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Abstract

Organism cells proliferate and die to build, maintain, renew and repair it. The cellular history of an organism up to any point
in time can be captured by a cell lineage tree in which vertices represent all organism cells, past and present, and directed
edges represent progeny relations among them. The root represents the fertilized egg, and the leaves represent extant and
dead cells. Somatic mutations accumulated during cell division endow each organism cell with a genomic signature that is
unique with a very high probability. Distances between such genomic signatures can be used to reconstruct an organism’s
cell lineage tree. Cell populations possess unique features that are absent or rare in organism populations (e.g., the presence
of stem cells and a small number of generations since the zygote) and do not undergo sexual reproduction, hence the
reconstruction of cell lineage trees calls for careful examination and adaptation of the standard tools of population genetics.
Our lab developed a method for reconstructing cell lineage trees by examining only mutations in highly variable
microsatellite loci (MS, also called short tandem repeats, STR). In this study we use experimental data on somatic mutations
in MS of individual cells in human and mice in order to validate and quantify the utility of known lineage tree reconstruction
algorithms in this context. We employed extensive measurements of somatic mutations in individual cells which were
isolated from healthy and diseased tissues of mice and humans. The validation was done by analyzing the ability to infer
known and clear biological scenarios. In general, we found that if the biological scenario is simple, almost all algorithms
tested can infer it. Another somewhat surprising conclusion is that the best algorithm among those tested is Neighbor
Joining where the distance measure used is normalized absolute distance. We include our full dataset in Tables S1, S2, S3,
S4, S5 to enable further analysis of this data by others.
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Introduction

A multi-cellular organism develops from a single cell – the

zygote, through cell division and cell death, and displays an

astonishing complexity of trillions of cells of different types,

residing in different tissues and expressing different genes. The

development of an organism from a single cell until any moment

in time can be captured by a mathematical entity called a cell

lineage tree [1–4].

Uncovering the human or even the mouse cell lineage tree may

help to resolve many open fundamental questions in biology and

medicine, as illustrated by our earlier work [5–9].

In the past few years, our lab developed a method for

reconstructing the lineage relations among cells of multi-cellular

organisms [1,10] and applied it to various questions of biological

and medical importance [5–9]. The method is based on the fact

that cells accumulate mutations during mitosis in a way that, with

a high probability, endow each cell with a unique genomic

signature, and distances between genomic signatures of different

cells can be used, in principle, to reconstruct the organism’s cell

lineage tree [1]. Instead of examining the whole genome of all

cells of an organism, which is currently not feasible, our method

uses Microsatellite (MS) loci which are repeated DNA sequences

of 1–6 base pairs. Slippage mutations, in which repeated units

are inserted or deleted, occur at relatively high rates (1025 per

locus per cell division in both wild type mice and humans

[1,11]), and thus provide high variation. These mutations are

phenotypically neutral [11–13] and they are highly abundant in

the genome (composing 3% of the genome). Importantly,

Mismatch-Repair (MMR) deficient mice display an even higher

mutation rate (1022 per locus per cell division [14]) in MS and

are available for experimentation and analysis [5–8,10,15,16].

By comparison, SNPs have a mutation rate of the order 1028

per site per generation [17], and thus about 10210 per site per

cell division.

Besides the use of MS to reconstruct cell lineage trees which was

proposed also by others [3,4,18–20], several other retrospective

methods to trace cell lineages in mammalians have been proposed.
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These methods include the genomic profiling of single nucleotide

polymorphism (SNP) [21–23], copy number variations (CNV) [24]

and DNA methylation [25–27]. A common feature of all these

methods is the use of a genomic property that accumulates

mutations during cell divisions, thus making it suitable to be used

as a genomic signature.

While phylogenetic lineage tree reconstruction of cells is

similar to that of organisms and species, it also has unique

characteristics such as the existence of stem cells (that influence

the shape of the tree), a sometimes very shallow tree (in the

order of dozens of generations), a dramatic variation in the

number of divisions the cells have undergone since the zygote

(which is much larger than what exists in species with different

evolutionary paces), and the fact that the cells have undergone

binary cell divisions. Besides the last feature, which has been

widely investigated in population genetics [28], these unique

characteristics as well as the uncertainties about the exact

nature of the mutational process in somatic cells require an

assessment of the accuracy of known lineage reconstruction

algorithms for this application. Another meaningful difference

is that MS are usually used to define relationships between

groups (species or populations) [29,30] and not between

individuals. Thus the mathematical measures defining the

distance are different.

The goal of this work is to test the existing algorithms on

experimental cell data and to validate their use. In addition we

want to test which of these methods (even though not developed

for the purpose of cell lineage reconstruction) performs best.

In order to accomplish this goal, we took experimental data

from clearly known biological expectations and examined whether

the reconstructed trees present this knowledge. The data was

obtained by isolating cells from different mice and humans, and

extracting their genomic signatures (see Materials and Methods).

Due to the fact that the real cell lineage tree is not known, we

examined two aspects of the estimated tree. One aspect is the

clustering of biologically distinct cell groups on the tree, and the

second is the ability to distinguish between two groups of cells that

are known to have different depths (number of divisions the cell has

undergone since the zygote).

Results

Validating and quantifying the ability to reconstruct a cell
lineage tree

As mentioned earlier the goal of this work is to validate and

quantify the ability to reconstruct a cell lineage tree utilizing

genomic signatures of individual cells that record mutations in

microsatellites. Since precise inference of tree topology cannot be

accomplished using our current limited number of loci (See Table

S6), we examined in this work whether certain aspects of the

inferred tree reflect known biological scenarios. The first is the

clustering of different cell groups. The basic assumption of this test

is that if a statistically significant clustering on the cell lineage tree

is consistent with a biological characteristic, then such clustering is

very likely to reflect a real biological phenomenon, and therefore

the more significant the clustering found by an algorithm, the

better the algorithm. The simplest possible grouping of cells can be

according to which individual they belong. Investigating the

lineage relations among cells of different individuals is normally

not done, however it is useful as a benchmark to test the validity of

cell lineage reconstruction algorithms, as cells from different

individuals clearly should be clustered separately. The second

aspect we examined is the depth separation between different

types of cells that are known to have different depths.

The tree reconstruction algorithms that we used are Neighbor

Joining (NJ) [31], UPGMA [32], and a quartet-based method as

implemented in the QMC tool [33]. The distance measures that

we used are two versions of the Absolute genetic distance (regular

and normalized), Euclidian distance, Equal or Not distance, and

six versions of likelihood distances – assuming equal mutation rates

for all loci, assuming two different mutation rates for mono-

nucleotide and di-nucleotide repeats, and assuming length

dependent mutation rates. These three mutation models were

tested on both the Stepwise Mutation Model – SMM, and the

Multistep Mutation Model – MMM (for more details regarding

the reconstructing methods see Materials and Methods). In

addition to distance-based algorithms, Bayesian methods can also

be used to infer the cell lineage tree. Even though these Bayesian

methods hold great promise, there are currently only a very

limited amount of existing tools that can be used to analyze MS. In

addition most of the existing tools (such as MrBayes [34,35],

Migrate [36] and Beast [37]) assume no linkage between the

different loci. However, in the cell-lineage tree, the range of the

linkage disequilibrium is infinite (i.e. the whole chromosome is

fully linked, as the mitotic recombination rate is very small

compared to the MS mutation rate multiplied by the chromosome

length and the depth of the trees). Moreover, in the special case of

cells inside multicellular organisms, since each cell has only one

single parent cell from which all its chromosomes derive, all the

MS loci share the same history, and hence all the loci are fully

linked (including loci that are on different chromosomes).The only

ML tool that we found to be applicable to our case is BATWING

[38] which reads in multi-locus haplotype data, a model and prior

distribution specifications. It may be worthwhile to test the

performance of the other Likelihood\Bayesian algorithms, even

though they assume that loci are not fully linked; however, these

algorithms are highly computationally intensive, and therefore we

could not test these.

