the assumptions of the random‐effects model do not
hold in combination with conditions that are represen-
tative for meta‐analysis in practice.

The paper continues by briefly outlining the random‐

effects model and the Q‐test. Subsequently, the Q‐profile
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and GENQ methods are described and illustrated using a
meta‐analysis on the relationship between handedness
and eye‐dominance. Next, we describe the Monte‐Carlo
simulation study that we use to examine the statistical
properties of the two methods and present their results.
The paper ends with a conclusion and discussion section
with recommendations for when to use the Q‐profile and
GENQ methods.
2 | THE RANDOM ‐EFFECTS
MODEL AND Q ‐TEST

Assume that i = 1, 2, … k independent effect sizes have
been derived from a set of studies. Each study's observed
effect size (Yi) is assumed to be an unbiased estimate of
the study specific true effect size (θi). However, Yi is not
equal to due to sampling error (εi). This can be written as

Yi ¼ θi þ εi

where εieN 0; σ2i
� �

with σ2i denoting the true sampling var-
iance in the ith study. All εi are assumed to be independent
of each other and each σ2i is estimated in practice and then

assumed to be known. Hence, we will write bσ2i to refer to
the estimated sampling variances. Each θi consists of an
average true effect (μ) and the random effect ui~N(0, τ

2)
that denotes the difference between θi and μ.26 Hence,
the random‐effects model can be written as

Yi ¼ μ þ ui þ εi

where it is assumed that the ui are independent of each
other and ui is independent of εi. The random‐effects
model reduces to the common‐ or equal‐effects model if
τ2 = 0.

Several hypothesis tests for testing H0: τ
2 = 0 have

been proposed,5 of which the Q‐test is most often used.25

The Q‐statistic is computed with

Q ¼ ∑k
i¼1

Yi−bθ� �2

bσ2i ; (1)

where bθ is given by

bθ ¼ ∑k
i¼1wiY i

∑k
i¼1wi

; (2)

with wi ¼ 1=bσ2i . Under the null hypothesis, Q follows a
χ2distribution with k − 1 degrees of freedom if the primary
studies' sample sizes are large.2 Hence, H0: τ2 = 0 is
rejected when testing with α = 0.05 if Q is larger than
χ2k−1;0:95, where χ
2
k−1;0:95 is the 95th percentile of a χ2 distri-

bution with k − 1 degrees of freedom.
3 | Q ‐PROFILE METHOD

The Q‐profile method generalizes the Q‐statistic in
Equation 1 to a random‐effects model by incorporating
τ2, so that

Q τ2
� � ¼ ∑k

i¼1
Yi−bμð Þ2
τ2 þ bσ2i ; (3)

with bμ given by Equation 2 with wi ¼ 1= τ2 þ bσ2i� �
. This

generalized version of the Q‐statistic is a pivotal quantity
that also follows a χ2 distribution with k − 1 degrees of
freedom18 and is a function of τ2. Hence, a CI for τ2 can
be obtained by means of test inversion.28 If χ2k−1;0:025 and

χ2k−1;0:975 are the 2.5th and 97.5th percentiles of a χ2 distri-

bution with k − 1 degrees of freedom, the 95% CI (bτ 2LB; bτ2UB)
is equal to the two values for τ2 where

Q τ2 ¼ bτ2LB� �
¼ χ2k−1;0:975;Q τ2 ¼ bτ2UB� �

¼ χ2k−1;0:025
� �

:

The method is called Q‐profile because different
values for τ2 are entered in Equation 3 (ie, profiling) until
the pivotal quantity in Equation 3 equals the critical
values of the χ2 distribution. If Q τ2 ¼ 0ð Þ < χ2k−1;0:975, the
lower bound of the CI is in principle negative but outside
of the parameter space and hence truncated to zero.18 If
Q τ2 ¼ 0ð Þ < χ2k−1;0:025, the estimate of the upper bound is

also negative, and the CI is set equal to the null
set. Under the assumptions of the random‐effects model
(ie, unbiased observed effect size estimates, normal sam-
pling distributions, known sampling variances, and
uncorrelated sampling errors and random effects), the
Q‐profile method yields exact CIs. Viechtbauer29 showed
by means of a Monte‐Carlo simulation study with log odds
ratios as effect size measure (which do not fulfill the model
assumptions exactly) that the Q‐profile method still yields
accurate coverage probabilities for the majority of the
conditions included in the simulations. One exception
was that undercoverage occurred when meta‐analyzing a
large number of studies with small sample sizes.
4 | GENQ METHOD

The GENQ method19,20 constructs a CI for τ2 based on
the exact distribution of the Q‐statistic under the assump-
tions of the random‐effects model. This method uses the
generalized form of the Q‐statistic as described by
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DerSimonian and Kacker30 where the weights are no lon-

ger, wi ¼ 1=bσ2
i , but could be any set of positive constants

denoted by ai. The exact distribution of the Q‐statistic
(Qa) was derived by Biggerstaff and Jackson19 and Jack-
son.20 The distribution of Qa is the weighted sum
(weighted by λi ≥ 0 where λi are the eigenvalues of a

matrix that is a function of ai, bσ2i , and τ2) of mutually
independent χ2‐distributed random variables with one
degree of freedom each, so that

Qa¼d ∑
k

i¼1
λiχ2i 1ð Þ: (4)

Jackson20 proved that the cumulative distribution
function of Qa is a continuous and decreasing function
in τ2. The cumulative distribution function of a positive
linear combination of χ2‐distributed random variables
can be obtained by Farebrother's algorithm.31 The lower

and upper bound of the 95% CI (bτ2LB; bτ2UB) can then be
obtained again by test inversion28; that is, given the
observed value qa of Qa, we find those two values of τ2

for which

P Qa ≥ qa; τ
2 ¼ bτ2LB� �

¼ 0:025; P Qa ≥ qa; τ
2 ¼ bτ2UB� �

¼ 0:975
� �

:

The upper and lower bounds of the CI can also be
negative. If the estimate of the lower bound is negative,
it is recommended to truncate the estimate to zero. In
case the lower and upper bounds are both negative, the
CI is set equal to the null set. The GENQ method yields
exact CIs if the assumptions underlying the random‐

effects model (ie, unbiased observed effect size estimates,
normal sampling distributions, known sampling vari-
ances, and uncorrelated standard errors and random
effects) are fulfilled.

