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Abstract: A highly effective medicine is urgently required to cure coronavirus disease 2019 (COVID-

19). For the purpose, we developed a molecular docking based webserver, namely D3Targets-2019-

nCoV, with two functions, one is for predicting drug targets for drugs or active compounds observed from

clinic or in vitro/in vivo studies, the other is for identifying lead compounds against potential drug targets

via docking. This server has its unique features, (1) the potential target proteins and their different con-

formations involving in the whole process from virus infection to replication and release were included as

many as possible; (2) all the potential ligand-binding sites with volume larger than 200 Å3 on a protein

structure were identified for docking; (3) correlation information among some conformations or binding

sites was annotated; (4) it is easy to be updated, and is accessible freely to public (https://www.d3phar-

ma.com/D3Targets-2019-nCoV/index.php). Currently, the webserver contains 42 proteins [20 severe

acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) encoded proteins and 22 human pro-

teins involved in virus infection, replication and release] with 69 different conformations/structures

and 557 potential ligand-binding pockets in total. With 6 examples, we demonstrated that the webserver
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should be useful to medicinal chemists, pharmacologists and clinicians for efficiently discovering or

developing effective drugs against the SARS-CoV-2 to cure COVID-19.

ª 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Severe acute respiratory syndrome-related coronavirus 2 (SARS-
CoV-2)1�3 has caused more than 2800 deaths as of 29 February
2020 worldwide. Drug researchers and clinicians are working
intensively hard to discover and test drugs against the coronavirus
disease 2019 (COVID-19). For example, intravenous treatment of
remdesivir has been reported to be helpful to improve the clinical
condition for the first confirmed patient of SARS-CoV-2 infection
in the United States, although the safety and efficacy are still
needed to test in randomized controlled trials4. Nevertheless, there
are many incoming or ongoing clinical studies in China, but no
drug has been approved to be effective for COVID-19 so far.

In order to discover effective drugs against the virus, virtual
screening studies have been performed based on several proteins,
including 3C-like proteinase (Mpro)5e12, angiotensin converting
enzyme 2 (ACE2)13, papain-like proteinase (PLpro)14, and furin15.
However, the clinic study did not discover desirable medicine.
Therefore, more potential drug targets should be explored for virtual
screening and drug design. As the whole process of viral disease
involves not only the proteins encoded by the SARS-CoV-2 itself,
but also the proteins of human being. Thus, both the viral protein and
human protein should be included for drug discovery and develop-
ment, and the virtual screening against more potential target proteins
could reduce false negative and improve the success rate to quickly
find cures for the disease. Moreover, multi-site docking is also
indispensable for deep exploration of protein functions and drug
discovery. On one hand, the functional sites of some proteins are
unclear or not unique, which should be comprehensively considered.
On the other hand, there may be allosteric sites on the protein, which
may have distinct advantages for regulating protein function. In
conclusion, multi-target and multi-site based virtual screening is a
more expected and comprehensive approach for finding targeted
therapeutic drugs, which can improve the accuracy and robustness
of prediction as much as possible.

There are at least 126 planning or ongoing clinical studies
against the SARS-CoV-2 as of 29 February 2020 according to the
information from Chinese Clinical Trial Registry as shown in
Supporting Information Table S1. For example, chloroquine, an
anti-plasmodium drug, has been found partially effective in clinic.
However, its exact target protein and function mechanism against
the virus and COVID-19 are unknown. In addition, many groups
are working on the cytopathic effect assay for discovering drugs or
active compounds against the SARS-CoV-2. This kind of in vitro
study may result in compounds with good activity yet unknown
targets. Therefore, identifying potential drug targets will be of
great importance to understand the underlying mechanism of how
the drug works, and to provide information for further drug
development. Thus, a platform is expected to provide reverse
docking function for predicting target protein for mechanism
unknown but active compounds and drugs.
To the best of our knowledge, there is no webserver available
to perform virtual screening for discovering drugs based on the
multi-target and multi-site strategy and to run reverse docking for
predicting potential drug target. Here, we report a platform,
namely D3Targets-2019-nCoV webserver, with two functions, one
is for predicting drug targets for active compounds or drugs
observed from clinic test or in vitro/in vivo study, and the other is
for identifying lead compounds against a specific or multiple drug
targets via protein structure based virtual screening. We hope this
platform could help the medicinal chemists, pharmacologists and
clinicians to efficiently discover and develop drugs against the
SARS-CoV-2 to cure COVID-19.

