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Hepatitis E virus (HEV) genotype 3 is the most common genotype linked to HEV
infections in Europe and America. Three major clades (HEV-3.1, HEV-3.2, and HEV-
3.3) have been identified but the overlaps between intra-subtype and inter-subtype
p-distances make subtype classification inconsistent. Reference sequences have been
proposed to facilitate communication between researchers and new putative subtypes
have been identified recently. We have used the full or near full-length HEV-3 genome
sequences available in the Genbank database (April 2020; n = 503) and distance
analyses of clades HEV-3.1 and HEV-3.2 to determine a p-distance cut-off (0.093 nt
substitutions/site) in order to define subtypes. This could help to harmonize HEV-3
genotyping, facilitate molecular epidemiology studies and investigations of the biological
and clinical differences between HEV-3 subtypes.
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INTRODUCTION

The hepatitis E virus (HEV) is a significant human pathogen causing viral hepatitis worldwide.
Most of the strains that infect humans belong to two species, Orthohepevirus A (8 genotypes; HEV
1–8) and Orthohepevirus C (Purdy et al., 2017; Smith and Simmonds, 2018; Sridhar et al., 2018;
Primadharsini et al., 2019). The most prevalent genotype in industrialized countries at least in
Europe and America is HEV genotype 3 (HEV-3). It is transmitted zoonotically by direct contact
with infected animals, eating contaminated food, or via the environment. HEV-3 infection is
frequently asymptomatic but it can result in severe acute hepatitis in patients with chronic liver
disease and lead to chronic hepatitis and cirrhosis in immunocompromised patients (Kamar et al.,
2017). Extra-hepatic manifestations have been also described in patients with acute and chronic
hepatitis E (Kamar et al., 2017).

Hepatitis E virus genotype 3 variants have been assigned to one of several subtypes based on
analysis of a limited number of complete genome sequences and subgenomic regions (Lu et al.,
2006). Despite the increasing number of full-length or near full-length genomes deposited in the
NCBI database, it is difficult to provide consistent criteria that identify viruses that are members
of the same subtype due to overlaps between the intra-subtype and inter-subtype p-distances
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commonly used for classification (Smith et al., 2015, 2016).
Nevertheless, HEV-3 viruses can be classified into three major
clades based on phylogenetic grouping. Clade 3.1 includes HEV-
3 subtypes a, b, c, h, i, and j; clade 3.2 includes HEV-3 subtypes
e, f, and g, and clade 3.3 contains rabbit strains corresponding to
the HEV-3ra subtype (Oliveira-Filho et al., 2013; Ijaz et al., 2014;
Vina-Rodriguez et al., 2015). A standard reference set of genome
sequences including 17 that are full-length or near full-length
HEV-3 genomes was proposed in 2016 using a conservative
pragmatic approach (Smith et al., 2016). Subsequently, new
potential subtypes have been proposed: 3k (Miura et al., 2017),
3l (De Sabato et al., 2018), 3chi-new (Lhomme et al., 2019), and
3s (Wist et al., 2018; Sahli et al., 2019). The standard reference
set of genome sequence was recently updated identifying 3k, 3l,
and 3m (previously named 3chi-new) as new subtypes (Smith
et al., 2020). Recently, an automated partition of phylogenetic
trees constructed from 250 full-length HEV-3 genome sequences
has been used to classify more than 99% of the complete genome
sequences into subtypes (Nicot et al., 2018).

This study was done to determine a distance cut-off that can
be used to assign HEV-3 sequences to a subtype using the new
full-length HEV-3 sequences available in NCBI and the recently
defined new subtypes.