Clustering
In this section we checked the clustering quality of the tree

reconstruction methods. An example for a case where cells from

different individuals are clustered distinctively on the tree can be

seen in Figure 1. We used all cell types (see Table S1 for the list of

Author Summary

The history of an organism’s cells, from a single cell
until any particular moment in time, can be captured by
a cell lineage tree. Many fundamental open questions in
biology and medicine, such as which cells give rise to
metastases, whether oocytes and beta cells renew, and
what is the role of stem cells in brain development and
maintenance, are in fact questions about the structure
and dynamics of that tree. Random mutations that
occur during cell division endow each organism cell
with an almost unique genomic signature. Distances
between signatures capture distances in the cell lineage
tree, and can be used to reconstruct that tree. On this
basis, our lab developed a method for cell lineage
reconstruction utilizing a panel of about 120 microsat-
ellites. In this work, we use a large dataset of
microsatellite mutations from many cells that we
collected in our lab in the last few years, in order to
test the performance of different distance measures and
tree reconstruction algorithms. We found that the best
method is not the one that gives the most accurate
estimates of the mean distance, but rather the one with
the lowest variance.

Cell Lineage Tree Reconstruction
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cell types of each individual) from three mice (Figure 1A) and from

seven humans (Figure 1B), with the Normalized Absolute genetic

distance and the Neighbor Joining tree reconstruction algorithm.

It can be seen that the cells of each individual are clustered

separately on the tree.

However, due to the many types of noise existing in the system,

such a distinct clustering is not likely to happen in all cases,

especially if the individuals are related to each other (as in the case

of some of the experimental mice), and their zygotes are

genetically close. In such cases, due to the small panel of MS

used, cells from different individuals can randomly accumulate

mutations that reduce the genetic distance between them, and may

become closer to each other than to other cells from the same

individual. This effect depends on the ratio between the genetic

distance between the zygotes of the mice and the number of

divisions the cells in each mouse underwent. We showed via

computer simulation (Text S1 and Figures S1, S2, S3) that when

this ratio is small it is very hard to distinguish which cells belong to

which mouse. In addition, we showed that as the number of loci

grows, the separation between the mice improves.

Our panel contains ,120 loci but we prefer to ignore loci where

there are allelic dropouts- i.e. where there is amplification failure

of one of the two heterozygous alleles while the other allele

successfully amplifies, which may often be misinterpreted and lead

to errors in allele size determination. We thus used an average of

about 80 loci per cell. In addition, those 80 loci can be different

Figure 1. Cells from different organisms are clustered separately in the lineage tree. Two reconstructed lineage trees are shown: (A) A
lineage tree containing cells from three mice, M3 (blue), M5 (pink) and M6 (green). (B) A lineage tree containing cells from seven humans, H1 (blue),
H2 (red), H3 (orange), H4 (pink), H5 (green), H6 (purple) and H7 (turquoise). The root of the trees (colored in black) is the weighted mean of the
organisms’ putative zygotes. The trees were reconstructed using the NJ algorithm along with the Normalized-Absolute distance measure.
doi:10.1371/journal.pcbi.1003297.g001
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between distinct cells, so the actual number of loci used for the

distance calculation can be even smaller (with a minimum limit of

25). We showed that when the ratio is 0.2 and the mutation rate is

1/100, a separation of 90% can be achieved using at least 200 loci.

An example of such a case is shown in Figure 2 where we present

the tree of five mice with all their cells. It can be seen that three of

these mice (M1, M2 and M3) are separated quite well in the

lineage tree, compared to the cells of the other two mice (M7 and

M8) which are strongly mixed. It may be due to their possible

family relations; however since we do not know the real relations

but rather estimation, other types of noise can mix the cells, such

as errors in the amplification of the genetic sequence or in the

PCR reaction.

Nevertheless, not all the algorithms and distance measures suffer

from this problem to the same degree. This may be due to the fact

that some measures describe the mutational process more

accurately, or due to some other robustness feature of the

algorithm. An example for a different performance between

different metrics is shown in Figure 3 where we applied two

methods to the same dataset. It can be seen that the NJ-

Normalized Absolute (Figure 3A) produced better cluster separa-

tion than the NJ- Equal or Not method (Figure 3B).

The difference between methods in the clustering separation of

cell groups necessitates the quantification of their performance, in

order to determine which method is the best (if any). In order to do

so, we used three measures to quantify the clustering quality of

distinct groups: the Quality of the Largest Cluster (QLC) from

each group, the Tree Entropy (TE), and the probability of getting

such a cluster under the assumption of hyper geometric sampling

(HS). (A detailed explanation of the measures is given in the

Materials and Methods).

We analyzed the performance of the methods on all the

information that we have available: cells from nine mice and seven

humans, each containing a few types of cells (Table S1). We

combined two or more individuals into one larger dataset, using all

their cell types or a single type. For each dataset, we reconstructed

the cell lineage tree using all the methods we have. Then we

quantified the separation performance of each method with the

measures listed above, and determined the method with the best

performance. In the following section, we present the results of this

test and its variants.

All cells together. We started with rough wide-scale tests,

reconstructing all the optional combinations of the datasets,

regardless of whether different individuals share the same types of

cells. We then continued with more refined tests, which pay

attention to the specific types of cells, and used datasets containing

only one type of cell. From the nine mice that we have, we could

produce 29 datasets but since they contain sets of zero or one

individual and these are not relevant to our analysis, the number of

datasets is 29{10 . We reconstructed the cell lineage tree of each

dataset using NJ and QMC algorithms, and quantified the

clustering separation between the different mice using the three

measures. UPGMA and BATWING assume that all the cells have

the same depth, and although we test these methods for all cases,

only those cases where the similar depth assumption is reasonable,

are interesting.

Examples of the results on a few specific datasets are presented

in Table 1. These datasets present cases where all (or almost all)

the methods successfully separate the cell groups; cases in which all

the methods do not perform so well, and cases where a few

methods perform well while others fail. (Examples of all the

reconstructed trees of a few specific datasets are presented in

Figures S4, S5, S6).

The results of the 502 datasets are given in Table S5.1. A

summary of the results is given in Figure 4 (upper part). The upper

panels of the figure (Figure 4A) present the average score of all the

methods. The values are transformations of the real ones such that

higher values mean better performance. (For detailed explanations

of the measures and the transformations see Materials and

Methods). The second panels (Figure 4B) show the number of

Figure 2. Cells from different organisms are mixed in the lineage tree. A reconstructed lineage tree containing cells from six mice, M1
(turquoise), M2 (red), M3 (blue), M7 (yellow), and M8 (purple). The root of the trees (colored in black) is the weighted mean of the organisms’ putative
zygotes. The trees are reconstructed using the NJ algorithm along with the Normalized-Absolute distance measure.
doi:10.1371/journal.pcbi.1003297.g002
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times every method got the highest rank (in this case it is 20

since we compared 20 methods: 10 NJ and 10 QMC methods).

It is important to emphasize that more than one method can be

ranked a specific rank; this is when two or more methods get the

same score. The results of the two other algorithms (UPGMA

and BATWING) as well as other representations of the results

are shown in Figure S7, where we show the normalized average

scores in which the higher the values the higher the

performance. This representation is needed in order to enable

a comparison of the results of ‘simple’ and ‘complicated’

scenarios simultaneously. In simple scenarios, each group of

cells is strongly separated so all the methods receive a good

score, while in complicated scenarios the cells are mixed and

none of the methods’ performance is good. Another represen-

tation is the average rank of each method, where a method

receives the highest rank when its score is best.

Figure 3. Performance of different methods on the same dataset. Two reconstructed lineage trees containing the same cells from three
different mice are shown: M1 (turquoise), M3 (blue), and M4 (orange). (A) A tree using the NJ algorithm along with the Normalized-Absolute distance
measure. (B) A tree using the NJ algorithm along with the Equal or Not distance measure. The root of the trees (colored in black) is the weighted
mean of the organisms’ putative zygotes. It can be seen that the performance of the Normalized-Absolute distance measure is clearly better.
doi:10.1371/journal.pcbi.1003297.g003

Cell Lineage Tree Reconstruction
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As seen, the NJ- Normalized Absolute method is ranked the best

more frequently than the other methods in all the three different

measures, and the next best performance is associated with the NJ-

Absolute method. The absolute distance measure captures the

underlying mutational process precisely only if there are no back

mutations, namely the addition of a repeat followed by its deletion,

or vice versa. However, this is not likely to be the case in general as

empirical data shows that MSs accumulate many mutations and

yet have small variability over time, hence back mutations must be

present, most likely in accordance with a random walk model [39].