2. Materials and methods

2.1. Potential target proteins included in the D3Targets-2019-
nCoV database

In order to find potential target proteins as many as possible for
discovering drugs to cure COVID-19, it is necessary to consider
both the SARS-CoV-2 proteins and human proteins involved in the
whole process of virus infection, replication and release. In total,
there are 42 potential proteins included in the database as of 21
March 2020, among which 20 proteins are encoded by the virus
itself, and 22 proteins are encoded by human genome (Table 1).

2.2. Protein structure and 3D models

We performed literature survey and found 13 crystal structures of
6 proteins encoded by SARS-CoV-2 as well as 16 human proteins
that may be the potential target proteins to cure COVID-19 with
three-dimensional (3D) structures available from Protein Data
Bank (PDB)16. Therefore, their 3D structures were downloaded
directly from PDB (Table 1).

Due to the missing residues of the viral crystal structures in
comparison with the complete amino acid sequences, the 3D
structures of total 19 viral proteins except ADP ribose phosphatase
were reconstructed in two different ways, viz., homology
modeling and de novo prediction. Among them, 16 proteins were
modelled with SWISS-MODEL server (https://swissmodel.
expasy.org/; the Center for Molecular Life Sciences,
Switzerland)17 based on 22 homology structures in PDB, which
are 2HSX, 3E9S, 5Y3E, 1Z1I, 2Z9J, 1YSY, 2AHM, 1UW7,
1QZ8, 5NFY, 6NUR, 6JYT, 2H85, 2XYR, 1YO4, 5X58, 5X5B,
5ZVM, 2MM4, 5X29, 2GIB, and 2OFZ (Table 1). Other three
SARS-CoV-2 proteins have sequence similarity lower than 30%
with the structures in PDB, therefore, we modelled their structures
by Robetta (http://robetta.bakerlab.org/; Baker lab, USA)18 for de
novo prediction, which are non-structural protein 2, non-structural
protein 4, and non-structural protein 6 (Table 1). In addition,

http://creativecommons.org/licenses/by-nc-nd/4.0/
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magnesium ions (Mg2þ) are essential for the activity of the RNA-
dependent RNA polymerase (RdRp). Therefore, we modelled two
Mg2þ from the superimposition of the HCV RdRp (PDB ID:
1NB6)19 palm domain to SARS-CoV-2 RdRp palm domain.

As for the rest 6 human proteins without available crystal
structures, 4 of them were modelled by SWISS-MODEL, and 2
were modelled by Robetta because of the poor sequence similarity
(<30%), which are transmembrane protease serine 2 (TMPRSS2)
and caveolin-2. The biological functions of each protein are
summarized in Supporting Information Table S2.

In future we will keep our database updating regularly when
new experimental and simulated structures of the potential target
proteins related to COVID-19 are available. The update infor-
mation could be found in the “updated” section in the D3Targets-
2019-nCoV webserver.

2.3. Detection of potential binding pockets

Since most of the drug binding pockets of SARS-CoV-2 proteins
are unknown and very difficult to be obtained from experiments in
a short time, a new method we reported recently, namely
D3Pockets (https://www.d3pharma.com/D3Pocket/index.php)20,
was applied to systematically predict all the potential binding
pockets for each protein. Due to the irregular shape of the pre-
dicted binding pockets, we used cuboid pseudo-pocket volume
(PPV) to characterize the size of protein pockets by Eq. (1). Once
submitting a hydrogenated homology-modeled protein to the
D3pockets webserver, the coordinates of predicted binding
pockets in the protein could be predicted, among which pockets
with the PPV greater than 200 Å3 were selected for molecular
docking in this study.

PPVZ ðXmax�XminÞ�ðYmax�YminÞ � ðZmax�ZminÞ ð1Þ
where Xmax and Xmin are the maximum and minimum values of the
X coordinate in the pocket file, which was downloaded from the
D3pockets server, respectively; Ymax and Ymin are the maximum
and minimum values of the Y coordinate in the pocket file; Zmax

and Zmin are the maximum and minimum values of the Z coor-
dinate in the pocket file.