MATERIALS AND METHODS

Sequencing of HEV Complete Genome
Sequence
Stored plasma samples from HEV-infected patients consecutively
tested for HEV RNA between 2017 and 2019 in the laboratory
of Virology at Toulouse University Hospital, National Reference
Center for HEV, with viral load of HEV-3 >100,000 copies/mL
were selected for PacBio single molecule real-time sequencing.
HEV-RNA extraction and F1 and F2 amplifications were realized
for 188 samples as previously described (Nicot et al., 2018).
SMRT bell library was constructed by pooling 96 barcoded
samples according the manufacturer instructions for SMRTbell
Barcoded Adapter Prep kit. Sequencing was performed by using
chemistry v3.0 on a PacBio Sequel sequencer available at ICGex,
Institut Curie Research Center, Paris, France. Bioinformatics
analysis and complete genome reconstruction were realized
with an in-house developed pipeline. From demultiplexed.bam
files provided by ICGex, CCS were constructed using min
passes = 3 and min RQ 0.999 parameters. Reads were
mapped to a reference sequence (Minimap 2 2.17) to retain
HEV reads and remove chimeric reads. Non-identical reads
were subsequently combined using a medoïd-based clustering
(cluster-fast from USEARCH 11.0.667) into clusters at 99%
genetic identity. A consensus sequence was generated for
each cluster. F1 and F2 sequences were assembled with
Megamerger (EMBOSS 6.6.0). The consensus sequence with
the higher number of reads was used as complete genome
sequence, annotated as previously described (Nicot et al.,
2018) and submitted to Genbank with accession numbers
MW355217–MW355404.

Nucleotide Sequences and Phylogenetic
Analysis
The 188 complete genome sequences obtained by SMRT
sequencing and all full or near full-length genome sequences of
genotype 3 (n = 315) of human or animal origin available in the
Genbank database on April 2020 were included (Supplementary
Table 1). Duplicate sequences from a single individual and
six recombinant sequences (D11092, MG783571, KJ013414,
KJ013415, KT633715, and DQ450072) were removed. We also
included 29 complete genome sequences of genotypes 1, 2, 4,
5, 6, 7, and 8 (Smith et al., 2020) (accession numbers HEV-
1: FJ457024, MH918640; HEV-1a: M73218; HEV-1b: L088816;
HEV-1c: X98292; HEV-1d: AY230202; HEV-1e: AY204877;
HEV-1f: JF443721; HEV-1g: LC225387; HEV-2a: KX578717;
HEV-2b: MH809516; HEV-4: MK410048, AB369688; HEV-
4a: AB197673; HEV-4b: DQ279091; HEV-4c: AB074915; HEV-
4d: AJ272108; HEV–4e: AY723745; HEV-4f: AB220974; HEV-
4g: AB108537; HEV-4h: GU119961; HEV-4i: AB369690; HEV-
5a: AB573435; HEV-6: AB856243; HEV-6a: AB602441; HEV-
7: KJ496144; HEV-7a: KJ496143; and HEV-8: MH410174;
HEV-8a: KX387865). The 532 sequences (503 HEV-3 and 29
HEV non-3 genotype) were aligned with MUSCLE v.3.8.31
and a bootstrapped tree (100 replicates) using the maximum
likelihood (ML) method with the general time reversible model
(GTR + I + G) was constructed on phyML v3.3. Interactive Tree
Of Life (iTOL) v3 was used to visualize the whole large tree.

Automated Partition of Phylogenetic Tree
The ML phylogenetic tree was partitioned and strain clusters
within genotype 3 were identified using a method adapted from
Prosperi et al. (2011). Briefly, the topology of the ML tree was
analyzed with a depth first search by considering the number
of subtrees with a node reliability ≥70% and an associated
number of leaves with at least two distinct patients. A subtree was
identified as a cluster if the median value of the subtree distance
distribution was below a t-percentile threshold of the whole-tree
distance distribution. If a node satisfied this condition, the search
was stopped at that node, children nodes were ignored, and
other sibling nodes were analyzed. The threshold t was evaluated
over the (5th, 50th) percentile range of the whole tree distance
distribution with steps of 1 between the 5th and 15th and 5
between the 15th and 50th percentiles.

Distance Cut-Off for Identification of
HEV Genotype 3 Subtypes
The clusters of sequences identified by automated partition
of ML phylogenetic tree were used to analyze the intra- and
inter-subtype nucleotide pairwise distances. The distances were
estimated on MEGA X using the maximum composite likelihood
(MCL) method and a gamma distribution to model evolutionary
rate differences among sites (four categories). All distances were
analyzed (to determine a cut-off that identified subtypes) by
generating boxplots in Matlab R2018B software. Based on the
algorithm described in Supplementary Figure 1, a sequence Xi
can be considered to be a new subtype if all the intra-subtype and
inter-subtype distances (Si,j)j∈[1,N] are above a cut-off α. If at least
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one distance d(Xi, XVj), j ∈ [1,N] between the new sequence Xi
and one of the known sequences XVj is below the cut-off α, the
sequence Xi is assigned to the subtype containing the sequence
with the shorter distance.