Different values for ai can be selected for weighing the

observed effect sizes. If ai ¼ 1=bσ2i , the results of the
methods by Biggerstaff and Jackson19 and Jackson20 are
equivalent. Other suggestions for ai are an unweighted

analysis with ai equal to a constant, 1= bτ2 þ bσ2
i

� �
, and

1= bτ2 þ bσ2i� �0:5
.20,32 Note that even when all model

assumptions are fulfilled, the CIs are no longer exact if
the last two weights are used, because the weights are
then a function of a random variable (since τ2 has to be
estimated).
5 | EXAMPLE

We illustrate how the Q‐profile and GENQ methods can
be used in practice by applying the methods to a meta‐
analysis on the relationship between handedness and
eye‐dominance by Bourassa et al.33 This meta‐analysis
consists of 96 log odds ratios as effect size measure that
were computed based on 2 × 2 frequency tables indicat-
ing the number of individuals that were left‐handed/
left‐eyed, left‐handed/right‐eyed, right‐handed/right‐
eyed, and right‐handed/left‐eyed. Data of the included
96 primary studies are reported in Table 1 of their paper.
Before the log odds ratios were computed, we added 0.5
to each cell in the 2 × 2 frequency table of all primary
studies in order to avoid division by zero when comput-
ing the log odds ratio and corresponding sampling vari-
ance and to decrease bias in the estimator of the log

odds ratio.34 For the GENQ method, ai ¼ 1=bσ2i and
ai ¼ 1=bσi were used as weights, because the method is
exact if these weights are used and the model assump-
tions are fulfilled. R code for applying the Q‐profile and
GENQ methods to these data is available at https://osf.
io/s72r8/.

The Q‐statistic was equal to Q(95) = 561.06
(p < 0.0001), which implies that the null hypothesis of
homogeneity was rejected. All 95% CIs of Q‐profile

(0.268; 0.674), GENQ with ai ¼ 1=bσ2i (0.169; 0.633), and
GENQ with ai ¼ 1=bσi (0.244; 0.622) did not include the
value 0, suggesting that the true effect sizes were hetero-
geneous. However, considerable discrepancies among the
methods are apparent for the lower bounds of the CIs.
6 | MONTE ‐CARLO SIMULATION
STUDY 1

The Q‐profile and GENQ methods both yield exact CIs
under the assumptions of the random‐effects model.
However, these assumptions usually do not hold in prac-
tice but become more acceptable if the primary studies'
sample sizes increase. Hence, the generalized Q‐statistics
that are used for constructing the CIs with the Q‐profile
and GENQ methods only approximate a χ2 distribution
if the primary studies' sample sizes are large,2 and there-
fore, the CIs are really just approximations in practice
instead of exact CIs. We will study the statistical proper-
ties of the CIs obtained with the Q‐profile and GENQ
methods by means of two Monte‐Carlo simulation studies
with the log odds ratio as effect size measure whose sam-
pling distribution is only well approximated by a normal
distribution for large sample sizes in the primary studies.

Data in both simulation studies were generated by
first drawing the true log odds ratios, θi for i = 1, …, k,
from N(μ, τ2), with μ denoting the mean of the distribu-
tion of the studies' true effect sizes and τ2 the variance
of this distribution. Based on the sampled θi, k 2 × 2 fre-
quency tables were simulated by first generating the
number of cases with the outcome of interest in the

https://osf.io/s72r8/
https://osf.io/s72r8/
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control group (xCi ). A value for xCi was sampled from a

binomial distribution with nCi being the sample size of

the control group and probability πC
i for the outcome of

interest in the control group. A study's true log odds ratio
(θi) and πC

i were used for computing the probability of
the outcome of interest in the experimental group with
πE
i ¼ πC

i exp θið Þ= 1 − πC
i þ πC

i exp θið Þ� �
. The number of

cases with the outcome of interest in the experimental
group, xEi , was sampled from a binomial (nEi ,π

E
i ) distribu-

tion with nEi being the total number of cases in the exper-
imental group. Before computing the observed log odds
ratio and corresponding sampling variance for each study,
0.5 was added to each cell of the frequency tables to
decrease bias in the estimator of the log odds ratio.34 Fur-
thermore, this adjustment allows calculation of the log
odds ratio and its sampling variance in case of zero cells.
Therefore, the observed log odds ratio was computed with

Yi ¼ log
xEi þ 0:5

nEi − xEi þ 0:5
=

xCi þ 0:5
nCi − xCi þ 0:5

� 	

and its observed sampling variance with

bσ2i ¼ 1
xEi þ 0:5

þ 1
nE
i − xEi þ 0:5

þ 1
xCi þ 0:5

þ 1
nC
i − xCi þ 0:5

The Yi and bσ2i values were used as input for the Q‐
profile and GENQ methods. Two different weights were

used for applying the GENQ method, ai ¼ 1=bσ2i and
ai ¼ 1=bσi These two weights were selected because
the GENQ method yields exact CIs for these two
weights if the assumptions underlying the random‐

effects model hold.
Values for the true effect size (μ) in this first simula-

tion study were 0, 0.25, 0.5, 0.75, and 1. The amount of
between‐study heterogeneity (τ) was varied between 0
and 0.5 with steps equal to 0.1, and three fixed values
for πC

i were selected: 0.1, 0.3, and 0.5. For the condition
with large heterogeneity (τ = 0.5) and μ = 0, the 95%
prediction interval for θi ranges from −0.980 to 0.980,
corresponding to odds ratios of 2.66 in favor of the con-
trol group to 2.66 in favor of the experimental group.
The total number of observed effect sizes in a meta‐
analysis (k) was 5, 10, 20, 40, and 160. Values for k
are in line with previous Monte‐Carlo simulation stud-
ies18,20 that examined the statistical properties of the
Q‐profile and GENQ methods. We also included the
condition k = 160 to examine the statistical properties
of the methods for a very large number of studies. The
sample size in the control and experimental group in
each study was set equal to each other, but sample sizes
were allowed to differ across the studies within a meta‐
analysis. Sample sizes per group (30, 50, 100, 150, and
300) were replicated k/5 times in each meta‐analysis in
order to hold the average sample size of the studies con-
stant across conditions.

The outcome variables in our simulation study were
the coverage probability (how often is τ2 in the CI of the
Q‐profile and GENQ methods), the average width of the
CI, the standard deviation (SD) of the width of the CI
over all simulation runs, and the number of times the
width of a particular method's CI was larger than the
width of the other methods. We also stored for each
simulation run the proportion of primary studies in
the meta‐analysis that had one or two zeros in the
2 × 2 frequency table since coverage probabilities of
the methods may especially deviate from the nominal
coverage rate in these conditions. The simulations were
programmed in R35 with 10 000 simulation runs per
condition, and the Paule‐Mandel estimator for estimat-
ing τ2 was used when the Q‐profile method was applied
since this estimator is one of the estimators that is now-
adays recommended12,22 and has the desirable property
that its estimate is always inside the CI of the Q‐profile
method. The parallel package35 was used to parallelize
the computations, and the metafor package36 was used
for applying the Q‐profile and GENQ methods. R code
of this simulation study is available via https://osf.io/
3x5rg/.
7 | RESULTS MONTE ‐CARLO
SIMULATION STUDY 1

