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ABSTRACT

We developed a computer program that can predict
the intrinsic promoter activities of primary human
DNA sequences. We observed promoter activity
using a quantitative luciferase assay and generated
a prediction model using multiple linear regression.
Our program achieved a prediction accuracy correl-
ation coefficient of 0.87 between the predicted and
observed promoter activities. We evaluated the
prediction accuracy of the program using massive
sequencing analysis of transcriptional start sites
in vivo. We found that it is still difficult to predict
transcript levels in a strictly quantitative manner
in vivo; however, it was possible to select active
promoters in a given cell from the other silent pro-
moters. Using this program, we analyzed the tran-
scriptional landscape of the entire human genome.
We demonstrate that many human genomic regions
have potential promoter activity, and the expression
of some previously uncharacterized putatively
non-protein-coding transcripts can be explained by
our prediction model. Furthermore, we found that
nucleosomes occasionally formed open chromatin
structures with RNA polymerase II recruitment
where the program predicted significant promoter
activities, although no transcripts were observed.

INTRODUCTION

It is essential to understand gene regulatory mechanisms
to delineate the molecular basis underlying various bio-
logical phenomena (1). Particularly intensive efforts have
been made to elucidate regulation at the transcription

initiation step because it is the first step of gene expression
and should play a fundamental role in gene regulation
(2–8). Transcription initiation is controlled by an array
of cis-regulatory DNA elements to which transcription
regulatory proteins, or transcription factors (TFs), bind
in a sequence-specific manner (TF binding sites: TFBSs).
Subsequently, the bound TFs recruit RNA polymerase II
(pol II), and this collectively determines the strength of
transcriptional initiation (9,10). It is also supposed that
the majority of TFBSs are located in the proximal
region of transcriptional start sites (TSSs), i.e. promoters.
Therefore, it is hypothesized that analyses of regions
upstream of TSSs would elucidate the nature of some of
the transcriptional activation activities in the human
genome.
After the completion of human genome sequencing

(11) and initial gene annotation (12,13), significant
efforts have been made to construct a quantitative gene
regulatory model based on sequences surrounding TSSs.
Using promoter DNA sequence information and expres-
sion data, several studies have attempted to explain gene
expression levels by examining putative TFBSs in
promoter regions (14–24). Various predictive methods
have been developed, such as a multiple linear regression
model (22), a probabilistic model using Bayesian networks
(21), motif expression decomposition (MED) (16,17) and
thermodynamic models (14,15). Beer and Tavazoie
demonstrated that a Bayesian network model could
predict the expression of 2587 yeast genes with an
average correlation coefficient of 0.51 by using a subset
of 49 clustered microarray expression data sets (21).
Nguyen and D’haeseleer applied the MED model and
achieved an average correlation coefficient of 0.52 for
5719 yeast genes (17). Gertz et al. (14) predicted the
promoter activities of synthetic promoters composed of
several known TFBS oligomers by using thermodynamic
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modeling. Their model predicted promoter activities with
a correlation coefficient of 0.66.
Significant progress has been made in predicting gene

expression levels, especially when using yeast as a model
system (14–17,21). However, the current prediction
accuracy is still insufficient, and it remains difficult to
apply these previously reported methods to predict
promoter activities in human genes. The current difficulty
in constructing an accurate model may be caused by the
fact that microarray data have been used to monitor ex-
pression levels of genes. The microarrays monitor the final
levels of gene transcripts. These levels are determined by a
number of factors, including the rate of transcriptional
initiation and elongation, the efficiency of splicing, the
speed of export into the cytoplasm and the rates of deg-
radation (25). Therefore, information from microarray
data (and RNA Seq/TSS Seq data, as shown below;
also see Supplementary Figure S1) is not a direct indicator
of the intrinsic promoter activities of primary DNA se-
quences. Another drawback to using microarray data is
that microarrays essentially monitor relative expression
levels and do not represent absolute expression levels.
In our previous article, we reported a systematic