We believe that normalizing the mutations (as in the Normalized

Absolute measure) eliminates the depth of the cells and therefore

the weight of the loci with fewer mutations is larger, and neglecting

the backward mutations has less effect.

We conducted a similar rough test (i.e. including different types

of cells) using the human data which contains seven individuals,

thus producing 120 datasets. A summary of the results is given in

Figure 4 (bottom part) and Figure S7 (full results are given in

Table S5.2). It can be seen that all the distance measures along

with the NJ algorithm give an almost perfect separation, however

the NJ-Normalized Absolute still performs best, just as with the

mice datasets. Note that for the human datasets we compared only

two ML methods (and not six), as we do not have an estimation of

different mutation rates for mono-nucleotide and di-nucleotide

repeats.

In order to validate these results we performed lineage tree

reconstruction of simulated trees similar to the ones reconstructed

using the real data (as described in Materials and Methods). The

simulated trees contained cells separated according to their types

and the individual to which they belong. We simulated several

topologies in which three depth parameters were varied: 1. the

distance between the root of the tree and the individuals’ zygotes,

2. the distance between the individual’s zygote and the MRCA of

each cell type group, and 3. the depth of each cell (examples are

shown in Figure S8). The simulations show that when the distance

between the leaves and their MRCA (most recent common

ancestor) is high, compared to the distance between the root of the

simulated tree and these MRCA (topology A in Figure S8), using

,100 loci (the amount used in the experiments analyzed in this

paper), the Normalized-absolute distance performs best in

separating the different cell types. This result agrees with our

analysis of the real data (results are shown in Table S7.1 and in

Figure S9A). Using more than 100 loci or less, similar results are

obtained, whereas when the amount of loci increases, the

performance increases as well. However, when the distance

between the leaves and their MRCA is small, compared to the

distance between the root and these MRCA (topology B in Figure

S8), only for small mutation rates (1/10000) does the Normalized-

absolute distance perform best. For the other cases, it is difficult to

conclude which method is best.

Table 1. Example of results on a few datasets.

# Name Score NJ- NJ- NJ- NJ- NJ-SMM NJ-SMM NJ-SMM NJ-MMM NJ-MMM NJ-MMM

ABS NormABS EqualOrNot EUC
equal
rates

monoDi
rates

lenDep
rates

equal
rates

monoDi
rates

lenDep
rates

1 M1M2M3M4M5M6M7M8M9 QLC 0.347823 0.275611 0.37813 0.301447 0.371728 0.350756 0.368669 0.365139 0.30166 0.287746

All cell types TE 84.40917 60.78266 101.2351 97.113 92.00133 92.45571 122.3109 102.0853 93.23476 112.3511

HS 0 0 0 0 0 0 0 0 0 0

2 M1M3M4M5M6 QLC 0.682521 0.705587 0.496068 0.487241 0.703336 0.610997 0.633189 0.723407 0.731626 0.674685

All cell types TE 70.22079 67.6069 138.9407 83.75034 94.94297 108.827 115.5496 98.87133 95.21636 95.26127

HS 0 0 0 0 0 0 0 0 0 0

3 M1M2M6 QLC 0.753549 0.945355 0.553541 0.633164 0.78515 0.74055 0.674994 0.638117 0.642526 0.802127

All cell types TE 105.9908 14.81306 201.029 250.6545 147.167 103.9354 116.4198 170.2311 163.8052 96.83945

HS 0 0 0 0 0 0 0 0 0 0

4 M1M2M3M9 QLC 0.522825 0.761499 0.353106 0.364581 0.568366 0.478402 0.520778 0.497532 0.498754 0.522246

All cell types TE 234.5802 98.08597 296.6947 333.6574 216.7348 254.1092 202.1498 237.8789 218.5638 205.0351

HS 0 0 0 0.000288 0 0 0 0 0 0

5 M1M4 QLC 0.805541 0.99087 0.676715 0.738966 0.811159 0.811159 0.996552 0.996552 0.811159 0.996552

All cell types TE 98.5246 10.80349 366.0483 253.7946 128.6547 97.8306 5.655992 5.655992 102.336 5.655992

HS 0 0 0.000127 0 0 0 0 0 0 0

6 M1M9 QLC 1 1 0.747105 0.841311 0.988636 0.977273 1 1 1 1

All cell types TE 0 0 125.1425 157.2069 4.430817 8.501064 0 0 0 0

HS 0 0 0 0 0 0 0 0 0 0

7 M5M9 QLC 1 1 1 0.899543 1 1 1 1 1 1

All cell types TE 0 0 0 87.94826 0 0 0 0 0 0

HS 0 0 0 0 0 0 0 0 0 0

The table represents the results of the three clustering measures (QLC, TE and HS) over 10 NJ reconstructed methods. For the measure QLC higher scores mean better
performance, whereas for the measures TE and HS lower values mean better performance. It can be seen that in some cases, for example dataset #7, all the distance
measures (except for Euclidian) give the same best score (1 for QLC and 0 for TE and HS). For dataset #1, on the other hand, all the distance measures give a rather
similar bad score. It is not surprising that the scores of a dataset which contains 9 individuals (#1) will be lower than the scores of a dataset which contains only 2
individuals (#7). There are cases, like #3 and #4, in which the best performance is achieved by one method (NJ-Normalized Absolute) and other cases, like #5, where a
few methods receive a very high score (NJ-Normalized Absolute, NJ-MMM length dependent rates, and more).
doi:10.1371/journal.pcbi.1003297.t001
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Cells with similar depth. In general one cannot assume

that the depth is the same for different cell types, and therefore

tree reconstruction algorithms that produce ultrametric trees are

not applicable. Even though, by using the same type of cells

from organisms with the same age, the same depth assumption is

reasonable, still, there might be a problem that the zygotes of

the different organisms do not have the same depth. However

due to the fact that our mice are MMR deficient, their mutation

rates after the zygote are a few orders of magnitude higher than

before the zygote, and all of them are genetically related, it is

Figure 4. Performance summary of all the methods on all the datasets of mice and humans. Upper panels – Mouse, Lower panels-
Human. Each column presents a different clustering measure (see Materials and Methods for details), and each bar represents a different distance
measure, where the colors specify the distance measures as noted in the legend. The first and the second group of bars (from left to right) present
the results using the NJ algorithm and the QMC algorithm respectively. Rows description: (A) The average score of all the methods, where higher
values (that are transformations of the real scores) indicate better performance. (B) The number of times every method received the highest rank (for
the mouse panel the highest rank is 20 since we compared 20 methods, and for the human panel the highest rank is 12).
doi:10.1371/journal.pcbi.1003297.g004

Cell Lineage Tree Reconstruction
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reasonable to assume that they have the same depth from the

zygote.

By using the same cells from different mice with the same age,

we also tested the UPGMA algorithm with all the distance

measures that we have, as well as BATWING. In general the NJ

and the UPGMA algorithms perform better than the QMC and

the BATWING. The NJ has a small advantage over the UPGMA,

but since the dataset size is relatively small we cannot provide a

convincing conclusion. Among all the measures, using NJ-

Normalized Absolute performs the best as shown in Figure 5

and Figure S10 (full results are given in Table S5.3.). In addition,

both UPGMA and QMC (in some of the clustering measures)

perform similarly to NJ, however using these algorithms the

Normalized Absolute distance is not always the best but also some

of the ML distances.

The Bayesian method did not perform well, compared to the

other methods. This is not surprising taking into account the fact

that its assumptions do not describe well the cell population, both

in the reproduction process, and the demographic model.

BATWING assumes an exponential growth, while the true

demography is much more complicated and includes for instance

bottlenecks for the different types of cells [6]. This indicates that in

order to apply Bayesian and Likelihood methods to cell

populations, there is a need to develop specific tools that will fit

cell populations.

Many cell types in one individual. The comprehensive test

presented above is not identical to the common cases in cell

lineage research. In the above test, we used cells from different

organisms, while in the common research questions of cell lineage,

cells from the same organism are used. A priori there is no reason

to believe that the evolvement of the mutational process inside the

individual is different than the one between different individuals.