We only present the results for μ = 0, k = (5, 10, 40, 80,
160), and πC

i ¼ 0:1; 0:5ð Þ, because these conditions are
illustrative for the performance of the methods. Results
were hardly affected by the selected values of μ, whereas
results for πC

i ¼ 0:3 were in between the two other condi-

tions of πC
i . Results of all other conditions are available

via https://osf.io/qjv5x/. We will refer to the two different
weights used for the GENQ method as variance weights

for ai ¼ 1=bσ2i and standard error weights for ai ¼ 1=bσi.
Figure 1 shows the coverage probabilities of these two
methods and the Q‐profile method as a function of true
heterogeneity τ. The solid lines refer to coverage probabil-
ities for πC

i ¼ 0:5 and the dashed lines to the coverage

probabilities for πC
i ¼ 0:1. Coverage probabilities of the

Q‐profile method are indicated with triangles, the GENQ
method with variance weights with plus signs, and the
GENQ method with standard error weights with crosses.
Note that we concluded that τ was not included in the CI
if a CI was equal to the null set. Hence, coverage proba-
bilities of the methods equal to 0.95 indicate nominal cov-
erage for all conditions.

https://osf.io/3x5rg/
https://osf.io/3x5rg/
https://osf.io/qjv5x/


FIGURE 1 Coverage probabilities of the Q‐profile method, generalized Q‐statistic (GENQ) method with variance weights (ai ¼ 1=bσ2i ), and
GENQ method with standard error weights (ai ¼ 1=bσi). The probability of the outcome of interest in the control group is denoted by πC

i , the

number of primary studies in a meta‐analysis with k, and the amount of between‐study heterogeneity with τ
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For all values of k, coverage probabilities of theQ‐profile
and GENQ methods for πC

i ¼ 0:5 were equal or close to

0.95. However, coverage of the methods for πC
i ¼ 0:1 and

k = 5 or 10 was slightly too large especially for τ = 0. Since
coverage probabilities decreased when k was increased,
coverage probabilities were reasonably close to the nomi-
nal coverage rate for k = 40 and πC

i ¼ 0:1, but
undercoverage and severe undercoverage were observed
for k = 80 and 160 if πC

i ¼ 0:1, respectively.
The lowest coverage probability for all methods was

obtained in the condition k = 160, πC
i ¼ 0:1, and τ = 0.5;

for Q‐profile 0.808, GENQ with variance weights 0.782,
and GENQ with standard error weights 0.847. For this
condition, the undercoverage was fully explained by the
upper bounds of the CIs being smaller than τ suggesting
that the generalized Q‐statistic computed by replacing τ2

in Equation 3 with bτ2 was too low. This also explains
why the undercoverage for πC

i ¼ 0:1 and k = 160 was least
severe for the GENQ method with standard error weights.
Large (both positive and negative) effect sizes go together
with unequally distributed cases in the 2 × 2 frequency
table and thus large sampling variances. Equation 3 shows

that effect sizes that deviate substantially from bμ have only
a minimal contribution to the generalized Q‐statistic
because of their large sampling variance. If standard error
weights are used instead of variance weights, more
extreme effect sizes contribute more to the generalized
Q‐statistic resulting in larger values for this statistic. Hence,
undercoverage was less severe for the GENQ method
with standard error weights than with variance weights.

Primary studies' 2 × 2 frequency tables containing one
zero cell did not frequently occur for πC

i ¼ 0:5 and

πC
i = 0.3 (the proportion of simulation runs containing

at least one primary study in a meta‐analysis with a zero
cell was at most 0.077 across conditions). We examined
whether the presence of primary studies with zero cells
had an effect on the coverage probability by computing
the methods' coverage on the subset of simulation runs
containing at least one primary study in the meta‐analysis
with a zero cell (subset zero) and on the subset of simula-
tion runs without primary studies with a zero cell in the
meta‐analysis (subset nonzero). Table S1 shows the
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coverage probabilities based on these subsets (columns
Coverage zero and Coverage nonzero) together with the
proportion of simulation runs in subset zero (column
Zero) for the condition πC

i ¼ 0:1. The proportion of simu-
lation runs in subset zero increased as a function of k and
τ and approached 1 for k = 160 and τ = 0.5. The coverage
of the Q‐profile and GENQ methods with variance
weights was closer to the nominal coverage rate for sub-
set nonzero compared with subset zero for k < 40. This
was the other way around for k > 40 where coverage of
all methods for subset nonzero was smaller than coverage
for subset zero implying severe undercoverage. The pro-
portion of simulation runs containing at least one pri-
mary study in a meta‐analysis with two zeros was at
most 0.09, and therefore, we did not separately study
the coverage probabilities of the methods in these
situations.

We also examined whether bias in the estimator of μ
was related to deviations from the nominal coverage rate
of the three methods. We computed the product‐moment
correlation between the bias and a method's coverage rate
across all conditions. These product‐moment correlations
were −0.18, −0.227, and −0.258 for the Q‐profile, GENQ
method with variance weights, and GENQ with standard
error weights, respectively. These results imply that there
was a small to medium negative relationship between bias
in the estimator of μ and the methods' coverage rate,
meaning that lower coverage was associated to overesti-
mation of μ.

Table 1 presents the average and the SD of the width
of a method's CI over all simulation runs. Bold values
indicate the method with the smallest average width of
the CI within a particular condition. As expected, the
average width of the CIs decreased as a function of k.
Coverage probabilities of the methods were in general
close to the nominal coverage rate for πC

i ¼ 0:5, so the
method with the smallest CI is preferred in this condi-
tion. The CI of the GENQ method with variance weights
was the smallest for the majority of the conditions. With
the exception of one condition (ie, k = 20 and τ = 0.5),
the average width of the CI for πC

i ¼ 0:5 of the Q‐profile
method was larger than of the GENQ methods. However,
the difference between the method with the smallest and
largest average width of a CI was at most 0.1 for τ ≤ 0.1
and at most 0.05 for τ > 0.1.

The SDs of the width of the methods' CIs over all sim-
ulation runs were similar for πC

i ¼ 0:5 and k < 160; the
method with the highest SD never had a SD that was
more than twice as large as the SD of the method with
the smallest SD. The width of the CIs obtained with the
GENQ method with variance weights was in at most
93.8% and 100% of the conditions smaller than that of
the Q‐profile and GENQ methods with standard error
weights, whereas the width of the CIs obtained with the
Q‐profile method was in at most 59.3% and 98.3% of the
conditions smaller than that of the GENQ method with
variance and standard error weights, respectively. To
summarize the results for πC

i ¼ 0:5, the GENQ method
with variance weights outperformed the other two
methods for τ ≤ 0.3 in the majority of the conditions,
and the GENQ method with standard error weights had
the best statistical properties if τ > 0.3 in the majority of
the conditions.