luciferase reporter gene assay using HEK293 cells to
analyze promoter activities of upstream promoter se-
quences. These promoter sequences were determined by
oligo-capping, which is our full-length cDNA technology
(26,27). Using quantitative luciferase assay data to exam-
ine promoter activities, we constructed a more accurate
quantitative promoter activity prediction model.
Additionally, we recently developed TSS Seq, which is a
method that combines oligo-capping with massively
parallel sequencing (28,29). By TSS Seq analysis, it is
possible to massively sequence immediately downstream
sequences of TSSs (TSS tags) for analyzing the positions
of the TSSs and the frequency of their transcriptions in a
given cell type (29,30). Additionally, the digital TSS tag
counts can be used as an indicator of absolute expression
levels in vivo. We believe that TSS Seq is more suited
to our study than original RNA Seq (31), because TSS
Seq can simultaneously determine the locations and
activities of the transcriptional initiation sites (also see
Supplementary Figure S1). In addition, multi-faceted use
of the massively paralleled sequencers has provided
various types of data, such as the status of the nucleosome
structure (micrococcal nuclease-digested genomic DNA
sequencing; Nucleosome Seq) and the binding status
of RNA polymerase II (pol II; ChIP-Seq) (32–34).
We hoped these methods are useful for evaluating the de-
veloped prediction model.
In this study, by utilizing luciferase reporter gene data,

we constructed a prediction model in which the promoter
activity of a given DNA sequence is described as the sum
of predicted TFBSs and the transcriptional activation
activities of TFs (Figure 1; also see Supplementary
Figure S1). We then applied the prediction model to the
entire human genome. Comparisons between predicted
promoter activities and observed digital TSS tag counts
revealed that our prediction model can select active pro-
moters in HEK293 cells from the other silent promoters.
Additionally, Nucleosome Seq and pol II ChIP-Seq data

revealed that genomic regions with significant prediction
scores formed open chromatin structures, and pol II
binding was observed, regardless of whether TSS tags
were identified from the corresponding genomic region
or not. In this article, we describe our first attempt to
predict ‘intrinsic’ promoter activities of naked DNA se-
quences in the human genome.

MATERIALS AND METHODS

Cell culture and luciferase assay

HEK293 cells (ATCC number: CRL-1573) were cultured
in DMEM with 10% FBS, kanamycin, 0.15% sodium bi-
carbonate and 2mM L-glutamine in 96-well micro-titer
plates at a density of 5.0� 103 cells per well. In each
well, 50 ng of promoter clones (451 RefSeq gene pro-
moters, 35 putative lncRNA promoters and 248 random
genomic regions) were transiently transfected with 5 ng of
pTK-Renilla using 0.3ml of Fugene 6 (Roche). Forty-eight
hours after transfection, dual luciferase assays were per-
formed using a Dual-Luciferase Assay System (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions. This procedure was repeated three times with
independent cell cultures and transfection experiments.
Luciferase activities were divided by Renilla luciferase
values and the empty vector pGL3 was used as a plate
control. The final transcriptional activities were
normalized by the average of the luciferase activities
obtained from random genomic regions. The promoter
activity data were log-transformed and used to construct
the model. Raw luciferase data and sequence information
for each of the clones are presented in Supplementary
Table S1. See reference (26) for further details.

TSS-Seq, RNA polymerase II ChIP-Seq and
Nucleosome Seq analyses

The TSS-Seq library was constructed using HEK293 cells
cultured under the same conditions as above, according to
the protocols described in Supplementary Figure S2 and
reference (28). Our database of TSSs, DBTSS (http://
dbtss.hgc.jp/), contains TSS tag information for other
cell types (29). RNA pol II ChIP-Seq tag libraries
and Nucleosome Seq tag libraries were also constructed
from HEK293 cells cultured under the same conditions as
described above. Experimental procedures for construct-
ing the ChIP-Seq and Nucleosome Seq libraries are shown
in Supplementary Figure S7 and S8. Sequence reads 36 bp
long were generated using Illumina GAIIx according to
the manufacturer’s instructions. The tagged sequences
were mapped to the human genome sequence (hg18)
using ELAND and no mismatches were allowed.
Information on RefSeq genes and putative lncRNAs and
other cDNAs are as described in hg18. Statistics of the
generated tags are summarized in Table 3. All short read
sequences used in this study have been deposited into
DDBJ/GenBank under the accession numbers described
in Supplementary Figures S2, S7 and S8.
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Prediction model for promoter activities

The prediction model constructed in this study assumed
that the promoter activity of a DNA sequence was the
sum of the contributions from all TFBS scores using the
equation

logðYÞ ¼
X

AX ð1Þ

where Y, A and X represent the observed luciferase
activities of the DNA sequence, the number of predicted
TFBSs (or the binding probability of the TFBSs) in the
DNA sequence and the transcriptional activation score
assigned to each TFBS, respectively. Model fitting was
conducted using multiple linear regression with the tran-
scriptional activity of a promoter as the dependent
variable and the number (or binding probability) of pre-
dicted TFBSs as the independent variable.