This is because many general features of the MS mutational

process (such as the dependency on the unit size, the length of the

MS, and the specific letter) show a similar behavior (Chapal-Illani

et al, in preparation), and because the MMR-deficient mice are

relatives, and thus the genetic distance between them is relatively

small and the vast majority of their mutations are somatic. As a

result we assume that there is no difference in the performance of

the reconstructing algorithms, and since the NJ-Normalized

Absolute algorithm performs best between individuals, we can

assume it has the best performance inside a single individual. To

validate this assumption we reconstructed lineage trees of single

cells from the same individual, using all types of methods

mentioned above, without knowing what the true separation of

the different cell types is. In Figure S11 we present the

performance of the methods on a relatively small sample: eight

mice and seven humans that have more than one type of cells. For

each mouse and human we used all the cell types that we have (see

Table S1 for the list of cell types of each individual). Even though

the real scenario is not clear, we found that there is a separation

between the cell types, and the method with the best performance

(but not substantially better) was the NJ-Normalized Absolute,

similar to the results obtained for different individuals. We

performed a permutation test which involves the shuffling of the

different cells in the reconstructed tree, and we found that the

separation between the cell types is statistically significant

(P,1023). That indicates that the separation we observed is not

random and we can assume that the method for separating

between individuals works just as well for separating within an

individual.

We also performed lineage tree reconstruction of simulated trees

of single cells of different types from one individual (described in

Materials and Methods). We simulated several topologies, similar

to the ones we performed for the simulated trees, containing

several individuals (examples are shown in Figure S8). The

simulations showed that the NJ-Normalized Absolute has an

advantage over the other method. However, this holds when the

distance between the leaves and their MRCA is high, compared to

the distance between the root of the simulated tree and these

MRCA (topology A in Figure S8). When the distance between the

leaves and their MRCA is small (topology B in Figure S8), the

performance of NJ-Normalized Absolute is not always the best.

These results (Table S7.2 and in Figure S9B) also agree with the

simulations of the trees containing multiple individuals that we

performed.

Figure 5. Performance summary of all the methods for datasets composed of cells of same depth only. Each column presents a different
clustering measure (see Materials and Methods for details), and each bar represents a different distance measure, where the colors specify the
distance measures as noted in the legend. The first group of bars (from left to right) presents the results using the NJ algorithm, the second group of
bars presents the results using the QMC algorithm, the third presents the results using the UPGMA algorithm, and the last one presents the results
using the BATWING tool. Rows description: (A) The average score of all the methods, where higher values (that are transformations of the real scores)
indicate better performance. (B) The number of times every method received the highest rank (in this case it is 31 since we compared 31 methods).
doi:10.1371/journal.pcbi.1003297.g005
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Same type of cells. In order to examine the clustering

abilities in a refined way, we produced datasets using only one type

of cells from different individuals, and tested the performance of

the different methods. This step is important for two reasons: a.

The use of different cell types for different mice may lead to an

artificial separation between the mice, simply because of the

diverse features of different cells (such as division rate, etc.). The

use of the same type of cells assures that the methods indeed

distinguish between the different organisms. b. We want to check

the presence of a correlation between the clustering qualities of the

different methods with specific types of cells, i.e. whether there are

some methods that succeed in separating some types of cells, while

others succeed in separating other types. Figure S12 shows the

results of the methods performed on 57 mouse datasets and 146

human datasets. Overall, the results are consistent with the results

obtained by using various cell types together indicating that the

NJ-Normalized Absolute is the best method.

Depth separation
As mentioned before, clustering is just one example of a feature

of the tree in which we are interested. Another feature is the depth

of specific types of cells. Different depths can indicate different

biological scenarios, for example whether some types of cells divide

only during the embryonic stage or also in the adult stage. In this

section our goal is to quantify the performance of the different

methods in identifying depth differences between groups of cells.

In order to obtain cases where the depth separation between the

cell groups is known, we used the same type of cells from

individuals with a substantial gap between their ages. The list of

cell types of each individual is given in Table S1. The tree-

reconstruction algorithm that was applied in this case is the NJ

algorithm, since it is the only algorithm that allows different depths

for different cells inside the same individual. Two examples of trees

with depth difference are presented in Figure 6, one with a good

depth separation (Figure 6B) and one with a poor separation

(Figure 6A).

The depth of each group of cells as reconstructed by the NJ

varies even if all the cells of this group actually have exactly the

same number of divisions. Therefore for each group of cells, the

depth is described by a distribution rather than by a single

number. In order to quantify the performance of a method in

separating between the two groups, quantities that differentiate

between distributions are needed.

The most natural choice is the Kolmogorov-Smirnov (KS) test,

which measures the similarities between two datasets. However,

this test has some disadvantages for our purposes; the most

significant one is the ability to determine that two datasets are

different even if they have exactly the same average depth, in cases

where their standard deviations are substantially different.

Therefore in addition to the KS we added two other measures

that focus on the separation between the two distributions. The

first is the normalized distance between the mean of the two

groups, and the second is the overlap percentage between the two

distributions (see Materials and Methods for more details). The

difference between them is that the overlap percentage is affected

by the behavior of the extreme cells, while the normalized average

distance captures the behavior of the bulk. Another minor

difference is that the average normalized distance can distinguish

between the separation qualities of methods even in the case of

fully separated groups.

A summary of the depth separation tests’ results is presented in

Figure 7 and Figure S13 (full results are given in Table S5.4). In

this case there is no one method which is superior over the others,

but a few which are rather equally good: Normalized Absolute,

Euclidean and SMM with length dependent mutational rates. This

implies that for the depth separation there is no one tree which can

be considered the correct one. The various inferred trees should be

seen as approximate projections of the real tree, which cannot be

inferred precisely as of yet, since the genetic identifier is not

sufficiently informative. These results were validated by simula-

tions in which lineage trees with different cell depths were

reconstructed and the differences were evaluated using the depth

measures described in Materials and Methods. In each iteration,

two lineage trees were simulated and the difference between the

depths was calculated, where we distinguished between cases in

which the trees were relatively shallow, and cases in which the

trees were relatively deep. The simulations show that when the

trees are shallow, when using 100 loci, there is no one method

which is uniformly better than the others, in accordance with our

result obtained with real data. When using 50 loci, the

Normalized-absolute has the worst performance, while with 500

loci; the Normalized-absolute performs best. When the trees are

deep, with 500 loci there is no one method that is better than the

others, whereas when using fewer loci, the Normalized-absolute

has the worst performance (results are shown in Table S8 and in

Figure S14).

Reliability of reconstructed lineage trees
Bootstrap analysis was used in order to evaluate the robustness

and reproducibility of the estimated trees, the clustering of the tree

and the depth separation according to cell type. We performed this

analysis on several mice and human datasets which showed a good

clustering or depth separation using the NJ-Normalized Absolute

method.

The bootstrap values were obtained by generating 100 trees

using MS values extracted from sampling with replacement of the

loci from each dataset. The bootstrap showed that the robustness

of any particular branch in the tree is low, but the robustness of the

clustering results and depth separation according to cell type is

high (see Table S9 for all the results).

Discussion

In the preliminary stages of the cell lineage research conducted

by our lab, small-scale investigations of the ability to reconstruct

cell lineage trees were done. The large amount of information that

was gathered during the last few years enabled us to conduct this

investigation in a much more comprehensive way. The main

outcome of this research is that even though currently only a

limited amount of microsatellite loci are available, preventing the

reconstruction of the accurate cell-lineage tree, many biological

conclusions can still be confidentially drawn. By this we mean that

apart from specific noisy cases, almost always we are able to

identify the correct biological scenario from the reconstructed cell

lineage if the proper tree reconstruction algorithm and distance

measure are used.

Among the NJ methods, we have found that the NJ-

Normalized Absolute method outperforms the other methods at

inferring the clustering of distinct groups. Interestingly, this shows

that clear cluster- separation is not necessarily correlated with the

most precise description of the mutational process. A result with a

similar spirit was obtained previously [29] for using MS allele

frequency in order to infer the phylogenetic tree of different

species/populations. They also found that the best method is not

necessarily the one that described the mutational process in the

most accurate way.