Results for πC
i ¼ 0:1 are also presented in Table 1 but

can hardly be interpreted. Coverage probabilities for
these conditions often substantially deviated from the
nominal coverage rate. Hence, drawing conclusions based
on the width of a CI is not informative. Noteworthy
though is that the GENQ method with variance weights
always yielded smaller CIs than the Q‐profile and GENQ
methods with standard error weights. Based on the
results for πC

i ¼ 0:1, we conclude that the GENQ method
with standard error weights performs best, because its
undercoverage is considerably less than that of the other
two methods.

We created heat maps to gain further insight into
whether there is a specific set of conditions for k, τ, πC

i ,

nEi , and nCi for which the coverage probability substan-
tially diverges from the nominal coverage rate. For these
conditions, researchers should be reluctant in applying
these methods and interpreting their results. The heat
maps show the coverage probabilities for different values
of k (5, 10, 20, 40, 80, and 160) and πC

i ranging from 0.01
to 0.5 at a fixed sample size of 30 in both groups (ie,
nEi ¼ nCi ¼ 30). We also created heatmaps in the same con-

ditions but withnEi andnCi both being equal to either 15, 30,
80, 160, 320, or 800 while fixing k to 20. The heat maps were
created for each of the three methods for τ = 0 and τ = 0.5.
The procedure for creating the heat maps as well as the heat
maps themselves is available via https://osf.io/e35qc/.

The heat maps confirmed the results presented in
Figure 1 that τ only had a small effect on the coverage
probabilities of the methods. Coverage probabilities
decreased if πC

i decreased, and if undercoverage was pres-

ent for a combination of πC
i and sample size, then this

undercoverage became more severe as k increased. Fur-
thermore, coverage probabilities also decreased if the
sample size decreased, because the sampling variances
were then less accurately estimated. The maximum cov-
erage probability was equal to 0.97, so no severe
overcoverage was observed. Specifically, coverage proba-
bilities of all three methods were acceptable (ie, > 0.9)
at a fixed sample size of 30 in both groups when k = 5
or 10 and πC

i ≥ 0:05, k = 20 and πC
i ≥ 0:1, k = 40 or 80

https://osf.io/e35qc/


TABLE 1 Average and standard deviation (in parentheses) of the confidence interval width of the Q‐profile method, GENQ method with

variance weights (ai ¼ 1=bσ2i ), and GENQ method with standard error weights (SE; ai ¼ 1=bσi)
πC
i ¼ 0:5

τ = 0 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

k = 5 Q‐profile 0.830 (0.392) 0.870 (0.398) 0.980 (0.405) 1.121 (0.433) 1.280 (0.454) 1.449 (0.501)
GENQ (variance) 0.747 (0.308) 0.797 (0.321) 0.934 (0.355) 1.103 (0.402) 1.290 (0.450) 1.478 (0.512)
GENQ (SE) 0.775 (0.332) 0.817 (0.340) 0.942 (0.359) 1.097 (0.393) 1.267 (0.416) 1.438 (0.460)

k = 10 Q‐profile 0.461 (0.188) 0.490 (0.186) 0.564 (0.175) 0.641 (0.161) 0.710 (0.155) 0.786 (0.166)
GENQ (variance) 0.404 (0.141) 0.440 (0.144) 0.531 (0.142) 0.623 (0.134) 0.709 (0.139) 0.802 (0.167)
GENQ (SE) 0.435 (0.156) 0.465 (0.156) 0.546 (0.152) 0.636 (0.136) 0.709 (0.120) 0.783 (0.127)

k = 40 Q‐profile 0.221 (0.075) 0.251 (0.068) 0.285 (0.040) 0.282 (0.029) 0.299 (0.030) 0.327 (0.034)
GENQ (variance) 0.199 (0.059) 0.230 (0.054) 0.267 (0.027) 0.269 (0.015) 0.294 (0.026) 0.332 (0.035)
GENQ (SE) 0.227 (0.069) 0.255 (0.064) 0.3 (0.041) 0.295 (0.023) 0.295 (0.015) 0.318 (0.024)

k = 80 Q‐profile 0.167 (0.052) 0.198 (0.043) 0.201 (0.022) 0.191 (0.014) 0.205 (0.015) 0.225 (0.017)
GENQ (variance) 0.154 (0.043) 0.185 (0.036) 0.187 (0.019) 0.181 (0.007) 0.201 (0.013) 0.228 (0.017)
GENQ (SE) 0.180 (0.051) 0.207 (0.045) 0.226 (0.029) 0.196 (0.011) 0.200 (0.007) 0.218 (0.012)

k = 160 Q‐profile 0.130 (0.039) 0.161 (0.027) 0.137 (0.011) 0.133 (0.007) 0.143 (0.007) 0.157 (0.008)
GENQ (variance) 0.122 (0.034) 0.153 (0.024) 0.126 (0.010) 0.125 (0.003) 0.140 (0.006) 0.159 (0.009)
GENQ (SE) 0.145 (0.040) 0.174 (0.032) 0.158 (0.024) 0.134 (0.002) 0.139 (0.004) 0.152 (0.006)

πC
i ¼ 0:1

τ = 0 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

k = 5 Q‐profile 1.399 (0.712) 1.412 (0.714) 1.488 (0.728) 1.587 (0.751) 1.732 (0.759) 1.889 (0.793)
GENQ (variance) 1.201 (0.500) 1.233 (0.518) 1.315 (0.537) 1.449 (0.589) 1.614 (0.627) 1.791 (0.682)
GENQ (SE) 1.276 (0.559) 1.297 (0.569) 1.372 (0.581) 1.486 (0.618) 1.639 (0.641) 1.807 (0.682)

k = 10 Q‐profile 0.734 (0.311) 0.760 (0.314) 0.814 (0.317) 0.899 (0.316) 0.981 (0.306) 1.067 (0.306)
GENQ (variance) 0.626 (0.223) 0.655 (0.23) 0.718 (0.239) 0.814 (0.247) 0.912 (0.243) 1.005 (0.241)
GENQ (SE) 0.696 (0.256) 0.722 (0.259) 0.774 (0.264) 0.862 (0.272) 0.955 (0.266) 1.051 (0.262)

k = 40 Q‐profile 0.317 (0.113) 0.337 (0.114) 0.395 (0.11) 0.455 (0.087) 0.474 (0.065) 0.477 (0.055)
GENQ (variance) 0.289 (0.094) 0.310 (0.096) 0.37 (0.093) 0.429 (0.069) 0.447 (0.042) 0.448 (0.028)
GENQ (SE) 0.348 (0.111) 0.365 (0.111) 0.417 (0.109) 0.485 (0.094) 0.526 (0.071) 0.525 (0.053)

k = 80 Q‐profile 0.223 (0.082) 0.246 (0.082) 0.307 (0.075) 0.347 (0.047) 0.330 (0.035) 0.321 (0.026)
GENQ (variance) 0.210 (0.073) 0.233 (0.072) 0.295 (0.066) 0.332 (0.041) 0.309 (0.028) 0.299 (0.013)
GENQ (SE) 0.263 (0.085) 0.282 (0.084) 0.336 (0.08) 0.396 (0.059) 0.395 (0.049) 0.354 (0.036)

k = 160 Q‐profile 0.160 (0.060) 0.183 (0.061) 0.249 (0.050) 0.256 (0.032) 0.223 (0.016) 0.221 (0.012)
GENQ (variance) 0.154 (0.055) 0.178 (0.056) 0.243 (0.046) 0.245 (0.034) 0.207 (0.012) 0.205 (0.005)
GENQ (SE) 0.199 (0.067) 0.219 (0.067) 0.279 (0.059) 0.322 (0.042) 0.271 (0.039) 0.237 (0.012)

Abbreviation: GENQ, generalized Q‐statistic.