To search for TFBSs, the TRANSFAC database
version 2008.3 was used (35). The parameters to minimize
false-positive predictions, as described in TRANSFAC,
were used as thresholds for the matrix search conducted

by the MATCH algorithm (36). Among the total set of
position weight matrices, 192 non-redundant TFBS
groups were selected. Twenty-five TFBSs that were
identified in less than 4 clones were removed, resulting in
a total of 167 TFBSs (see Supplementary Table S2 for the
list of TFBSs).
To refine the prediction model, the TRANSFAC matrix

score was converted by linear approximation to represent
TFBS binding probabilities. The equations describing the
binding affinity score are

x 0 ¼ ðx� tÞ=ða� tÞ ð2Þ

where x represents the TRANSFAC matrix score, t
represents the threshold for the TRANSFAC matrix
score and a represents the maximum matrix score. The
binding affinity score is assumed to be 0 at the threshold,
and it changes linearly above the threshold in 0.1 incre-
ments to reach 1.0 at the maximum matrix score. The
calculated binding affinity score was used instead of A
in the Equation (1) in the gene expression model
equation for the improved prediction model. Multiple
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Figure 1. Schematic representation of the promoter activity prediction model. A schematic of the prediction model is presented here. Distributions of
the observed luciferase activities (upper panel) and the predicted promoter activities (lower panel) are also shown.
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linear regression models were calculated for each condi-
tion and the maximum score giving the best fit was
selected. To evaluate the fitting, Pearson’s correlation
coefficient was calculated between the predicted and
observed values of promoter activities. Predicted
promoter activities were calculated by leave-one-out
cross-validation.
To further improve the prediction model, the search for

TFBSs was restricted to the optimum position. DNA se-
quences were separated into 100-bp bins and the positions
considered for TFBSs were extended sequentially from the
30-end of the DNA. Multiple linear regression models were
fitted for each TFBS under each condition, and the
position that gave the best fit was selected following a
similar procedure as described above.
To select putative TFBSs that had strong effects on

transcription, backward stepwise regression based on
Akaike’s information criterion (AIC) was used.

Validation of the prediction model

To experimentally validate the TFBSs, disruptant mutants
were generated and used in luciferase reporter gene assays.
Details of plasmids and the results of the luciferase assays
are shown in Supplementary Table S4. Experimental pro-
cedures for the luciferase assays were as described above.
To evaluate the effects of luciferase gene translational

efficiency, a luciferase reporter plasmid containing an
internal ribosome entry site (IRES) was constructed as
shown in Supplementary Figure S4. DNA fragments
were cloned into the IRES luciferase vector system and
subjected to luciferase assays. Relative luciferase activities
using the IRES vector system were calculated and
compared with average luciferase activities observed
from cloning random genomic regions into the IRES
vector system. Details of the results are presented in
Supplementary Figure S4 and Supplementary Table S5.

Previously reported promoter prediction programs

To compare our promoter activity prediction model with
previous promoter prediction programs, we used six
representative programs: ARTS (37), Eponine (38), EP3
(39), ProSOM (40), Promoter2.0 (41) and FirstEF (42).
Programs were downloaded from the following URLs:
ARTS scores were downloaded from http://www.fml
.tuebingen.mpg.de/raetsch/suppl/arts, ProSOM scores
from http://bioinformatics.psb.ugent.be/software/details/
ProSOM, Promoter 2.0 scores from http://www.cbs.dtu
.dk/cgi-bin/nph-sw_request?promoter and FirstEF scores
from the UCSC Genome Browser (http://genome.ucsc
.edu/index.html). All programs used promoters or TSSs
as inputs. The probability scores produced from these
programs were used with the scores from our promoter
activity prediction model.

Predicting promoter activity near the 50-end of human
RefSeq genes

RefSeq genes were downloaded from the UCSC Genome
Browser (hg18). The promoter regions were defined as the
sequence from �1 kb to+200 bp of the 50-ends of RefSeq
genes. To evaluate the ability of our promoter activity

prediction model, the Precision and Recall scores were
calculated as:

Precision ¼
TP

TP+FP
ð3Þ

Recall ¼
TP

TP+FP
ð4Þ

where true positives (TP) are the number of promoter
regions with >5 ppm TSS tags and a >1 promoter
activity scores; false positives (FP) are the number of
promoter regions having no TSS tags and a >1
promoter activity score and false negatives (FN) are the
number of promoter regions having >5 ppm TSS tags and
a <1 promoter activity score.

To predict potential promoter activities in the human
genome, the entire human genome sequence was divided
into bins of 1200 bp from the first base of each chromo-
some. Using the obtained sequences as the input, a
promoter activity score was calculated for each bin. The
results of predicted promoter activity score for each bin
are provided at http://dbtss.hgc.jp/cgi-bin/downloader2
.cgi/prediction_score.tar.gz.