It is critical to choose appropriate docking box parameters for
accurate prediction in molecular docking. Based on the coordinate
file of predicted binding pockets by D3pockets, the center of the
docking box is obtained by Eq. (2), and the size of the docking
box is obtained by Eq. (3) which extends 10 Å in each dimension
of the cubic box.

ðx; y; zÞZ
�
Xmax þXmin

2
;
Ymax þ Ymin

2
;
Zmax þ Zmin

2

�
ð2Þ

ða; b; cÞZ ðXmax�Xminþ10; Ymax�Yminþ10; Zmax�Zminþ10Þ
ð3Þ

where x, y and z are the 3D coordinate centers of the docking box.
And a, b and c are the widths of the docking box.

2.4. Molecular dynamics simulation on SARS-CoV-2 Mpro

For exploring druggable conformations as many as possible for a
potential drug target, molecular dynamics (MD) simulations were
performed, with SARS-CoV-2 Mpro as an example in this study, to
sample more protein conformations by using our newly developed
MD method, namely velocity-scaling optimized replica exchange
molecular dynamics (vsREMD)21. The details of the vsREMD
method have been described in our previous study21. Briefly, in the
vsREMD, a set of replicas are simulated in explicit solvent
environment at different temperatures, but exchange between
neighboring replicas solely utilizes the sum of intra-protein
interaction (Ppp) and proteinesolvent interaction ðPpwÞ as the
criterion by Eq. (4):

uð142ÞZmin
�
1; exp

�
DbD

�
PppþPpw

��� ð4Þ
where b is the inverse of temperature 1/kBT. To obtain the correct
ensemble after exchange moves between replica 1 and replica 2,
the vsREMD uses Eqs. (5) and (6) below to rescale uniformly the
velocities of all particles.

bvð1/2ÞZ vð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1Þ
kin �DPww

Eð2Þ
kin

vuut ð5Þ

bvð2/1ÞZ vð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð2Þ
kin þDPww

Eð1Þ
kin

vuut ð6Þ

where vð1Þ and Eð1Þ
kin are the velocities and kinetic energies of

replica 1 before exchange, respectively; Pww is the intra-solvent
interaction; bvð1/2Þ is the velocity of replica 1 after exchange.
The same meaning for replica 2.

The initial structure of the SARS-CoV-2 Mpro was obtained
from homology modelling with 1Z1I as template. AMBER99SB*-
ILDNP22 force field was used to model the protein. The simulation
system was solvated in a cubic box of TIP3P water molecules with
a 10.0 Å buffer along each dimension. To remove bad contacts
formed during the system preparation, the simulation system was
minimized using steepest descent algorithm. Then the system
was heated to 300 from 0 K in 2 ns with a harmonic restraint
(10 kcal/mol$Å�2) for the solute. The bonds connecting hydrogen
atoms were constrained by the LINCS algorithm (an algorithm
reseting bond’s length; 1997)23 and the time step was set to 2.0 fs.
The long-range electrostatic interactions were treated by Particle
mesh Ewald (PME, long-range electrostatic algorithms; 1993)24

with the non-bonded cutoff of 12 Å. The vsREMD was run at 24
different temperatures from 300 to 450 K (300.0, 305.3, 310.8,
316.3, 321.9, 327.6, 333.5, 339.4, 345.4, 351.6, 357.8, 364.2,
370.7, 377.3, 384.0, 390.8, 397.8, 404.8, 412.0, 419.4, 426.8,
434.4, 442.1 and 450.0). Exchanges were attempted every 1000
steps. For each replica, the overall simulation time lasted for 50 ns.

After the vsREMD simulation, the representative con-
foramtions obtained from the trajectory were clustered and the
correltation among different clusters and potential binding pockets
were analyzed with D3Pockets20.

2.5. Molecular docking

Hydrogens were added to the protein structures by pdb2pqr25. The
format of protein structures was converted to pdbqt by using the
script prepare_receptor4.py in MGLTools (version 1.5.6)26. The
pockets generated by D3Pockets are used to generate box and grid
for docking. For the small molecule submitted for docking, the
script prepare_ligand4.py in MGLTools (version 1.5.6) is used to
convert its format of either mol2 or sdf to the format of pdbqt26.
All the docking process was performed with smina (https://

https://www.d3pharma.com/D3Pocket/index.php
https://sourceforge.net/projects/smina/


Table 1 Information of the D3Targets-2019-nCoV database.