However, such a measure cannot describe accurately cell depth

because depth information is eliminated in the normalization
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procedure. It is not unreasonable to assume that a Likelihood (or a

Bayesian) method tailored towards cell lineage analysis that will

make use of all the cells’ information, without summarizing it into

distance measure, will enable one to infer simultaneously both the

topology and the depth in an accurate way. We hope to follow

such a path in the future.

We expect that in the coming years next generation sequencing

methods will provide us with a much richer genetic signature, and

thus improve our ability to infer the cell lineage tree more

accurately. This in turn will enable relying on even fine details of

the cell lineage tree and not only its rough features.

Materials and Methods

Ethics statement
All animal husbandry and euthanasia procedures were per-

formed in accordance with the Institutional Animal Care and Use

Committee (IACUC) of the Weizmann Institute of Science.

All human patients signed an informed consent; the study has

received Helsinki authorization and was approved by the

Rambam Hospital IRB committee and by the Bioethics Commit-

tee of the Weizmann Institute of Science.

Our aim is to quantify the performance of different tree

reconstruction methods in inferring clustering and depth separa-

tion. Most of the methods we tested are distance-based algorithms

which use a distance measure between the cells to iteratively join

close samples together, such as the Neighbor-Joining algorithm

(the full list of methods and distance measures is given below). We

tested each method on two features:

1. Clustering: The ability to produce distinct clusters for biological

groups known to be distinct (e.g., cells from different mice).

2. Depth separation: The ability to produce distinct depth differences

between cells that are known to have divided a different

number of times (e.g., the same cell type from old and young

mice).

Figure 6. Depth separation comparison of two distance measures on the same dataset. Two reconstructed lineage trees containing whole
crypts from M9 (52 days) and two reconstructed lineage trees containing whole crypts from M7 (199 days) are shown. The root of the trees (colored in
black) is the signature of the tail extracted from each mouse. (A) Two reconstructed trees using the NJ algorithm along with Equal or Not distance
measure. (B) Two reconstructed trees using the NJ algorithm along with the Absolute distance measure.
doi:10.1371/journal.pcbi.1003297.g006
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Tree reconstruction algorithms
The first distance based algorithm we used is UPGMA

(Unweighted Pair Group Method with Arithmetic Mean algo-

rithm) [32] which assumes that all lineages evolve at the same rate.

This assumption limits us to reconstructing trees which contain

cells that underwent the same (or very similar) number of divisions.

The second algorithm we used is NJ (Neighbor-Joining) [31]. In

order to fit the algorithm to our problem, we corrected the branch

lengths such that they will not be negative. When negative

branches appear during the running of the algorithm, we set its

length to 0, adjusting its sibling branch accordingly [40]. Note that

this correction does not change the inference of the topology, since

it depends only on the distance matrix, and is not affected by the

branch lengths of the inferred tree. With the NJ algorithm, a

rooted tree can be created by using an out-group, and the root can

then effectively be placed on the point in the tree where the edges

from the out-group connect. The root in our trees is usually a mix

of a wide variety of cell types (a description of the root’s

determination is given below, in the Data description section).

The third algorithm we used is QMC (Quartet MaxCut)

[33,41]. Quartets-based methods were initially proposed to

provide an alternative to maximum likelihood methods, which

are computationally intensive. These methods first estimate a set of

trees on many four-leaf subsets of the taxa, and then combine

them into a tree on the full set of taxa. The QMC method is based

on a recursive divide and conquer algorithm that seeks to

maximize the ratio between satisfied and violated quartets at each

step. The common implementations of the quartet method

(including QMC) produce only a tree topology without any

explicit information about the branches lengths. Even though it is

possible to add depth estimation to the QMC, we limited ourselves

to assessing the quality of existing methods without any new

features added.

Apart from the distance based algorithms, we tested a Bayesian

method for inferring the cell lineage tree. We used the computer

software, BATWING [38] which reads in multi-locus haplotype

data, a model and prior distribution specifications. This program

uses a Markov Chain Monte Carlo (MCMC) method based on

coalescent theory to generate approximate random samples from

the posterior distributions of parameters such as mutation rates,

effective population sizes and growth rates, and times of

population splitting events. Even though there is currently no

Likelihood or Bayesian tree reconstructing algorithm that uses

microsatellites, which was developed to include the unique features

of cell lineages, the growing population implementation of

BATWING seemed most suited for our study. The priors we

used are 1/100 for the mutation rate, and uniform distributions for

the effective population size and the population growth rate per

generation (on the intervals [10,000 10,000,000] and [0 2]

respectively).

Distance matrices
The distance-based methods require a distance measure

between cells, which ideally should be linear with the actual

number of divisions separating any two samples, and should

provide the most robust tree reconstruction. We have tested

several different distance functions. In these functions Al
i and Al

j

are the number of repeats in the l0th single allele of the i0th and

j0th sampled cells, respectively, and Lf g is the set of L alleles

which were amplified for both samples i and j (for autosomal loci,

both alleles were included, and for chromosome X loci, one allele

was included in male samples):

1. Absolute distance – the distance between two samples, i and j,
is the average absolute differences between their number of

repeats in all alleles which were analyzed in both samples:

D(i,j)~
1

L

X
l[fLg

Al
i{Al

j

��� ���

2. Normalized Absolute distance – the distance between two

samples, i and j, is the average normalized absolute difference

Figure 7. Depth quality of the different methods. Each column presents a different depth quality measure (see Materials and Methods for
details), and each bar represents a different distance measure, where the colors specify the distance measures as noted in the legend. Rows
description: (A) The average depth score of all the methods, where lower values for the KS test, lower values for the overlap percentage and higher
values for the normalized distance test mean better performance. (B)The number of times every method received the highest rank (in this case it is 10
since we compared 10 methods).
doi:10.1371/journal.pcbi.1003297.g007
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between their number of repeats in all alleles which were

analyzed in both samples:

D(i,j)~
1

L

X
l[fLg

Al
iP

l[fLg
Al

i

�� ��{ Al
jP

l[fLg
Al

j

��� ���
��������

��������
Since normalizing the values eliminates the depth infor-

mation, we used the depth values from the Absolute

distance when performing tree reconstruction using this

measure. In order to incorporate the depth D into the

reconstructed tree, we used a bottom-up method, where

for each pair of sibling leaves we first set their depth

according to D and then calculated the distance of their

parent from the root using D(p,r)~
D(i,r)zD(j,r){D(i,j)

2
:

where p~parent, i,j~siblings, r~root. We then contin-

ued until reaching the root.

3. Euclidean distance – the distance between two samples, i and j,

is:

D(i,j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l[fLg

Al
i{Al

j

� �2
s

4. ‘‘Equal or not’’ distance – the distance between two samples, i

and j, is the number of alleles that differ between the two

identifiers:

D(i,j)~
1

L

X
l[fLg

1 Al
i{Al

j

� �
=0

n o

5. Maximum Likelihood (ML) – each entry in the distance

matrix is taken as the maximum likelihood estimate of the

number of divisions separating the two cells (more details in

[7]). The ML estimator is calculated according to two

different assumptions: Symmetric Stepwise Mutation Model

(SMM) [42] , which assumes an equal probability of addition

or deletion of one repeat given that a mutation happens, and

a Multistep Mutation Model (MMM) in which multiple

additions or deletions of the repeat unit are possible

according to a symmetrical distribution. The mutation rate

for these step models was set differently for mice and

humans. For humans we used the often quoted mutation rate

of 1/1000 per meiosis [43]. For mice we used three types of

mutation rates: 1. an equal mutation rate for all loci

(estimated to be 1/30 from ex-vivo trees [7]), 2. different

mutation rates according to loci basic unit length (in our

panel we have only mono-nucleotide and di-nucleotide

repeat loci and their rates were estimated to be 1/22 and

1/32, respectively), and 3. a variable mutation rate linearly

dependent on the MS repeat number (with slope and

intersection of 0.0183 and 1/2000 respectively, estimated

from ex-vivo trees).