RESULTS

Predicting luciferase activities of human primary DNA
sequences in HEK293 cells

To construct a model to predict promoter activities of
primary human DNA sequences in a given cellular
context, we generated a data set of luciferase reporter
gene assays using 734 1-kb DNA fragments in HEK293
cells (Figure 1 and Supplementary Table S1). This data set
included promoter activity data from 451 DNA regions
corresponding to sequences 1 kb upstream of active TSSs.
These TSSs were confirmed to be active in this cell line in
our previous cDNA sequencing study, namely having
50-ESTs isolated from HEK293 cells in our oligo-cap
cDNA library (3,43). In addition, we collected luciferase
data for 248 randomly isolated intergenic DNA fragments
(there were no 50-ESTs in the surrounding regions in any
cDNA libraries) and 35 DNA fragments corresponding to
sequences upstream of the TSSs of so-called putative
intergenic long non-protein coding transcripts
(lncRNAs) (44–46), which are also supported by our
50-oligo-cap ESTs. In total, 83.8% of the promoter
clones were from promoters with CpG islands (84.5%
were ‘CpG rich’ promoters; see below for evaluation of
the model for CpG rich and CpG poor promoters
separately).

To predict promoter activities from DNA sequences, we
examined putative TFBSs from DNA sequences. We used
the TRANSFAC database with parameters to minimize
false-positive predictions. Our attempts to optimize the
parameters are shown below (35,36). From the total set
of TFBS registered in TRANSFAC, we selected and used
167 types of TFBS after removing redundancy among the
position weight matrices for the same TFs (see ‘Materials
and Methods’ section).
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Using the predicted TFBSs and the luciferase activity
data, we attempted to explain the luciferase activities with
multiple linear regression models (Figure 1). We assumed
that log-transformed gene expression levels would be the
sum of the contributions from each TFBS (similar to the

MED model; see ‘Materials and Methods’ section)
(16,17,22). As shown in Figure 2A, the Pearson’s correl-
ation coefficient between observed and predicted
promoter activities was 0.82. This coefficient was 0.58
when evaluated by only promoter clones and 0.25 when
evaluated by only random clones. Although we used the
simplest models, which did not consider complex factors
such as mutual inter-dependence between individual
TFBSs, the accuracy of the constructed prediction model
was high. Our model could predict the promoter activity
of DNA sequences within a 5-fold range in 73% of the
cases (Figure 2A).

Fine-tuning the prediction model

We further attempted to improve the promoter activity
prediction model by fine-tuning the following parameters:
(i) TFBS probability score, we modified the scoring system
for predicting TFBSs from DNA sequences (35,36,47)
so that the probability of the TFBS was the degree
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Table 1. Promoter activities assigned to the predicted TFBS

TF ID TFBS ID Assigned
activity

P-value

Ets1(p54) V$CETS1P54_02,V$CETS1P54_03 0.27 <2e-16
ZF5 V$ZF5_B 0.22 1E-12
Myb V$VMYB_02 0.17 2E-11
CREB V$CREB_02,V$CREB_Q4_01 0.34 3E-11
Sp1 V$SP1_Q2_01 0.30 1E-10
ETF V$ETF_Q6 0.21 1E-06

TFs with P-values of <1� 106 in stepwise regression validation.
Assigned activity scores in the multiple linear regression model are
also shown in the third column.
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of deviation from the consensus sequence (18,20,48–50),
(ii) TFBS position bias to examine positional bias of
TFBSs relative to TSSs (51), we introduced different
thresholds depending on the relative position of the
TFBS to the TSS (Supplementary Table S2) and (iii)
feature extraction: we examined the extent to which each
TFBS contributed to the accuracy of the prediction model
by backward stepwise variable selection using AIC. We
found that 85 kinds of TFBS gave the maximum informa-
tion; thus, these kinds were used as the major determin-
ants of the prediction model. Information about 85 kinds
of TFBSs that are present in clone in this study is included
in Supplementary Table S3.
Taking these factors together, the prediction model

was improved to an eventual Pearson’s correlation of
0.87 (0.66 when evaluated only by promoter clones and
0.32 when evaluated by random clones; Figure 2B and C).
Contributions from the fine-tuned parameters are
summarized in Supplementary Table S2. Details of the

computational procedures are also described in the
‘Materials and Methods’ section. The improved version
of the prediction model could predict promoter activities
within a 5-fold range in 83% of the cases. Information
regarding the TFs that made major contributions to
the prediction model is shown in Table 1 and also
included in Supplementary Table S2.