The probability of having the outcome of interest in the control group is denoted by πC
i , the number of primary studies in a meta‐analysis with k, and the

amount of between‐study heterogeneity with τ.
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and πC
i ≥ 0:2, and k = 160 and πC

i ≥ 0:35. If k was fixed to
20, coverage probabilities were acceptable for nEi =

nCi = 15 and πC
i ≥ 0:2, nEi = nCi = 30 and πC

i ≥ 0:1, and

nEi = nCi = 80 and πC
i ≥ 0:05. The finding that coverage

probabilities deviate from the nominal coverage rate for
low values of πC

i and not for πC
i close to 0.5 hints at a sys-

tematic bias that is caused by violated assumptions of the
random‐effects model in case of rare events in the pri-
mary studies. This bias will be examined in Monte‐Carlo
simulation study 2.
8 | MONTE ‐CARLO SIMULATION
STUDY 2

Monte‐Carlo simulation study 1 showed that coverage
probabilities of both the Q‐profile and GENQ methods
can substantially deviate from the nominal coverage
rate. The goal of Monte‐Carlo simulation study 2 was
to examine the cause of under‐ and overcoverage by
the methods that was apparent for πC

i ¼ 0:1 but not

for πC
i ¼ 0:5.
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The Q‐profile and GENQ methods with the specified
weights are exact if the assumptions underlying the
random‐effects model hold, so deviations from the nomi-
nal coverage rate in Monte‐Carlo simulation study 1 were
caused by violations of assumptions of the random‐effects
model. One of the assumptions that is violated is that the
primary studies' sampling variances are not known but
estimated, which particularly affects the methods' cover-
age if the studies' sample sizes are small. Hence, we set
out to compare the methods' coverage rates and the distri-
bution of the generalized Q‐statistic used by the Q‐profile
method when the sampling variances are estimated as in

simulation study 1 (denoted by bσ2) and when the true var-
iances are used.

In order to compute the true variances, we first created
all possible 2 × 2 frequency tables based onnCi andnEi given

a particular value for πC
i and πE

i . For example, this yields
31 × 31 = 961 possible frequency tables if the sample size
in both groups was equal to 30. A selection of these 961 fre-
quency tables is presented in Table 2 (first four columns).
The probability of observing a particular frequency table
(fifth column) was computed by multiplying B(xE;nE,πE)
with B(xC;nC,πC), where B refers to the probability mass
function of the binomial distribution. Log odds ratios (last
column) were computed for each frequency table after
adding 0.5 to each cell to reduce bias in the estimator of
the log odds ratios34 and to make computation of the log
odds ratio possible in all tables, even those with zero cells.
We used the probability of observing a frequency table and
the log odds ratio for each frequency table for computing
the expected value of the log odds ratio (E[Y]) and the true
sampling variance (σ2T ¼ E Y 2½ � − E Y½ �). We expect that the
methods' coverage probabilities computed with σ2T will be

closer than the nominal coverage rate than with bσ2,
because instead of using estimated sampling variances,
TABLE 2 Selection of all possible 2 × 2 frequency tables, probabilities

probability mass function of the binomial distribution, and log odds ratios

xE nE − xE xC nC − xC

0 30 0 30

1 29 0 30

2 28 0 30

3 27 0 30

4 26 0 30

⁞ ⁞ ⁞ ⁞

0 30 1 29

⁞ ⁞ ⁞ ⁞

30 0 30 0

Cell frequencies are denoted by xE, nE − xE, xC, and nC − xC.
the true variances are used. Differences between bσ2 and
σ2T are especially prevalent if one of the cells in the
observed frequency table is equal to 0.

The computation time of σ2T was large, and therefore
we could not include the same conditions as in Monte‐
Carlo simulation study 1. One value for the true effect
size was selected (μ = 0), πC

i was 0.1 or 0.5, and k was
set equal to 5, 40, or 160. The sample size of all studies
was set equal to 30, because the methods' coverage prob-
abilities were expected to deviate the most from the nom-
inal coverage rate in this condition with the smallest
study sample sizes. The amount of between‐study hetero-
geneity (τ) was, as in Monte‐Carlo simulation study 1,
varied from 0 to 0.5 in steps of 0.1. This simulation study
was also programmed in R35 and the packages parallel35

and metafor36 were used. A total number of 3000 simula-
tion runs per condition were used. R code of simulation
study 2 is available via https://osf.io/xba4y/.
9 | RESULTS MONTE ‐CARLO
SIMULATION STUDY 2

Figure 2 shows the coverage probabilities of the Q‐profile

and GENQ methods when using estimator bσ2 and when
using the true variances σ2T . Similar to Figure 1, triangles
refer to the Q‐profile method, plus signs to the GENQ
method with variance weights, and crosses to the GENQ
method with standard error weights. The estimator of
the sampling variance that was also used in Monte‐Carlo

simulation study 1 (bσ2) is indicated with solid black lines,
while σ2T is indicated with dashed gray lines. Note that
the results of both simulation studies cannot directly be
compared because a sample size of 30 for each primary
study was used in Monte‐Carlo simulation study 2 instead
of observing a table B(xE; nE, πE) × B(xC; nC, πC) with B denoting the

(Y) if the sample size in the experimental and control group equals 30

B(xE;nE, πE) × B(xC;nC,πC) Y

B(0; 30, πE) × B(0; 30,πC) 0

B(1; 30, πE) × B(0; 30,πC) 1.132

B(2; 30, πE) × B(0; 30,πC) 1.677

B(3; 30, πE) × B(0; 30,πC) 2.049

B(4; 30, πE) × B(0; 30,πC) 2.338

⁞ ⁞

B(0; 30, πE) × B(1; 30,πC) −1.132

⁞ ⁞

B(30; 30,πE) × B(30; 30, πC) 0

https://osf.io/xba4y/


FIGURE 2 Coverage probabilities of the Q‐profile method, generalized Q‐statistic (GENQ) method with variance weights, and GENQ

method with standard error weights. The probability of the outcome of interest in the control group is denoted by πC
i , the number of

primary studies in a meta‐analysis with k, and the amount of between‐study heterogeneity with τ. The estimator of the sampling variance (bσ2)
is indicated with solid black lines and the true sampling variance (σ2T ) with dashed gray lines. Note that the methods' coverage probabilities in

the condition with estimated sampling variances are not shown in the upper right panel for k = 160 and πC
i ¼ 0:1, since all these coverage

probabilities were too low (<0.8)
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of different sample sizes as in simulation study 1. All
results of this simulation study are also available at
https://osf.io/kzsv3/.