No. Target full name Target

abbreviation

Protein

ID/UniProtKB

State/

conformation

Marka Number of

pocketsb
Orthosteric

pocketsc
PDB

ID

Sequence

similarity (%)

1 Host translation inhibitor nsp 1 Nsp 1 QHD43415.1 /d V1 3 / 2HSX 86.09

2 Non-structural protein 2 Nsp 2 QHD43415.1 / V2 13 / / /

3 Papain-like proteinase PLP/PLpro QHD43415.1 Monomer V3-1 6 1 3E9S 82.86

Dimer V3-2 9 1 5Y3E 82.80

4 ADP ribose phosphatase ADRP QHD43415.1 Monomer V4-1* 1 1 6W02 /

Dimer V4-2* 5 2, 3 6W02 /

5 Non-structural protein 4 Nsp 4 QHD43415.1 / V5 7 / / /

6 3C-like proteinase 3CLpro/Mpro QHD43415.1 Monomer V6-1 4 2 1Z1I 96.01

Monomer V6-2* 7 1 5R82 /

Dimer V6-3 6 3, 4 2Z9J 96.08

Dimer V6-4* 7 3, 4 6Y2G /

MD1# V6-5 6 1 1Z1I 96.01

MD2# V6-6 6 2 1Z1I 96.01

MD3# V6-7 6 3 1Z1I 96.01

MD4# V6-8 7 3 1Z1I 96.01

7 Non-structural protein 6 Nsp 6 QHD43415.1 / V7 7 / / /

8 Non-structural protein 7 Nsp 7 QHD43415.1 / V8 1 / 1YSY 98.80

9 Non-structural protein 8 Nsp 8 QHD43415.1 / V9 1 / 2AHM 97.42

10 Non-structural protein 9 Nsp 9 QHD43415.1 Monomer V10-1 3 / 1UW7 97.35

Monomer V10-2* 3 / 6W4B /

Dimer V10-3 7 / 1QZ8 97.35

Dimer V10-4* 6 / 6W4B /

11 Non-structural protein 10 Nsp 10 QHD43415.1 / V11 3 / 5NFY 98.47

12 RNA-dependent RNA

polymerase

RdRp QHD43415.1 / V12-1 10 / 6NUR 96.35

þMg2þ V12-2 10 / 6NUR 96.35

13 Helicase / QHD43415.1 Monomer V13-1 11 / 6JYT 99.83

Dimer V13-2 21 / 6JYT 99.83

14 Guanine-N7 methyltransferase N7 Mtase QHD43415.1 / V14 12 1 5NFY 94.88

15 Uridylate-specific

endoribonuclease

NendoU QHD43415.1 Monomer V15-1 7 / 2H85 88.12

Monomer V15-2* 8 / 6W01 /

Dimer V15-3* 15 / 6W01 /

16 2ʹ-O-Methyltransferase 2ʹ-O-Mtase QHD43415.1 / V16 5 1 2XYR 93.49

17 ORF7a protein / QHD43421.1 / V17 1 / 1YO4 91.57

18 Spike protein S protein QHD43416.1 Closed V18-1 25 / 5X58 76.48

Closed V18-2* 30 / 6VXX /

Open V18-3 27 / 5 � 5B 76.48

Open V18-4* 42 / 6VYB /

Heptad repeat 1 V18-5 12 / 5ZVM 87.50

S2 subunit V18-6* 4 6LXT /

19 Envelope protein E protein QHD43418.1 Monomer V19-1 1 / 2MM4 91.38

Pentamer V19-2 2 / 5X29 91.38

20 Nucleocapsid phosphoprotein N protein QHD43423.2 C terminal V20-1 1 / 2GIB 96.04

N terminal monomer V20-2 4 / 2OFZ 92.06

N terminal monomer V20-3* 3 / 6VYO /

N terminal-tetramer V20-4* 16 / 6VYO /

21 Angiotensin converting

enzyme 2

ACE2 P59594 / H1* 6 / 1R42 /

22 Cathepsin L CTSL P07711 / H2* 5 1 2XU3 /

23 Transmembrane protease

serine 2

TMPRSS2 O15393 / H3 10 / / /

24 C type lectin domain family

four member M

CLEC4M Q9H2X3 / H4* 2 / 1XAR /

25 AP2-associated protein

kinase 1

AAK1 Q2M2I8 / H5* 12 1, 6 5TE0 /

26 Cyclophilin A CypA P62937 / H6* 3 1 4N1M /

27 Disintegrin and

metalloproteinase

domain-containing

protein 17

ADAM17 P78536 / H7-1 5 1 2I47 99.21
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Table 1 (continued )