Validation of the prediction model

To evaluate the constructed prediction model, we used a
10-fold cross-validation method. With this, we evaluated
the risk of over-fitting the regression model. We randomly
selected 90% of the luciferase data for the training data set
and used the remainder as the test data set. We repeated
this test 1000 times and calculated the correlation coeffi-
cient for each (Figure 3A). Even in this open test, we
found that the average Pearson’s correlation coefficient
was 0.83 when the fine-tuned prediction model was used,
(Figure 3A). These results indicate that the constructed
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prediction model can be used to predict promoter
activities of unknown DNA sequences. This also indicated
that over-fitting effects from an excess number of param-
eters were relatively small in the fine-tuned model.

We also examined whether prediction accuracy
depended on the base compositions of input DNA or
the position weight matrices of the TFBSs. We predicted
the promoter activities of input sequences using the fol-
lowing deviated input sequences and position weight
matrices: (i) we used randomly generated input sequences
with similar average GC content as the known input se-
quences; (ii) we used promoter sequences from the lower
eukaryotes flies, worms and yeast; (iii) we used position
weight matrices in which the information order was
randomly shuffled. As shown in Supplementary Figure
S3, our fine-tuned prediction model could not accurately
predict promoter activities when these parameters were
altered. Our prediction model uses inherent properties of
human genomic sequences and specific mammalian
position weight matrices for TFBSs rather than depending
on a random combination of sequence information.

To experimentally validate our results, we examined the
influence of different translational efficiencies (52) of the
luciferase gene on our promoter clones. We evaluated the
difference in promoter activities between the usual
luciferase vector and a vector where the luciferase gene
was translated from an IRES sequence (53). As shown
in Supplementary Figure S4, we found that the influence
of translational efficacy was very small.

To validate the accuracy of the each of the predicted
TFBSs, we evaluated the contributions of the TFBSs to
luciferase activities. We constructed promoter clones
in which TFBSs were disrupted by site-directed mutagen-
esis. We compared the promoter activities between
the original DNA fragments and the mutagenized DNA
fragments. We assayed 24 kinds of TFBSs using 61 mutant
DNA fragments. At least 27 (44%) mutants showed
significant changes in observed luciferase activities
with a false detection rate of P< 0.05 using a t-test
(Figure 3B and Supplementary Table S4). These results
indicate that at least half of the TFBSs contributing to
the prediction model represent truly active TFBSs in
HEK293 cells.

Comparison of the prediction mode with previous approaches

We compared the performance of our prediction model
with previously reported promoter prediction programs.
We tentatively assumed that the prediction score for each
promoter prediction reflects its promoter strength. As
shown in Table 2, some of the previous promoter predic-
tion programs can be used to predict promoter activities;
however, our prediction model gave a higher predictive
power than any other program.
Recently, Landolin et al. (54) reported systematic

luciferase assays for 4565 promoters in eight cell types.
They described that the activities of ‘ubiquitously’ ex-
pressed promoters can be predicted by considering the
normalized CG content of the promoters with r=0.75,
although prediction accuracy for the total promoter data
set was not specified. They also reported that their predic-
tions became less accurate when high-CG promoters
(normalized CG content >0.5) and low-CG promoters
(normalized CG content <0.5) were considered separately
(r=0.22 and r=0.5, respectively). Using our model
(r=0.86 for the total data set and r=0.66 for promoters
only), we evaluated our predictive power similarly. We
obtained prediction accuracies of r=0.34 and r=0.77
for high- and low-CG promoters, respectively. We also
examined whether our models could predict promoter
activities using the luciferase data set produced by (54).
As shown in Table 2, we constructed a similar prediction
model based on luciferase data from the respective cell
types. We examined the correlation between the predicted
promoter activities and the luciferase data using our con-
structed models for each cell type, and we found r& 0.6,
which was similar to the prediction accuracy we obtained
from our original HEK293 data set.