Statistical Analysis
Continuous variables were tested with Student’s t-test on
STATA 14.0 software. p-Values of <0.05 were considered
to be significant.

RESULTS

Identification of Clusters
We identified clusters among genotype 3 sequences using
automated partition of a ML phylogenetic tree. Clusters of
known subtypes were identified with a threshold of 13% (median
distance <0.126 nt substitutions/site). This threshold assigns
99.1% of the 483 sequences belonging to clade 3.1 and 3.2 to one
of the following known subtypes: 3aj (n = 26), 3b (n = 29), 3c
(n = 117), 3h (n = 17), 3k (n = 4), 3i (n = 6), 3l (n = 6), 3m (n = 6)
for clade 3.1 and 3e (n = 40), 3f (n = 228), 3g (n = 1) for clade
3.2 (Figure 1). The complete genome of HEV-3j was included in
the HEV-3a subtype. The sequences proposed as HEV-3s were
classified as HEV-3h subtypes. Only four sequences belonging
to the group HEV-3chi (MK390370, MK390371, LC260517, and
MF959765) were not classified (Figure 1). The 13% threshold also
defined two clusters within clade 3.3 (HEV-3ra) composed of six
(HEV-3ra1) and six sequences (HEV-3ra2) while seven sequences
were outside the HEV-3ra1 and HEV-3ra2 clusters (Figure 1).

Determination of a Distance Cut-Off for
Subtype Discrimination
The pairwise distances were estimated on MEGA X using
the MCL method. Means for intra-subtype and inter-subtype
distances, standard deviation, 95% confidence interval (CI) and
99% CI for each subtype are shown in Table 1. The mean intra-
subtype distances obtained for HEV-3ra strains from clade 3.3
(0.116 ± 0.002 nt substitutions/site) was significantly greater
than each of the mean intra-subtype distances obtained for the
other HEV-3 subtypes (p < 0.01 for each subtype). Therefore,
the HEV-3ra sequences are too heterogeneous to be used to
determine the distance cut-off discriminating between subtypes.
Analysis of sequences from clades 3.1 and 3.2 indicated that the
overall mean intra-subtype distances was 0.064 (95% CI: 0.03–
0.09) whereas the overall mean inter-subtype distances was 0.142
(95% CI: 0.106–0.181). The 95% CI upper limit of intra-subtype
distance for each subtype was lower than the 95% CI lower limit
of the inter-subtype distance (Table 1). Similarly, the 99% CI
upper limit of intra-subtype distance was lower than the 99% CI
lower limit of inter-subtype distance, except for subtypes 3aj and
3b. Analysis of the intra- and inter-subtype distances for each
subtype indicated that 0.093 can be used as a distance cut-off
for assigning a sequence to a subtype (Figure 2). We therefore
designed an algorithm based on this cut-off distance that would
assign sequences to a subtype (Supplementary Figure 1) and

used it to assign 99.1% of the HEV-3 sequences to a defined
subtype (3aj, 3b, 3c, 3e, 3f, 3h, 3i, 3k, 3l, 3m). Only four
sequences were not assigned (MK390370, MK390371, LC260517,
and MF959765), in agreement with the data from automated
partition of the ML phylogenetic tree. The distance between
sequences MK390370 and MK390371, 0.006 nt substitutions/site,
assigned these sequences to the same cluster. LC260517 and
MF959765 were isolated sequences (minimum intersubtype-
distance: 0.099 nt substitutions/site for both sequences).