No. Target full name Target

abbreviation

Protein

ID/UniProtKB

State/

conformation

Marka Number of

pocketsb
Orthosteric

pocketsc
PDB

ID

Sequence

similarity (%)

þZn2þ H7-2 5 1 2I47 99.21

28 Furin / P09958 / H8* 8 1 5JXG /

29 Tyrosine-protein kinase ABL2 ABL2 P42684 / H9* 3 1 3HMI /

30 Eukaryotic initiation factor 4A-I eIF4A P60842 / H10* 8 2 5ZC9 /

31 Dihydroorotate dehydrogenase DHODH Q02127 / H11* 6 1 3U2O /

32 Glycogen synthase

kinase-3 beta

GSK3b P49841 / H12* 13 1 1J1B /

33 Heterogeneous nuclear

ribonucleoprotein A1

HNRNPA1 P09651 / H13* 4 / 1U1Q /

34 Calnexin / P27823 / H14-1 7 / 1JHN 95.73

þCa2þ H14-2 7 / 1JHN 95.73

35 Mitogen-activated protein

kinase 8

JNK1 P45983 / H15 12 1 2G01 99.44

36 Mitogen-activated protein

kinase 9

JNK2 P45984 / H16 6 1 3NPC 98.31

37 Mitogen-activated protein

kinase 10

JNK3 P53779 / H17* 7 1 1JNK /

38 RAC-alpha serine/threonine-

protein kinase

AKT1 P31749 / H18* 8 1 3O96 /

39 RAC-beta serine/threonine-

protein kinase

AKT2 P31751 / H19* 12 1 3D0E /

40 RAC-gamma serine/

threonine-protein kinase

AKT3 Q9Y243 / H20* 5 / 2X18 /

41 Caveolin-2 CAV2 P51636 / H21 2 / / /

42 cGMP-specific 3ʹ,5ʹ-cyclic
phosphodiesterase

PDE5 O76074 / H22* 10 1 2H44 /

*Crystal structures of SARS-CoV-2 or human proteins downloaded from PDB.
#Conformations clustered from molecular dynamics trajectories.

aV refers to the SARS-CoV-2 protein, and H refers to the human protein.
bThe number of predicted binding pockets by D3Pockets on the protein with the PPV greater than 200 Å3.
cThe orthosteric ligand binding sites assigned based on its sequence similarity (>80%) to that of its homologous proteins.
dNot available.
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sourceforge.net/projects/smina/; open-source software, version
Smina Sep 25 2019)27, which is a fork of AutoDock Vina28 with
improved docking performance. The detailed formulas and pa-
rameters for the scoring function were introduced in Supporting
Information Table S3. The random seed was explicitly set to 0.
The exhaustiveness of the global search was set to 8 (exhaus-
tiveness), and 1 binding mode (num_modes) was generated and
reported for each small molecule against each docking pocket.

For the docking against RdRp, the interaction between Mg2þ

and oxygen could not be handled by the default scoring function.
Hence, a custom scoring function (0.3 atom_type_gaussian
(t1 Z Magnesium, t2 Z OxygenXSAcceptor, o Z 0, _w Z 3,
_c Z 8)) is applied (Table S3).

2.6. Multi-protein and multi-pocket docking platform and
webserver

All protein conformations and binding pockets were collated and
used as the backend database of the D3Targets-2019-nCoV server.
In the meantime, the molecular docking function was also
embedded in the server. By submitting the compound file in
format of mol2 or sdf via the website, the users can easily run a
molecular docking job and download the result files including
docking scores and the coordinates of the docked proteineligand
complexes from the D3Targets-2019-nCoV server. The workflow
of D3Targets-2019-nCoV server is illustrated in Fig. 1.
3. Results and discussion

3.1. Overview of target proteins in the D3Targets-2019-nCoV
database

The information of the 42 proteins and 69 confromations
collected in the D3Targets-2019-nCoV database were summa-
rized in Table 1, including the protein name, state and confor-
mation, number of pockets, orthosteric pockets, sequence
similarity, PDB IDs of the downloaded structures or of the tem-
plates used for homology modeling, etc. For those proteins
without PDB ID information, their structuers were modeled with
Robetta. The pocket number on each conformation was also
summarized in Table 1.