Comparison of the predicted promoter activities with the
digital TSS tag counts

We wished to examine the extent to which the prediction
model can predict transcriptional activities in vivo. We
generated and used a total of 140 million 36-bp TSS
tags in HEK293 cells (Table 3). We compared the pre-
dicted promoter activities of the region 1 kb upstream of
the 50-ends of RefSeq genes to the digital TSS tag counts

Table 2. Comparison between the performance of our prediction model and previously reported approaches

This study ARTS EP3 Eponine ProSOM Promoter2.0 FirstEF

a
All clone 0.83 0.79 0.40 0.37 0.60 0.11 0.75
Promoter clone 0.60 0.53 0.26 0.21 0.35 0.017 0.43

Cell type ht1080 g402 t98g hct116 hela hepg2 ags u87mg

b
Correlation Coefficient (r) 0.60 0.55 0.67 0.64 0.68 0.64 0.67 0.63

aPearson’s correlation coefficients between observed luciferase activities and predicted promoter probability scores from the promoter prediction
programs are indicated in each column. First line: correlation using the total luciferase data; second line: correlation using luciferase data from the
promoter clones only.
bPearson’s correlation coefficient between luciferase activities and predicted promoter activities from Landolin et al. (54). We constructed the
promoter activity prediction model in each cell type independently using the previously published data. Pearson’s correlation coefficients were
evaluated.
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observed for the corresponding regions. We observed that
the correlation between predicted and observed transcripts
was generally low (Supplementary Figure S5), which
suggests that it is still difficult to quantitatively predict
transcript levels of human genes.
To evaluate the prediction model in a qualitative

manner, we examined whether the RefSeq genes with sig-
nificant expression in HEK293 cells could be separated
from silent RefSeq genes. We used a threshold of 5 parts
per million (ppm), which is roughly estimated to be five
copies of the transcript per cell, assuming that every cell
has 1 million mRNA transcripts (28). We determined that
promoters with >5 ppm TSS tags should have clearly de-
tectable transcript levels. 5622 cases of RefSeq promoters
had 0<TSS< 5 ppm tag counts and were excluded in this
analysis, but the results of a similar analysis using different
TSS-Seq tag levels are shown in Supplementary Figure
S6.) We compared the distributions of the predicted
promoter activities between the RefSeq 50-end regions
with >5 ppm TSS-Seq tags to RefSeq 50-end regions
without TSS tags and to randomly selected genomic
regions (Figure 4A). We found clear differences in the
distributions between them (P< 1� 10�100; Wilcoxon
rank test). Of 18 686 RefSeq genes, 4749 (25%) had
>5 ppm TSS tags in HEK293 cells. Of these, 3922 (83%)
had prediction scores >1. Precision and recall of the
model to predict TSS tags at this cut-off was (Precision,
Recall)= (0.52, 0.83). When TSS tags having >1ppm is
also allowed, (Precision, Recall) became (0.63, 0.83).
(Precision and Recall using other cut-offs are summarized
in Supplementary Figure S6).
We examined possible causes for the discrepancies

between the predictions and the observations. In 3600
cases, the model predicted significant promoter activities
with scores of >1, but no TSS tags were observed for the
corresponding regions. We generated pol II ChIP-Seq
data from HEK293 cells and examined the binding
signals of pol II in the surrounding genomic regions for
these cases (Table 3; Supplementary Figure S7). Clear
binding signals for pol II were observed in 39% of the
genomic regions with the prediction scores of >1 and no
TSS tags (Figure 4A; also see Figure 4B and C for

examples). The pol II binding frequencies increased in
proportion to the predicted promoter activities, regardless
of whether TSS tags were observed (Figure 4A, blue line).
We also examined the nucleosome structure of the sur-
rounding genomic regions. We generated Nucleosome
Seq tag data using HEK293 cells and analyzed the nucleo-
some positioning patterns (Table 3 and Supplementary
Figure S8). We found clearly open chromatin structures
in genomic regions with prediction scores of >1 and
>5 ppm TSS tags (Figure 5A). Interestingly, a similar
open chromatin structure was also observed in genomic
regions with prediction scores of >1 and no TSS tag
(Figure 5B). In these cases, the genomic regions may
exhibit significant potential promoter activities, which
can be defined as the ability to control the efficacy of
forming open chromatin structures and recruiting pol II.
Additional factors may inhibit mature formation of the
transcripts despite sufficient promoter activity from the
upstream DNA sequence. Recent papers have consistently
shown that in some cases, pol II rests at the TSS without
initiating transcription or transcription is initiated but
halts immediately after elongation starts (55–58). It is
also possible that transcripts generated from these
regions may be aborted during transcription elongation
and subjected to rapid RNA degradations, perhaps as
polyA minus transcripts. In these cases, our prediction
model may have predicted potential promoter activities
correctly, though there was discordance with the
eventual transcript levels.