Classification of HEV-3 Sequences
We used 11 subtypes to classifying sequences in clades 3.1 (3aj,
3b, 3c, 3h, 3i, 3k, 3l, 3m) and 3.2 (3e, 3f, 3g), based on the
criteria proposed by Smith et al. (2020) for subtype assignment
and the results of the automated partition and distance cut-off
methods (Table 2). Each complete genome sequence used in
our study was assigned to a subtype (Supplementary Table 1).
New complete genome sequences can be assigned to an existing
subtype provided there is at least one distance less than 0.093.
Otherwise, the new sequence may be a new subtype, which then
needs to be confirmed (Smith et al., 2016). Complete genome
sequences of subtype 3a, 3b, and 3ra were detected worldwide
(Asia, Europe, and America), subtypes 3c, 3e, 3f, and 3h were
detected in Asia and Europe, subtypes 3i, 3l, and 3m were
detected only in Europe and subtype 3k only in Japan (Table 2
and Supplementary Table 1).

DISCUSSION

Hepatitis E virus genotype 3 viruses display considerable diversity
and have been classified into subtypes with no clear criteria
based on distance and phylogenetic methods for demarcation.
The set of reference sequences proposed by Smith et al. (2016) has
enabled common subtypes to be assigned, but more than 10% of
HEV-3 strains were not classified (Nicot et al., 2018). Automated
partition of a ML phylogenetic tree using 503 HEV-3 sequences
and distance analysis confirmed the classification of 250 HEV-
3 sequences (Nicot et al., 2018) and supported the existence of
several new post-2016 subtypes included in update classification
(Smith et al., 2020). Subtype assignment using our new analysis
method is automated and allow the classification of sequences
not classified by Smith et al. (2020). It is important to classify a
majority of sequences within a subtype and to have an objective
method of classification.

The putative subtypes 3k (Miura et al., 2017), 3l (De Sabato
et al., 2018), 3m (Nicot et al., 2018; Lhomme et al., 2019), and
3s (Wist et al., 2018; Sahli et al., 2019) have been described.
Evidence for subtypes 3k, 3l, and 3m was provided by the
automated partition of phylogenetic trees and the distance cut-
off of 0.093. HEV-3k has been found in humans and pigs
in Japan (Miura et al., 2017) while the HEV-3l subtype was
first described in pigs in Northern Italy (De Sabato et al.,
2018). Our analyses indicate that HEV-3l subtype also occurs
in humans in France (sequences MF444121, MF444131, and
HESQL113). The first strain of subtype 3m was detected in a
Spanish patient in 2011 (Munoz-Chimeno et al., 2016) and has
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FIGURE 1 | Automated partition of genotype 3 (n = 503) clusters within full-length or near full-length genomes. HEV-3 sequences not assigned to a cluster in clades
HEV-3.1 are indicated with stars.

since been detected in France, Belgium, Netherlands and the
United Kingdom (Ijaz et al., 2014; Nicot et al., 2018; Lhomme
et al., 2019). A recent study showed that this subtype circulates
in wild boar in Spain and also in human in Sweden, suggesting
that it is transmitted via consumption of contaminated meat
or water or direct contact with wild boar (Wang et al., 2019).
In contrast, all the putative subtype 3s sequences were assigned
to subtype 3h by the automated partition of ML phylogenetic
tree, and distance analysis indicated that 3s sequences should
be assigned to subtype 3h, all with distances below the cut-
off of 0.093. In addition, these strains, which have been found
in both humans and animals in Switzerland, form a cluster
that is transmitted by the consumption of locally produced
pork meat (Sahli et al., 2019). They cannot be assigned to a
new subtype because they are epidemiologically related (Smith
et al., 2016). Our analyses also indicate that HEV-3i, described
in boar in Germany (Adlhoch et al., 2009) or human in
Sweden (Norder et al., 2018), occurs in human in France
(HESQL053 and HESQL059).

The sequence AY115488 classified 3j with Smith criteria
(Smith et al., 2020) was obtained from the feces of pigs housed
in Canada (Pei and Yoo, 2002). This sequence was classified
among subtype 3a with our analysis. Indeed, the minimum intra-
subtype distance observed between AY115488 and AB089824

(0.083 nucleotide subtitutions/site) in subtype 3aj is much lower
than the cut-off value of 0.093 for assigning a sequence to a
different subtype. The four sequences (MK390370, MK390371,
LC260517, and MF95765) were not classified according Smith
et al. (2020) criteria and our analysis. They could be consider
as three potential new subtypes, considering MK390370 and
MK390371 are assigned to the same cluster. However, in
the absence of at least three complete genome sequences
epidemiologically unrelated (Smith et al., 2016), these new
subtypes could not be confirmed.