In general, coverage probabilities were closer to the
nominal coverage rate if πC

i ¼ 0:1 and σ2T was used. This
can be seen in the top left panel of Figure 2 (k = 5;
πC
i ¼ 0:1) where coverage probabilities were closer to

the nominal coverage rate (although slightly too low)

when σ2T was used instead of bσ2. If πC
i ¼ 0:5 (second

row of panels in Figure 2), no severe undercoverage was

for the three methods when using bσ2 or σ2T since all cover-
age probabilities were larger than 0.9. Monte‐Carlo simu-
lation study 1 showed that coverage probabilities most
notably diverged from the nominal coverage rate when
k = 160 and πC

i ¼ 0:1. This is also apparent here; coverage

probabilities based on bσ2 are below 0.8 for each value of τ
and therefore not visible in the figure. Coverage probabil-
ities of the Q‐profile and GENQ methods with variance
weights were not above 0.265, and coverage probabilities
of the GENQ method with standard error weights were
not above 0.657. However, although coverage probabilities

substantially improved when using σ2T (eg, for τ = 0.5
Q‐profile: 0.220 vs 0.924, GENQ with variance weights:
0.115 vs 0.924, and GENQ with standard error weights:
0.471 vs 0.925), coverage probabilities still deviated from
the nominal coverage rate.

We also examined whether coverage probability of the

methods when using bσ2 was related to the presence of
zero cells in the primary studies included in the meta‐
analysis. Table S2 shows the proportion of simulation
runs in subset zero (Zero), its coverage probabilities (Cov-
erage zero), and these probabilities for subset nonzero
(Coverage nonzero). The proportion of simulation runs
in subset zero was large because the sample size per
group was small and fixed to 30 for all studies in the
meta‐analysis. The results show that the proportion of
simulation runs in subset zero was large for k > 5 (at least
0.967). Coverage probabilities of all methods were closer to
the nominal coverage rate in subset nonzero for k = 5, but
for k = 40, the methods' undercoverage was less severe for
subset zero. Table S3 shows the same results as in Table S2
but then for meta‐analyses containing at least one primary
study with two zero cells (subset two zeros). These results
show that the methods' coverage for subset two zeros was
generally closer to the nominal coverage rate than for
meta‐analyses without at least one primary study contain-
ing two zero cells. To conclude, using true sampling

https://osf.io/kzsv3
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variances rather than estimated sampling variances con-
siderably improved the coverage probability of the Q‐
profile and GENQ methods but did not always provide
nominal CIs. It follows that these deficiencies must be
caused by two other assumptions of the random‐effects
model that were violated in our simulation study; normal
sampling distributions of the effect sizes and uncorrelated
random effects and sampling errors.

To increase our understanding of how violating the
assumption of known sampling variances as well as viola-
tions of other assumptions underlying the random‐effects
model affect the generalized Q‐statistic, we computed the
generalized Q‐statistic as described in Equation 3 based

on bσ2 and σ2T and examined how well its probability den-
sity function (pdf) was approximated by a χ2 distribution
with k − 1 degrees of freedom. Since the generalized Q‐
statistic follows a χ2 distribution if the assumptions of
the random‐effects model hold and these assumptions
become less objectionable for larger sample sizes in the

primary studies, we also computed the pdf with bσ2 if there
were 10 times more cases in the control and experimental
group (300 instead of 30). Three different conditions were
selected, representing coverage probabilities of the
methods equal to the nominal coverage rate (k = 5,
πC
i ¼ 0:5, τ = 0), overcoverage (k = 5, pCi = 0.1, τ = 0),

and undercoverage (k = 160, πC
i ¼ 0:1, τ = 0.5). Pdfs were

created based on 5000 generated generalized Q‐statistics
and R code for creating these pdfs is available via
https://osf.io/bdhn8/. We focus in this section on the
approximation of the generalized Q‐statistic by the χ2 dis-
tribution in the Q‐profile method, because Qa as used by
the GENQ methods depends on the weights λi (see Equa-
tion 4) and therefore does not follow a single reference
distribution. However, because coverage probabilities of
the GENQ method with variance weights and the
Q‐profile method were comparable, we expect similar
FIGURE 3 Probability density functions (pdfs) of the generalized Q

probability equal to nominal coverage rate); k = 5, πC
i ¼ 0:1, and τ = 0

(undercoverage). Pdfs based on a sample size of 30 in the experimental

the sampling variance: bσ2 (solid black line) and σ2
T (dashed gray line). Th

is presented with the dotted black line. The pdf of the χ2 statistic is den
deviations of the weighted χ2 distribution for the GENQ
method as the deviations we find for Q‐profile method.

Figure 3 shows the pdfs of the generalized Q‐statistic
when the coverage probability was close to the nominal
coverage rate (left panel; k= 5,πC

i ¼ 0:5, τ= 0), when cov-

erage was too large (middle panel; k = 5, πC
i ¼ 0:1, τ = 0),

and when coverage was too low (right panel; k = 160,
πC
i ¼ 0:1, τ = 0.5). The pdf of the generalized Q‐statistic

when the sampling variance is computed with bσ2 is illus-
trated with a solid black line and σ2T with a dashed gray
line. The bold gray line corresponds to a χ2 distribution
with k − 1 degrees of freedom, which in theory should be
the distribution that is approximated by the other pdfs.
Starting with the left panel (close to accurate coverage;
k = 5, πC

i ¼ 0:5, τ = 0), the mean of the generalized
Q‐statistics was indeed close to the mean (4) of the χ2

distribution (3.86 for bσ2, 3.96 for σ2T). However, the var-

iance (4 × 2 = 8) was somewhat different for bσ2 (6.73),
but not for σ2T (7.69). As expected, the pdf was closely
approximated by the χ2 distribution if the primary stud-

ies' sample size was equal to 300 and bσ2 was used to
estimate the sampling variance (mean 4.01 and variance
8.20). These results suggest that the sampling variance

was accurately estimated with bσ2 for k = 5, πC
i ¼ 0:5,

and τ = 0, and that the sample size of 30 was suffi-
ciently large for this condition to approximate the pdf
of the generalized Q‐statistic with a χ2 distribution.