Predicted promoter activity landscape of the human
genome

We applied the prediction model to the entire human
genome to illustrate the landscape of potential promoter
activities in the human genomic sequence. We tentatively
defined a prediction score of >1 as the threshold, as used
for the RefSeq genes shown above. In total, 185 018
genomic regions outside the RefSeq regions showed pre-
diction scores >1. We examined the overlap between
intergenic regions with prediction scores >1 and intergenic
regions with >5 ppm TSS-Seq tags. We found 147
overlapping regions. As exemplified in Figure 6,

Table 3. Statistics of sequence tags generated from HEK293 cells and used for validation of the prediction model in vivo

TSS Seq No. of total reads 9 734 314

Expected accuracy to detect correct TSSs 0.9 (also see Supplementary Figure S2C)
No. of total TSS clusters of >5ppm 6641
No. of total TSS clusters 135 579

Nucleosome Seq No. of total paired-end reads 15 071 279
Median insert size 163 bp

ChIP Seq (pol II) No. of total reads 15 864 405
No. of WCE reads 5 774 736
No. of IP reads 10 089 669
No. of peak detected 43 214
No. of peak in RefSeq region (%) 37 696 (87)
No. of total of TSS Clusters of >5 ppm in HEK293 6641
No. of peak overlapping >5ppm TSS Clusters in HEK293 (%) 5499 (83)
No. of total of TSS Clusters of <5 ppm in HEK293 86 704
No. of peak overlapping TSS Clusters of <5 ppm in HEK293 (%) 12 410 (14)
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Figure 4. Validation of the prediction model in vivo using TSS-Seq and pol II ChIP-Seq data. (A) Distribution of the 50-end regions of RefSeq genes
with observed TSS tag counts (indicated by the y-axis; left side) and prediction scores (indicated by the x-axis). Red, blue and green bars represent
populations indicated in the inset. Red, blue and green lines represent the frequencies of the promoters with pol II binding, as detected by ChIP-Seq
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activities (blue bars) in the RefSeq regions. (B) Exemplifies a case in which all three types of data concordantly indicate the active transcription of the
gene. (C) Exemplifies a case in which our model predicted significant promoter activity, although no TSS tags were identified from the corresponding
genomic region. The pale-blue line indicates a prediction score of 1.
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previously identified lncRNA cDNAs were sometimes
located in those regions. In these 147 cases, we found
that the surrounding genomic regions had an open chro-
matin structure. Clear binding signals for pol II were
observed in 97 cases (66%). These results suggest that bio-
logically controlled transcription is actually occurring
from these regions.
For the remaining 182 140 cases, the genomic regions

had prediction scores of >1, but no TSS tags were
observed. We examined the nucleosome structure and the
binding status of pol II. We found that nucleosome form
the open chromatin structure not only in the genomic

regions having the prediction scores of >1 with >5ppm
TSS tags (Figure 7A) but also in the genomic regions
having the prediction scores of >1 without any TSS tags
(Figure 7B). These results suggest that many genomic
regions had potentially significant promoter activities,
although the eventual transcripts from these regions
seemed to be repressed by additional factors. Additionally,
these results strongly suggest that the current repertoire of
intergenic promoter activities or intergenic transcripts,
such as lncRNAs, are not derived from experimental
errors in cDNA cloning or from randomly occurring and
uncontrolled sporadic transcription.
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Figure 5. Nucleosome structure at the 50-end of RefSeq genes. Nucleosome structures are shown for the regions surrounding the 50-ends of RefSeq
genes with having prediction scorers of >1 with >5 ppm TSS tags (3922 regions) (A) having prediction scores of >1 with no TSS tab (3600 regions)
(B). Genes having prediction scores <1 with no TSS tab (4715 regions) are shown in (C). For each group, nucleosome occupancy scores (y-axis) were
calculated for the indicated genomic position (x-axis) relative to the TSS (or the center of the selected region), according to the method shown in
Supplementary Figure S8 and the reference (64). The numbers of regions used for the analyses are shown in the top margins.
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Figure 7. Nucleosome structure of the intergenic regions. Nucleosome structures are shown for the genomic regions having prediction scores >1 and
>5 ppm TSS tags (147 regions) (A), regions having prediction scores >1 with no TSS tags (182 140 regions) (B) and regions having no TSS tags (5000
regions). The description of these graphs is as in Figure 5.