Clustering measures
We used three different measures to quantify the quality of the

clustering separation ability:

1. Quality of the Largest Cluster (QLC) – this measure focuses

on the existence of one large cluster and ignores the behavior

of the rest of the cells, and it is calculated as follows. For each

cell type i, we run over all the internal nodes and count the

number of leaves of the i0th type that are descendants of this

node. The degree of the node is defined as p:q, where p is the

percentage of cells from the i0th type that are descendants of

this node out of all the cells of type i, and q is the percentage

of cells from type i that are descendants of this node among

all the cells that are descendants of this node. If qv0:6, the

degree of this node is defined as zero. The score of each cell

type i is defined as:

QLCi~max(p:q)

and the QLC of the whole tree is defined as the average

QLC on all the cell types:

QLC~
1

I

X
i[fIg

QLCi

where fIg is the set of I cell types.

2. Tree Entropy (TE) – this measure assesses the amount of

mixing on the tree between each pair of cell groups. It is

affected only by the number of clusters on the tree that each

cell group has, regardless of the sizes of these clusters. The

entropy of the whole tree is the average over the entropy

matrix containing the entropy between each pair. It is

calculated as follows: the number of clusters of each pair of

cell types i and j is obtained (here cluster is defined only if all

the descendants of a node are of a specific type. Obviously by

this definition every leaf is a cluster of size one, unless it is part

of a larger cluster). The equivalent state of the system is all the

cases that will have the same number of clusters of each type.

The number of equivalent states is:

V(i,j)~
(ni{1)!

(ni{ci)!(ci{1)!
ci!

(nj{1)!

(nj{cj)!(cj{1)!
cj !

where ni and nj are the number of cells of type i and j, and ci

and cj are the number of clusters of type i and j. The entropy

is:

Entropy(i,j)~ln(V)

Thus the entropy of the tree is a matrix (half diagonal) and not

a scalar. The scalar entropy of the tree is the average over all

the pairs i,j:

Entropy~
1

P

X
i

X
j~iz1

Entropy(i,j)

where P is the number of all pairs i,j.

The matrix entropy enables one to analyze all the relationships

between the different cell types, and to see which pair is mixed

and which pair is separated. As the value of the TE is lower, the

various groups of cells in the lineage tree are more clustered,

however in order for the figures of this work to be clearer, the

TE values presented in them were transformed such that

higher values mean better performance (i.e. better clustering).

The transformation is: 1
Entropyz1
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3. Hypergeometric score (HS) – this measure detects a statistically

significant clustering of a predefined group of cells on the

reconstructed lineage tree. According to the method, given a

dichotomous classification of N cells in an experiment where s cells

belong to group A and N{s cells belong to the complementary

group B, for every branch/internal node in the inferred lineage tree,

the null hypotheses of no association between the sub-tree and the

classification is tested. This is done by performing a hypergeometric

test. Given a sub-tree of n cells in which x cells are of type A ,the

branch’s p-value is the probability to see x or more cells of type A

given that the n cells are random samples from N:

p~f (n,N,s,x)~

s

n

� �
N{s

x{s

� �
N

x

� �

We use a False Discovery Rate correction with an FDR of 20% to

determine the p-value threshold for the tree. The Hypergeometric

score of the whole tree is defined as:

HS~
1

I

X
i[fIg

HSi

where fIg is the set of I cell types, and HSi is the most significant p-

value of cell type i.

3. The HS values presented in the figures of this work were taken

as the log HS values. Since they range from 0 to 1 and are

normalized by the best value, the higher normalized values

mean better performance (i.e. better clustering).

All these measures evaluate the quality of the separation of the

distinct groups on the tree, but they measure parameters that are

slightly different. The QLC focuses on the existence of one large

cluster and ignores the behavior of the rest of the cells. The TE on

the other hand is determined by the number of distinct clusters of

each cell type, and ignores their sizes. Hence, the TE focuses on

the global behavior of the tree and not just on one sub-tree. The

HS, like the QLC, focuses on the existence of a large cluster, but

does not ignore the rest of the cells as it detects a statistically

significant clustering of a group of cells on the lineage tree.

Depth measures
We used three different measures to quantify the quality of the

depth separation ability:

1. Kolmogorov Smirnov (KS) test – this measure answers the

question of whether two datasets were taken from the same

distribution. Even if the datasets have the same average but

have very different standard deviations, the KS test will reject

the null hypothesis of both having the same distribution. For

some features of separation, this test answers the required

question, but for other features, other tests are necessary, such

as the other two measures presented below.

2. Normalized Distance (ND) – this measure evaluates the

normalized distance between the averages of two datasets,

defined as:

ND~
m1{m2j j
s1zs2

2

��� ���

where mi is the average depth of the i0th dataset, and si is the

standard deviation of the i0th dataset.

3. Overlap percentage – this measure gives the percentage of

overlap between two datasets and is defined as follows. For

each data point of distribution X , its degree of overlap is the

number of data points from distribution Y it penetrates. The

overlap percentage is defined as:

Overlap~

PnX

i~1

PnY

j~1

1: DistY (j)vDistX (i)f g

nX
:nY

Data description
Mice. Mlh1+/2C57Bl/6 (obtained from Prof. Michael

Liskay) [44] and Mlh1+/2129SvEv (provided by Prof. Ari Elson

from the Weizmann Institute, Israel) were mated to yield Mlh12/2

progeny of the dual backgrounds. These were used for experiments.

All animal husbandry and euthanasia procedures were performed in

accordance with the Institutional Animal Care and Use Committee

at the Weizmann Institute of Science.

Humans. Peripheral Blood (PB) and Bone Marrow (BM)

biopsies at diagnosis and relapse collected from leukemia patients

were received from the Rambam Healthcare Campus, Haifa,

Israel. All patients signed an informed consent, and the study was

approved by the RambamIRB committee.

Obtaining genetic signature of single cells. The system

takes as input a set of DNA samples from individual cells and PCR

primers for Microsatellites (MSs), and outputs a reconstructed cell

lineage tree of the cells from mutations identified in these MSs.

This tree provides an inferred topology and a depth estimation

representing the inferred number of cell divisions that occurred

along each edge of the lineage tree. The system utilizes a

programmable laboratory robot augmented with a PCR and

capillary electrophoresis machines. The capillary machine histo-

grams are analyzed by a computer program that utilizes a signal

processing algorithm to assign each sample a vector, which is a

mathematical representation of the mutations the cell acquired in

the MS set. A computer program applies a phylogenetic algorithm

to the set of vectors and produces a reconstructed cell lineage tree

associated with the DNA samples.

Tree reconstruction. Different cell types were sampled from

mice and humans (Table S1). The cells were serially diluted in

order to apply whole genome amplification (WGA) to individual

cells. The genomic DNA obtained was amplified by ,120 PCR

reactions of mouse or human MSs combined in multiplex groups

(Tables S2.1 and S2.2). The amplified products were combined

and analyzed by capillary electrophoresis followed by computer-

aided signal analysis. The size of each locus was determined,

thereby providing a genomic signature – the deviation from the

putative zygote in the number of MS repeats at each locus (Tables

S3.1, S3.2, S4.1 and S4.2). For mice, the genomic signature of the

putative zygote was taken from the tail’s genomic DNA of each

mouse. The tail contains cells that originated from the ectoderm,

endoderm and mesoderm and therefore its genomic signature

represents the zygote, or one of its immediate descendants. For

humans, the putative zygote signature was taken as the median of

the locus size values of all cells. When a tree of several mice or

humans was reconstructed, the root signature was a weighted

mean of the organisms’ putative zygotes.
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It is important to note that since all the loci are fully linked, the

question of which of the two alleles mutated is not meaningful, as

we treat the same locus on the two alleles as two independent loci.

This is acceptable because we generally analyzed loci from the

chromosome X of males, where there is only one allele. In the few

cases where we analyzed loci from other chromosomes (or from

chromosome X of a female), we used only loci with very distinct

numbers of repeats on each allele, that enable us to identify which

of the two alleles underwent mutation, even though we cannot say

which copy of the chromosome has which allele.

We should note that aneuploidy, as well as copy number

variations (CNV), both of which are frequent in cancer cells, may

lead to a situation where even in the male X-chromosome there

will be more than one allele. However, in cases with more than

one allele the locus was not taken into account for this specific cell.

In other chromosomes, the CNV may lead to deletion of one of

the alleles which dramatically affects the results, and therefore

such loci were not taken into account. Our principle was to

analyze only loci in which we detected the amount of alleles

expected.