The pdfs of the generalized Q‐statistic for the condi-
tion with overcoverage (k = 5, πC

i ¼ 0:1, τ = 0) are pre-
sented in the middle panel of Figure 3. The pdf of the
generalized Q‐statistic based on σ2T was closer to the χ2

distribution than based on bσ2. Especially the variance of

the generalized Q‐statistic based on bσ2 was too low (mean
3.07 < 4, and variance 3.27 < 8), whereas the mean and
variance of the generalized Q‐statistics were 3.97 and
‐statistic (Equation 3) for k = 5, πC
i ¼ 0:5, and τ = 0 (coverage

(overcoverage); and k = 160, πC
i ¼ 0:1, and τ = 0.5

and control group were obtained with three different estimators for

e pdf based on a sample size of 300 in both groups with estimator bσ2
oted by the bold gray line

https://osf.io/bdhn8/
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9.87 for σ2T . The approximation was again best for sample
sizes equal to 300 (dotted black line; mean of generalized
Q‐statistics 3.90 and variance 7.41). Here, the coverage
probability of the Q‐profile method (0.952) also
approached the nominal coverage rate. These results indi-
cate that a sample size of 30 was not sufficiently large to

accurately approximate the χ2 distribution with bσ2 when
k = 5, πC

i ¼ 0:1, and τ = 0. However, this approximation

improved if σ2T was used for computing the sampling var-
iance or the sample size was equal to 300. Overcoverage

of the methods for k = 5, πC
i ¼ 0:1, τ = 0 and sample sizes

equal to 30 can be explained by the distribution of the
generalized Q‐statistic. Since the distribution of the gen-
eralized Q‐statistic is to the left of the χ2 distribution
and its variance is smaller than that of the χ2 distribution,
the CIs will too often include τ = 0.

For the condition with too low coverage probability

(right panel; k = 160, πC
i ¼ 0:1, τ = 0.5), the pdf of the

generalized Q‐statistic based on estimator bσ2 with a sam-
ple size of 30 per group (solid black line) deviated from
the pdf of the χ2 statistic. The mean (117.10) and variance
(124.12) of the generalized Q‐statistics were both substan-
tially lower than those of a χ2 distribution with 159
degrees of freedom (mean 159 and variance 318).

The undercoverage was most severe for the condition
with the largest value of k, because the distortion of the
pdf of the generalized Q‐statistic accumulated if k
increased. To illustrate this, we have computed the mean
of the generalized Q‐statistics for πC

i ¼ 0:1 and τ = 0.5
when k = 5, 10, 40, and 80, and divided it by the expected
value of the χ2 distribution (which equals k − 1). These
ratios were not varying much in k (0.757, 0.744, 0.738,
0.738), demonstrating that the bias (difference between
mean of the generalized Q‐statistics and expected value
of the χ2 distribution) increases approximately linearly in
k. However, the SD of both the generalized Q‐statistics
and χ2 distribution increases less strongly in k; more pre-
cisely, it increases approximately linearly in the square
root of k, because the SD of the χ2 distribution isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 k − 1ð Þp
. As a result, relative or standardized bias

([mean generalized Q‐statistic −k + 1]/SD) increases
approximately linear with the square root of k as well,
which explains why coverage probability started to deviate
more from the nominal coverage rate if k increased.

Using bσ2T instead of bσ2 resulted in a pdf markedly
closer to the pdf of the χ2 statistic. However, the general-
ized Q‐statistics computed with σ2

T (dashed gray line;
mean 156.40 and variance 384.30) still deviated from
those of the χ2 distribution. Again, increasing the primary
studies' sample size to 300 yielded a pdf of the generalized
Q‐statistic that was better approximated by the χ2
distribution (dotted black line; mean 153.90, variance
288.81). For this condition, the coverage probability of
the Q‐profile method (0.945) was also close to the nomi-
nal coverage rate. These results suggest that for k = 160,

πC
i ¼ 0:1, and τ = 0.5, a sample size of 30 was too small

to accurately approximate the χ2 distribution even if the
true sampling variances were used (σ2T).

Using the pdf of the generalized Q‐statistic, we can
now explain the undercoverage of the Q‐profile method.
Because the distribution of the Q‐statistic is to the left of
the χ2 distribution, the lower and upper bounds of the
CI around τ have to be obtained by decreasing τ2 in Equa-
tion 3 till the 2.5th and 97.5th percentiles of this χ2 distri-
bution are reached. Consequently, the CIs of the Q‐profile
method have too low lower and upper bounds, with τ
often being larger than the upper bound. This was also
apparent in the results of simulation study 1 in the condi-
tion k = 160, πC

i ¼ 0:1, and τ = 0.5, because the lower
bound was never lower than τ and the undercoverage
was fully explained by the upper bound being often
smaller than τ.
10 | CONCLUSION AND
DISCUSSION

Between‐study variance is often present in a meta‐
analysis.6,9,37 The amount of between‐study variance can
be estimated, but estimates are usually rather impre-
cise.7,8 An estimate of the amount of between‐study vari-
ance can be surrounded by a CI to illustrate its
imprecision. Two recommended methods22 to compute
such a CI are the Q‐profile18 and GENQ method.19,20

Both methods yield exact CIs under the assumptions of
the random‐effects model (ie, unbiased observed effect
size estimates, normal sampling distributions of the effect
sizes, known sampling variances, and uncorrelated sam-
pling errors and random effects). However, these assump-
tions are most likely violated in practice14,24,25 such that
CIs of the Q‐profile and GENQ methods are approxima-
tions rather than exact CIs. The goal of the present paper
is to study the performance of both methods under situa-
tions that are representative for research in practice
where the assumptions underlying the random‐effects
model are violated. This paper is the first that does not
compare the performance of the Q‐profile and GENQ
methods under the assumptions of the random‐effects
model but uses conditions that are representative for
meta‐analyses in practice where the assumptions of the
random‐effects model are violated.

Results of two Monte‐Carlo simulation studies
revealed that coverage probabilities of both methods can
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be substantially below the nominal coverage rate if model
assumptions are violated. Coverage probabilities of both
methods were especially too low if both the sample sizes
of the primary studies and the probability of the outcome
of interest were low in combination with a large number
of studies in a meta‐analysis. This result is in line with
Viechtbauer18 who also showed that the coverage proba-
bility of the Q‐profile method was too low if the number
of studies was large in a meta‐analysis in combination
with large between‐study heterogeneity.