Figure 6. Predicted potential promoter activity landscape of the human genome. Example of an intergenic region with the indicated TSS tag count
(red bars), pol II binding signal (green bars) and prediction score (blue bars). The description of this graph is as in Figure 4B and C.
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DISCUSSION

In this article, we describe the construction of a model to
predict intrinsic promoter activities of primary human
DNA sequences. We constructed a reasonably accurate
program despite employing a very simple scheme in the
prediction model. We believe that the accuracy of the pre-
diction model was achieved by using luciferase data to
develop the model. Almost all previous studies have
used microarray data for this purpose. In contrast to
previous studies, we were able to examine the intrinsic
promoter activities of the primary DNA, which may
have minimized the effects of other factors. Validation
analyses using TSS-Seq, pol II ChIP-Seq and
Nucleosome Seq suggested that there are additional
factors that significantly contribute to determining
the eventual transcript levels, though they seemed to
be roughly determined by the promoter activities of the
upstream DNA sequences. It should be also noted that
utilization of the TSS Seq data, which gives positional
information of the TSSs at the same time with their
expression levels in a given cellular context in an
absolute manner, firstly enabled the evaluation of the con-
structed prediction model.
In spite of success in predicting promoter activities

of primary DNA sequences, we determined that it is still
difficult to predict mRNA expression levels in vivo. It is
possible that additional factors, as described above, were
responsible for the inconsistencies. However, it is also
possible that there are inherent problems in massively
parallel sequencing analyses. Even TSS-Seq, RNA-Seq,
ChIP-Seq and Nucleosome Seq are not strictly quantita-
tive. In some methods, GC-rich sequences are supposed
more likely to be represented than AT-rich sequences and
in other methods vice versa. Taking such effects into
account could possibly further improve the correlation
coefficient. Additionally, TSS-Seq and RNA-Seq capture
polyA plus RNAs and therefore miss transcripts that are
not polyadenylated. The correlation coefficients evaluated
by TSS-Seq and RNA-Seq probably underestimate the
relevance of predictors that may correctly detect pro-
moters of this class of transcripts. Further validation is
necessary for both prediction and evaluation of in vivo
transcription events.
An advantage of our model is that TFs and their cor-

responding TFBSs can be relatively easily identified by
analyzing the constructed model. Such separation of
factors can sometimes be difficult when more complex
models, such as those based on Bayesian networks, are
employed. It is unlikely that the transcriptional regulatory
network of HEK293 cells consists of only the approxi-
mately 200 TFs used for prediction modeling in this
study. It is more likely that the TFBSs we used are degen-
erate to the extent that they coincidentally represent
TFBSs for unknown TFs as well. However, even if not
all of the TFs that are actually bound to the TFBSs can be
identified, our validation using disruptant mutants
demonstrated that cis-regulatory elements responsible
for transcriptional activation within promoter sequences
can be identified in a number of cases (Figure 3B). Also,
we were also able to confirm that our model depends on

meaningful position weight matrices rather than groups of
meaningless complex information units (Supplementary
Figure S3C).

We also demonstrated that our approach is valid in
different cell types (Table 2). However, further improve-
ments of the model are necessary to predict global patterns
of promoter activities in varying cell types. Perturbing the
activity score assigned to each TF depending on cell type
should be considered for such improvements. Expression
information based on digital TSS tag counts of TFs may
also be useful to select which TFs are differentially ex-
pressed between different cell types. The differences in
TF expression may contribute to differential expression
of their target transcripts. Indeed, although the prediction
model produced by this study is still preliminary, we hope
that it will eventually be able to precisely predict the tran-
scriptional landscape of the human genome in a given
cellular environment. To this end, sequential improve-
ments of the model should be achieved by considering
additional factors, such as distal DNA elements (59),
effects of DNA methylation (60,61) and the 3D structure
of genomic DNA (62,63).

Such a precise model will be especially useful for inter-
preting the biological meaning of intergenic lncRNAs,
which were identified in large numbers from previous tran-
scriptome studies without any functional inferences.
Interestingly, when we applied our prediction model to
the entire human genome sequence, we identified tens of
thousands of genomic regions that had significant
promoter activities potentially without any transcript
products. We observed open chromatin structure and
clear binding signals of pol II in many cases. Further
in-depth experimental validations for detailed analysis of
chromatin structure and transcript products from the re-
spective regions are necessary. One step will be to determine
whether these are polyadenylated RNAs. It remains
unknown whether these genomic regions have any biolo-
gical relevance or whether they merely represent non-
functional promoters that likely occur in a genome as
large as that of humans. It is also interesting to examine if
these potential promoters, which do not couple with bio-
logically relevant downstream transcripts, can serve as an
evolutionary reservoir to construct novel genes or future
genomic rearrangements. The biological relevance of the
reason why transcription occurs from so many regions
throughout the human genome will be first understood by
iterative use and improvements of promoter modeling. By
presenting the first genome-wide view of the potential
promoter activity landscape of the human genome, our pre-
diction model provides a useful starting point toward
a comprehensive elucidation of how the code of genomic
sequences is decoded into the transcriptome.
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