Hepatitis E virus genotype 3 is found worldwide and is the
predominant genotype in Europe and America. The majority of
Asian and North American strains of HEV-3 belong to subtypes
3a and 3b (Zehender et al., 2014). Subtype 3b is indigenous to
Japan, although 3b strains have occasionally been identified in
Europe (Legrand-Abravanel et al., 2009; Vina-Rodriguez et al.,
2015). Subtypes 3k strains have been described only in Asia
(Miura et al., 2017). The majority of European strains belong to
subtypes 3c, 3f, and 3e. Changes in the distribution of variants
within genotypes have been highlighted. A switch from clade
3.2 (mainly 3f and 3e) to clade 3.1 (mainly 3c) infections was
observed in France and the United Kingdom after 2010 (Nicot
et al., 2018; Oeser et al., 2019) and a similar switch occurred more
recently in Belgium; the subtype 3f strains that were predominant
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TABLE 1 | Nucleotide p-distances calculated for each subtype (intra and inter-subtype distances).

Subtype N Distances Observations p-distances

Mean SD 95% CI 99% CI

3aj 26 Intra 325 0.067 < 0.001 0.066− 0.069 0.01− 0.096

Inter 11,804 0.134 < 0.001 0.134− 0.135 0.089− 0.157

3b 29 Intra 406 0.068 < 0.001 0.066− 0.07 0.003− 0.089

Inter 13,079 0.134 < 0.001 0.134− 0.135 0.089− 0.157

3c 117 Intra 6786 0.055 < 0.001 0.055− 0.056 0.004− 0.085

Inter 42,471 0.14 < 0.001 0.139− 0.14 0.1− 0.157

3e 40 Intra 780 0.076 < 0.001 0.075− 0.077 0.002− 0.091

Inter 17,600 0.129 < 0.001 0.128− 0.129 0.101− 0.157

3f 228 Intra 25,878 0.065 < 0.001 0.065− 0.065 0.019− 0.099

Inter 57,456 0.142 < 0.001 0.142− 0.142 0.103− 0.157

3h 17 Intra 136 0.05 0.003 0.045− 0.055 0.002− 0.095

Inter 7871 0.132 < 0.001 0.132− 0.133 0.098− 0.157

3i 6 Intra 15 0.073 0.005 0.062− 0.084 0.025− 0.09

Inter 2844 0.127 < 0.001 0.126− 0.128 0.094− 0.152

3k 4 Intra 6 0.033 0.006 0.019− 0.048 0.019− 0.048

Inter 1914 0.132 < 0.001 0.131− 0.133 0.088− 0.156

3l 6 Intra 15 0.064 0.006 0.051− 0.077 0.007− 0.081

Inter 2844 0.134 < 0.001 0.134− 0.134 0.093− 0.157

3m 6 Intra 15 0.054 0.006 0.042− 0.069 0.004− 0.069

Inter 2844 0.131 < 0.001 0.13− 0.132 0.1− 0.156

3ra 17 Intra 171 0.116 0.002 0.111− 0.121 0.026− 0.161

Inter 8626 0.181 < 0.001 0.181− 0.181 0.166− 0.193

p-distances were calculated with the maximum composite likelihood method (MCL) on MEGA X.

FIGURE 2 | Individual intra (white boxplots) and inter (blue boxplots) p-distances for each determined subtype. The horizontal line represents the 0.093 cut-off. The
central mark on each box indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend
to the most extreme data points considered the minimum and the maximum of the distribution.
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TABLE 2 | HEV-3 subtype reference sequences based on full or near full-length genomes.