Hence, we do not recommend to apply the Q‐profile
and GENQ methods when the probability of the outcome
of interest is low (ie, probability <0.1) in combination
with 80 studies or more in a meta‐analysis and 40 studies
or more when the primary studies sample size is small (ie,
30 observations per group or less). For these characteris-
tics of a meta‐analysis, the coverage probabilities of the
methods are no longer acceptable (ie, coverage <0.9).
However, it is important to note that the effects of factors
deteriorating the statistical properties of the methods (low
probability of the outcome of interest, large number of
studies in a meta‐analysis, and small number of observa-
tions per group) are synergetic, making it difficult to for-
mulate general recommendations based on results of
individual factors.

Coverage probabilities of the Q‐profile method and
the GENQ method with variance weights were compara-
ble in our simulation studies. If coverage of the Q‐profile
and GENQ methods with variance weights was close to
the nominal rate, coverage probability of the GENQ
method with standard error weights deviated more from
the nominal rate than the other two methods. However,
the GENQ method with standard error weights yielded
better coverage probabilities than the Q‐profile and
GENQ methods with variance weights if the coverage
probability of the Q‐profile and GENQ methods with var-
iance weights was substantially too low. This was caused
by the difference in weights, because more extreme
observed log odds ratios (with larger sampling
variances/standard errors) have a larger influence on
the exact distribution of the Q‐statistic if standard error
weights are used instead of variance weights. However,
coverage probabilities of the methods substantially devi-
ated from the nominal coverage rate if the probability of
the outcome of interest was low.

Our second simulation study showed that the mean
and variance of the sampling distribution of the general-
ized Q‐statistic may be too small in comparison to a χ2

distribution with k − 1 degrees of freedom if the probabil-
ity of the outcome of interest was low and sample sizes
were small. Consequently, the coverage probability of
the Q‐profile method is too small in these conditions even
if the true sampling variances instead of estimated
sampling variances are used. This deviation from the
nominal coverage rate is caused by low frequencies in
some of the cells of the observed frequency tables. Spe-
cific methods have been developed that perform better
in such cases with sparse data by analyzing dichotomous
data by means of generalized linear mixed‐effects models.
The sampling distributions in these methods are no lon-
ger assumed to be normal; instead, the exact likelihood
based on binomial, Poisson, or hypergeometric distribu-
tions is used.38 This approach is especially beneficial in
case of a low probability of the outcome of interest,
because no corrections (eg, adding 0.5 to each cell) are
required to deal with zero cells. However, future research
is still needed to determine under which conditions the
generalized linear mixed‐effects models have better statis-
tical properties for constructing CIs for τ2 than the Q‐
profile and GENQ methods.

A CI around the estimate of the between‐study vari-
ance can also be used for computing a CI around the I2

statistic (ie, proportion of the total variance in a meta‐
analysis caused by the between‐study variance).39 Hence,
the results presented in this paper also apply to CIs
around the I2 statistic if constructed with the Q‐profile
or GENQ method. An advantage of quantifying
between‐study heterogeneity with the I2 statistic is that
it enables comparisons across meta‐analyses.3,39 CIs
around the estimate of between‐study variance and the
I2 statistic can also be used for testing the null hypothesis
of homogeneous effect sizes in a meta‐analysis. Software
for applying the Q‐profile and GENQ methods for esti-
mating a CI around the estimate of the between‐study
variance and the I2 statistic is readily available in the R
package metafor.36

The commonly used Q‐test2 for testing the null
hypothesis of homogeneous effect sizes in a meta‐
analysis is also based on the assumptions of the
random‐effects model. The Q‐statistic follows a χ2 distri-
bution if the assumptions underlying the random‐effects
model hold. Hence, inferences drawn by using the Q‐
test will also be affected by violations of these assump-
tions as is the case for the Q‐profile and GENQ
methods, but the assumptions become more acceptable
if the primary studies' sample size increase. Similar to
our results with respect to the generalized Q‐statistic,
Kulinskaya and Dollinger40 showed that the mean and
variance of the distribution of the Q‐statistic are too
low when log odds ratios are used as effect size measure
and the sample size is not sufficiently large. They pro-
pose to approximate the distribution of the Q‐statistic
by means of a gamma distribution and developed a
new test for homogeneity based on this approximation.
Future research may study whether the statistical prop-
erties of the Q‐profile method improve if the
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distribution of the generalized Q‐statistic is approxi-
mated by a gamma distribution instead of a χ2

distribution.
Future research may also examine to what extent

incorporating an estimate of the between‐study variance
in the weights of the GENQ method affects its CIs if the
assumptions underlying the random‐effects model do
not hold. Using variance weights where an estimate of
the between‐study variance is also included corresponds
to the standard weights that are commonly used in the
random‐effects model. However, the GENQ method is
no longer exact if such an estimate is incorporated. Jack-
son20 already studied the statistical properties of the
GENQ method when incorporating an estimate of the
between‐study variance in the weights, but only when
the assumptions of the random‐effects model hold; he
concluded that the coverage probability only slightly devi-
ated from the nominal coverage rate under these
conditions.

One limitation of our paper is that we only focus on
one particular effect size measure (odds ratio) in our
Monte‐Carlo simulation studies. In order to examine the
dependency of the results on the type of effect size mea-
sure used, we conducted two small‐scale Monte‐Carlo
simulation studies, one with risk difference and one with
standardized mean difference (ie, Hedges' g) as effect size
measure (for details and results see https://osf.io/643hv/
and https://osf.io/4qd7b/). For risk difference as effect
size measure, coverage probabilities of all methods were
substantially below the nominal coverage rate if the true
effect size was heterogeneous. Statistical properties for
risk difference were worse than for the odds ratio, where,
for instance, coverage was close to the nominal coverage
rate if the probability on the outcome of interest was
0.5. Coverage probability of the methods with standard-
ized mean difference as effect size measure was close to
the nominal coverage rate in all conditions. This was in
line with our expectation, because the sampling
distribution of a standardized mean difference more
closely follows a normal distribution than that of the
effect size measures odds ratio and risk difference. Hence,
using standardized mean difference as effect size measure
is more in line with the assumptions of random‐effects
meta‐analysis. Since our results clearly show that the sta-
tistical properties of the Q‐profile and GENQ methods are
effect size measure dependent, future research may there-
fore especially examine the statistical properties of both
methods for effect size measures whose sampling
distribution deviates from a normal distribution and
formulates conditions under which these methods per-
form well.

To conclude, between‐study heterogeneity is common
in meta‐analyses,41,42 and assessing heterogeneity is a
crucial issue.43 We recommend in line with others6,10-12

to include a CI around the estimate of between‐study var-
iance computed with the Q‐profile or GENQ method in
every meta‐analysis. This illustrates imprecision in the
estimate of the between‐study variance and facilitates
interpretation of the meta‐analysis. Previous research
has shown that the Q‐profile and GENQ methods have
the best statistical properties, but the methods' coverage
probabilities deviate from the nominal coverage rate if
the probability of the outcome of interest is small. Hence,
methods specifically developed for those situations
should be considered to be used instead of the Q‐profile
or GENQ method.
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