Cell isolation. Mice were sacrificed before tissues isolation.

Cells were isolated by tissues digestion followed by MACS or

FACS. Aliquots of 0.5 ml were spread on a flat bottom 96 well

plate and observed under the microscope. Drops that contained

single cell were collected into 0.2 ml tubes and subjected to whole

genome amplification. Alternatively, cells were isolated by laser

micro-dissection as previously demonstrated [45].

Whole Genome amplification (WGA) of single

cells. WGA was performed using the IllustraGenomiPhi V2

DNA Amplification kit (GE Healthcare Life Sciences, Piscataway,

NJ, USA) according to the manufacturer’s instructions as

described by G. Kumar et al [46]. Briefly, single cells from a 96-

well (flat bottom) plate were transferred to PCR tubes (0.2 ml

volume) using 3 mlSamplebuffer from the kit. In the optimized

protocol, 1.5 ml cell lysissolution (600 mMKOH, 10 mMEDTA,

100 mMdithiothreitol (DTT)) was added to each tube. Cell lysis

was carried out for 10 min at 30uC, followed by the addition of

1.5 ml neutralizing solution (4 vol 1 M Tris-HCl, pH 8.0, added to

1 vol of 3 M HCl). WGA reaction was initiated by the addition of

a mix composed of 4 mlSample buffer, 9 mlReaction buffer, and

1 ml enzyme, all supplied with the kit. The amplification was then

carried out at 30uC for 4 h followed by heat inactivation at 65uC
for 10 min.

Tree simulations
We simulated trees similar to the ones reconstructed using the

real data, with some trees containing 3 individuals with 5 different

cell types for each individual, and other trees composed of a single

individual. We simulated several kinds of topologies, which were

different from each other in branch length. For example, in one

topology the distance between the leaves and their MRCA was

high, compared to the distance between the root and these

MRCAs, and in another topology this distance between the leaves

and their MRCA was much lower. We repeated the simulation

1000 times, where in each iteration, we built a random tree and

randomly added MS mutations according to a given mutation rate

(1/100, 1/1000 and 1/10000) using a binomial distribution. We

then reconstructed the tree using all of our methods and compared

it with the actual tree that was generated. The topology

comparison between the inferred and the actual trees was done

using Penny & Hendy’s topological distance algorithm [47]. In this

algorithm each internal edge confers a partitioning of the tree into

two groups by removing the edge. We assigned a score equal to the

ratio of equal partitions of the two trees to the total number of

partitions. For each of the simulated trees we also calculated the

clustering measures (mentioned above).

Supporting Information

Figure S1 Schematic description of the lineage relation-
ship between cells from two brothers. Blue circles represent

zygotes (the two lower ones are the zygotes of two brothers, and

the upper one is the zygote of their mother), red circles represent

cells from the brothers, which were harvested at the same time

point. Stage 1 starts at the mother’s zygote and ends at the zygotes

of the brothers. Stage 2 starts at the zygotes of the brothers and

ends at the time the cells were harvested.

(TIF)

Figure S2 The percentage of separation between the
two mice as a function of the ratio between the two
stages. The number of cells we used for each mice were 3 (black),

10 (blue), and 50 (red). The rest of the parameters are: 50 loci, a

mutation rate of 1 mutation per 100 divisions and stage 1 is 40

divisions. The X axis is the ratio between stage 2 to stage 1, and

the Y axis is the percentage of fully separated mice. It can be seen

that below ratio 2, the percentage is almost 1, and above ratio 2,

the percentage declines sharply.

(TIF)

Figure S3 The percentage of separation between the
two mice as a function of the number of loci. The mutation

rates used are 0.1 (blue), 0.001 (red), 0.0005 (turquoise), and

0.0001 (black). The ratio between stage 1 and stage 2 is 5. It can be

seen that as the mutation rate gets higher, less loci are needed in

order to obtain a separation of above 90%.

(TIF)

Figure S4 Lineage trees of one dataset of cells from
three individuals: M1 (turquoise), M2 (red) and M6
(green). All the trees were reconstructed using the NJ algorithm

with the following distance matrices: (A) Absolute (B) Normalized-

Absolute (C) Equal or Not (D) Euclidean (E) SMM with equal

mutation rates (F) SMM with a different mutation rate for mono

repeats and a different mutation rate for di repeats (G) SMM with

length dependent mutation rates (H) MMM with equal mutation

rates (I) MMM with a different mutation rate for mono repeats

and a different mutation rate for di repeats (J) MMM with length

dependent mutation rates.

(TIF)

Figure S5 Lineage trees of one dataset of cells from a
single individual (M1). Each cell type is colored by a different

color. All the trees were reconstructed using the NJ algorithm with

the following distance matrices: (A) Absolute (B) Normalized-

Absolute (C) Equal or Not (D) Euclidean (E) SMM with equal

mutation rates (F) SMM with a different mutation rate for mono

repeats and a different mutation rate for di repeats (G) SMM with

length dependent mutation rates (H) MMM with equal mutation

rates (I) MMM with a different mutation rate for mono repeats

and a different mutation rate for di repeats (J) MMM with length

dependent mutation rates.

(TIF)

Figure S6 Lineage trees of one dataset of cells from two
individuals. M2 (red) and M3 (blue), composed of one
cell type (oocytes). All the trees were reconstructed using the NJ

algorithm with the following distance matrices: (A) Absolute (B)

Normalized- Absolute (C) Equal or Not (D) Euclidean (E) SMM

with equal mutation rates (F) SMM with a different mutation rate

for mono repeats and a different mutation rate for di repeats (G)
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SMM with length dependent mutation rates (H) MMM with equal

mutation rates (I) MMM with a different mutation rate for mono

repeats and a different mutation rate for di repeats (J) MMM with

length dependent mutation rates.

(TIF)

Figure S7 Performance summary of all the methods on
all the datasets of mice and humans. Left panel – Mouse,

right panel- Human. Each column presents a different

clustering measure (see Materials and Methods for details),

and each bar represents a different distance measure, where

the colors specify the distance measures as noted in the legend.

The first group of bars (from left to right) presents the results

using the NJ algorithm, the second group of bars presents the

results using the QMC algorithm, the third presents the results

using the UPGMA algorithm, and the last one presents the

results using the BATWING tool. Rows description: (A) The

average score of all the methods, where higher values (that are

transformations of the real scores) indicate better performance.

(B) The normalized average scores in which again, higher

values mean better performance. (C) The average rank of each

method. (D) The number of times every method received the

highest rank (for the mouse panel the highest rank is 31 since

we compared 31 methods, and for the human panel the highest

rank is 19).

(TIF)

Figure S8 Examples of simulated trees composed of
multiple individuals and a single individual. Shown are

two kinds of topologies of the simulated trees which are different

from each other in their branch lengths. (A) The distance between

the leaves and their MRCA is high, compared to the distance

between the root and these MRCAs, (B) The distance between the

leaves and their MRCA is low, compared to the distance between

the root and these MRCAs. The left tree in each panel is a

simulated tree composed of three individuals and the right tree is a

simulated tree composed of one individual.

(TIF)

Figure S9 Clustering simulation results. (A) Results of

simulated trees composed of multiple individuals. (B) Results of

simulated trees composed of one individual. Left panels present

the results of the simulation of topology A, and Right panels

present the results of the simulation of topology B (shown in

Figure S8). Each column presents a different clustering

measure (see Materials and Methods for details), and each

bar represents a different distance measure, where the colors

specify different amounts of loci (50, 100 and 500). Each row

presents a different mutation rate (1/100, 1/1000 and 1/

10,000). The values are the average score, where higher values

(that are transformations of the real scores) indicate better

performance.

(TIF)

Figure S10 Performance summary of all the methods
for datasets composed of cells of same depth only. Each

column presents a different clustering measure (see Materials

and Methods for details), and each bar represents a different

distance measure, where the colors specify the distance

measures as noted in the legend. The first group of bars (from

left to right) presents the results using the NJ algorithm, the

second group of bars presents the results using the QMC

algorithm, the third presents the results using the UPGMA

algorithm, and the last one presents the results using the

BATWING tool. Rows description: (A) The average score of all

the methods, where higher values (that are transformations of

the real scores) indicate better performance. (B) The normalized

average scores in which again, higher values mean better

performance. (C) The average rank of each method. (D) The

number of times every method received the highest rank (in this

case it is 31 since we compared 31 methods).