HEV3 subtype
according to
Smith et al. (2020)

Genbank
accession
number

Strain Classification
based on

clustering or
distance analyses

Geographical origin Comment

3a AF082843 Meng 3aj Canada, China, France, Japan, Korea,
Mexico, Singapore, Thailand,
United Kingdom, United States

3b AP003430 JRA1 3b Canada, China, France, Japan

3c FJ705359 wbGER27 3c France, Germany, Netherlands,
Sweden, Thailand, United Kingdom

3e AB248521 swJ8-5 3e Germany, Japan, France, Hungary, Italy,
United Kingdom

3f AB369687 E116-YKH98C 3f Denmark, France, Germany, Japan,
Singapore, Spain, Sweden, Thailand,
United Kingdom

3g AF455784 Osh 3g Kyrgyzstan Only one complete
genome sequence for
this subtype

3h JQ013794 TR19 3h France, Mongolia, Switzerland

3i FJ998008 BB02 3i France, Germany, Sweden

3j AY115488 Arkell – Canada Isolated from pooled
stools (Pei and Yoo,
2002), classified 3a

3k AB369689 E088-STM04C 3k Japan

3l JQ953664 FR-SHEV3c-like 3l France, Italy

3m KU513561 IC2011 3m France, Spain

3 AB290313 swMN06-C1056 3f Mongolia

3 MF959765 WB/HEV/NA21ITA15 3 Italy

3 LC260517 swHE1606845 3 Japan

3 MK390971 17RS1920 3 Italy

3 MF959764 WB/HEV/NA17ITA15 3i Italy

3 KP294371 MWP_2010 3i Germany

3ra FJ906895 GDC9 3ra China, France, Germany, Japan,
United States

before 2015 were replaced by subtype 3c strains after 2015 (Suin
et al., 2019). The reason for these changes in subtype distribution
is uncertain, it could reflect the distributions of HEV-3 subtypes
in the pig reservoirs of different countries. Both locally produced
and imported pigs or pork meat could be involved. Phylogenetic
and coalescence analyses based on full-length sequences of HEV-
3 from acute hepatitis patients, domestic pigs and wild boars
provide evidence that HEV-3e strains were introduced from
Europe into Japan through importation of pigs in the 1960s
(Nakano et al., 2013). Transmission of HEV-3e strains from
pigs to wild boars has been also suggested in Japan (Nakano
et al., 2013). HEV-3f subtypes were recently detected in humans,
domestic pigs and wild mammals in Japan, but indigenous
Japanese HEV-3 strains belong to subtypes 3a, 3b, and 3e (Nakano
et al., 2018). These new HEV-3f strains may have entered Japan
from Europe in this way because the proportion of pork meat
imported from Europe has increased in the past decade, leading
to cases of hepatitis due to eating pork meat. The changes in HEV-
3 subtype distribution are probably the result of changes in the
origin of pork meat.

The clinical significance of infection with different HEV-
3 subtypes has been discussed. Most studies have shown that

asymptomatic blood donors and patients with symptomatic
hepatitis E had similar genotype distributions and neither
the severity of symptoms nor liver enzyme activities were
significantly associated with clades 3.1 or 3.2 (Smith et al., 2015;
Lhomme et al., 2019). However, two recent studies from Belgium
and France found that the risk of HEV-3-infected patients
being hospitalized varied with the subtype (Subissi et al., 2019;
Abravanel et al., 2020). Patients infected with subtype 3c were at
lower risk of hospitalization than those infected with subtypes 3f
or 3e (Subissi et al., 2019; Abravanel et al., 2020). Larger studies
are now needed to clarify the influence of host factors and virus
diversity on HEV-3 pathogenesis.

A limitation of the present study is the relatively limited
number of full length HEV-3 genome sequences available
worldwide and the way diversity varies within HEV-3
subtypes. Despite very good groupings of sequences, there
are outliers for most subtypes indicating that subtype
assignment can be ambiguous. In addition, HEV-3ra strains
are particularly heterogeneous. Nevertheless, all HEV-3ra
sequences have a common signature, a 93-nucleotide
insertion within the macrodomain of the HEV genome
(Izopet et al., 2012).
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Our findings suggest that the strains in clades 3.1 and 3.2
can be assigned to 1 of 11 subtypes, each represented by a full
length or near full-length reference sequence. We have proposed
a cut-off value for assigning subtypes. Update of the reference
sequences (Smith et al., 2020) could help harmonize HEV-
3 classification, which would be useful for comparing strains
circulating in humans and the animal reservoir, for tracing
the source of an individual infection and for investigating the
pathogenicity of HEV-3 subtypes.
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