(TIF)

Figure S11 Performance summary of all the methods
for datasets composed of cells from single individuals.
Left panel - Mouse, right panel - Human. Each column presents

a different clustering measure (see Materials and Methods for

details), and each bar represents a different distance measure,

where the colors specify the distance measures as noted in the

legend. The first group of bars (from left to right) presents the

results using the NJ algorithm, the second group of bars presents

the results using the QMC algorithm, the third presents the

results using the UPGMA algorithm, and the last one presents

the results using the BATWING tool. Rows description: (A) The

average score of all the methods, where higher values (that are

transformations of the real scores) indicate better performance.

(B) The normalized average scores in which again, higher values

mean better performance. (C) The average rank of each

method. (D) The number of times every method received the

highest rank (for the mouse panel the highest rank is 31 since we

compared 31 methods, and for the human panel the highest

rank is 19).

(TIF)

Figure S12 Performance summary of all the methods
for datasets composed of one cell type. Left panel - Mouse,

right panel - Human. Each column presents a different clustering

measure (see Materials and Methods for details), and each bar

represents a different distance measure, where the colors specify

the distance measures as noted in the legend. The first group of

bars (from left to right) presents the results using the NJ algorithm,

the second group of bars presents the results using the QMC

algorithm, the third presents the results using the UPGMA

algorithm, and the last one presents the results using the

BATWING tool. Rows description: (A) The average score of all

the methods, where higher values (that are transformations of the

real scores) indicate better performance. (B) The normalized

average scores in which again, higher values mean better

performance. (C) The average rank of each method. (D) The

number of times every method received the highest rank (for the

mouse panel the highest rank is 31 since we compared 31 methods,

and for the human panel the highest rank is 19).

(TIF)

Figure S13 Depth quality of the different methods. Each

column presents a different depth quality measure (see Materials

and Methods for details), and each bar represents a different

distance measure, where the colors specify the distance measures

as noted in the legend. Rows description: (A) The average depth

score of all the methods, where lower values for the KS test, lower

values for the overlap percentage and higher values for the

normalized distance test mean better performance. (B) The

normalized average scores in which again, higher values mean

better performance. (C) The average rank of each method. (D)

The number of times every method received the highest rank (in

this case it is 10 since we compared 10 methods).

(TIF)

Figure S14 Depth simulation results. Left panels present

the results of the simulation of topology A where the cells are

shallow, and Right panels present the results of the simulation of

topology B where the cells are deep. Each column presents a
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different depth measure (see Materials and Methods for details),

and each bar represents a different distance measure, where the

colors specify different amounts of loci (50, 100 and 500). Each

row presents a different mutation rate (1/100, 1/1000 and 1/

10,000). The values are the average score, where higher values of

KS and Normalized-Distance, and lower values of the Overlap

percentage indicate better performance.

(TIF)

Table S1 Description of the organisms we used for our
research and cell types which were isolated from them.
The description contains the name, species, gender, age of the

organism, and the cell types which were extracted from it.

(XLSX)

Table S2 Mouse (S2.1) and Human (S2.2) microsatellite
panel. Description of the microsatellite loci we used in our

experiments. The tables contain the loci names, their size and their

forward and reverse primers. Loci name (first column): [Organism

type][Chromosome]_[Basic unit][number of repeats]_[serial num-

ber]. Organism type can be M for mouse or H for human,

Chromosome can be a number or the letter X.

(XLSX)

Table S3 Fragment sizes of Mouse (S3.1) and Human
(S3.2). The tables contain information of each cell we have

analyzed. This includes the sample’s name (Sample ID), the

name of the animal it was taken from (Animal ID) and a

description of its origin (Tissue). In addition it contains the

fragment sizes which were calculated from the capillary

machine histograms. These sizes include the locus length and

the primers which were designed to amplify this locus. Each two

following columns present the sizes of 2 alleles in the same locus.

In the header line, the names of the loci are presented. ‘X’

represents missing data. Empty cells indicate that this current

locus was not measured for this sample.

(XLSX)

Table S4 Absolute loci lengths of Mouse (S4.1) and
Human (S4.2). The tables contain information of each cell we

have analyzed. This includes the sample’s name (Sample ID),

the name of the animal it was taken from (Animal ID) and a

description of its origin (Tissue). In addition it contains the

absolute loci lengths which were evaluated as the fragment sizes

(calculated from the capillary machine histograms) minus the

primers lengths. Each two following columns present the sizes of

2 alleles in the same locus. In the header line, the names of the

loci are presented. ‘X’ represents missing data. Empty cells

indicate that this current locus was not measured for this

sample.

(XLSX)

Table S5 Results of clustering and depths tests.
Clustering: tables S5.1 (all datasets of Mouse), S5.2 (all datasets

of Human) and S5.3 (datasets with the same cell depth) present the

results of the three clustering measures (QLC, TE and HS) over 31

reconstructed algorithms (10 NJ methods, 10 QMC methods, 10

UPGMA methods and the Batwing method). When the value of

the measure QLC is higher the performance is better, whereas the

opposite occurs for the measures TE and HS where a lower value

means better performance. Depths: table S5.4 presents the results

of the three depth measures (KS, Norm-D and Overlap). When

the values of the measures KS and Overlap are lower the

performance is better, whereas the opposite occurs for the measure

Norm-D in which a higher value means better performance. The

results are presented over 10 NJ reconstructed algorithms. In all

tables, first column - the dataset name [List of organisms

ID’s]_[cell type]. If the cell type is ‘all’ it means that all the cells

in the organisms were used. If the list of organisms contains only

one organism, it means that the clustering test was performed over

the different cell types of the organism.

(XLSX)

Table S6 Topology comparison simulation results of
multiple individuals (S6.1) and single individuals (S6.2).
The tables present the results of the comparison between

topologies of the inferred trees and the simulated trees, which

was done using Penny & Hendy’s topological distance

algorithm. The top part of the table refers to the simulated

trees of topology A, and the other part of the table refers to the

simulated trees of topology B (both topologies are presented in

Figure S8). For each topology, the simulations performed over

three mutation rates (1/100, 1/1000, and 1/10000) and over

three amounts of loci (50, 100 and 500). The values presented in

the table are the average scores of 1000 simulations. The highest

value which can be achieved is 1 (Higher values are better) and

it can be seen that none of the methods in any of the scenarios is

close to that value.

(XLSX)

Table S7 Clustering simulation results of multiple
individuals (S7.1) and single individuals (S7.2). The

tables present the clustering measures of the lineage tree

reconstruction of the simulated trees (described in Methods

and Materials). The top part of the table refers to the simulated

trees of topology A, and the other part of the table refers to the

simulated trees of topology B (both topologies are presented in

Figure S8). For each topology, the simulations performed over

three mutation rates (1/100, 1/1000, and 1/10000) and over

three amounts of loci (50, 100 and 500). The values presented in

the table are the average scores of 1000 simulations. Higher

values of QLC and lower values of TE and HS are better. The

different clustering measures are described in Methods and

Materials.

(XLSX)

Table S8 Depth simulation results. The table presents the

results of the depth simulations. The top part of the table refers

to simulated trees with relatively low depths of cells (20 and 50

divisions), and the other part of the table refers to the

simulated trees with relatively high depths of cells (250 and 300

divisions). For each scenario, the simulations were performed

over three mutation rates (1/100, 1/1000, and 1/10000) and

over three amounts of loci (50, 100 and 500). The values are

the average results of 1000 simulations. The bold values are the

best ones over the different distance matrices (lower values of

KS and Overlap and higher values of Norm-D are better).The

different depth measures are described in Methods and

Materials.

(XLSX)

Table S9 Reliability of reconstructed lineage trees. #1–

#8 are datasets on which the clustering separation was checked,

#9–#11 are datasets on which the depths separation was checked.

The bootstrap scores are the average scores over the sampled

trees. The TE score was normalized by dividing it with the score of

a tree with random permutations of the leaves. For details about

the different scores see Materials and Methods.

(XLSX)

Text S1 Computer simulations for separation analysis
between related mice.

(DOC)
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