3.2. D3Targets-2019-nCoV server

The D3Targets-2019-nCoV server was developed based on PHP,
and hosted on a Linux server. The average running time for a
docking job of a small molecule against all the 42 proteins and
557 binding sites is about an hour, but could be much longer if the
molecule has large number of rotatable bonds. Upon a user
uploading a molecular file, the D3Targets-2019-nCoV server will
create a new job number and put it in queue immediately. The job
status including “Computing”, “Waiting” and “Finished” will be
shown on the result page. When the job is completed, the user can

https://sourceforge.net/projects/smina/
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browse the result page to obtain docking scores for selected target
proteins and can also download the docking results and the co-
ordinate files related to ligandeprotein interaction.

3.3. Input and output

The graphical interface of the D3Targets-2019-nCoV webserver is
shown in Fig. 2. The webserver supports small molecule files in
several formats, such as sdf, mol2, mol, smiles, and pdb formats,
which will be converted to mol2 format ultimately by Open Babel
(version 2.4.0)29 during the processing. Although 3D structures
can be generated from the 2D coordinates and optimized under
MMFF94 force field by RDKit (open-source cheminformatics
software, version 2019.09.3, GitHub, Inc.), the chiral properties
might be wrong in the conversion process. Therefore, we strongly
recommend the users submitting 3D chemical structure in the
format of mol2 or sdf, especially for the compounds with chiral
centers.

Registration is encouraged to make the result only visible to
the user, which is free of charge. After registration, the user can
login to upload a small molecule. If a user is interested in one or
some specific proteins, the target list is customized to be selected
manually by the user, while the default is to run docking against
all the proteins and sites. The output is presented in ascending
order of ligandeprotein docking score. The docking results could
be downloaded from the webserver as an archive file.

3.4. Potential allosteric binding pockets predicted with SARS-
CoV-2 Mpro as an example

D3Targets-2019-nCoV server has collected some and will
continue to collect potential allosteric binding pockets to further
improve its performance. As SARS-CoV-2 Mpro is a promising
target6, we selected it as an example to demonstrate how we
predict potential allosteric binding pockets. Based on the vsREMD
Figure 1 The workflow of the D3Targets-2019-nCoV server for pred

screening.
simulation trajectories at 300 K, we applied D3Pockets to explore
the dynamic properties of potential pockets in SARS-CoV-2 Mpro.
As shown in Fig. 3, there are grid points colored from blue to red
that compose a pocket. The redder the grid points are, the more
stable the sub-pocket regions throughout the MD trajectory.
Therefore, for SARS-CoV-2 Mpro, four relatively stable pockets
are observed (Fig. 3). Pocket 1, where the intrinsic ligand binds to,
has more stable points than Pockets 2, 3, and 4. Pocket 2, which is
far from Pocket 1, has a positive volume correlation (0.60) with
Pocket 1 (substrate binding site), suggesting that when Pocket 1
gets bigger, Pocket 2 gets bigger as well (Fig. 4A). Similarly,
Pocket 3 also has a positive volume correlation (0.69) with Pocket
1 (Fig. 4B). There is no correlation between Pockets 1 and 4. It is
well known that a pocket with strong correlation with the substrate
binding pocket could be used as an allosteric site for drug dis-
covery and development30e32. Therefore, Pockets 2 and 3 are two
potential allosteric binding pockets, which were included in the
D3Targets-2019-nCoV webserver. The cutoff of correlation co-
efficient to identify the allosteric binding pockets was set to 0.5 by
default with the program D3Pockets20.
3.5. Case study

RdRp was recognized as a challenging protein for molecular
docking, thus, we selected remdesivir as an example to test the
reliability of D3Targets-2019-nCoV server. Remdesivir is a RdRp
inhibitor and has been reported to be effective in inhibiting severe
acute respiratory syndrome-related coronavirus (SARS-CoV) and
SARS-CoV-2 in vitro33,34. It should be noted that remdesivir is a
prodrug, and the active form is the transformed nucleoside
triphosphate (NTP, Fig. 5)35. Therefore, NTP was submitted to
D3Targets-2019-nCoV for the target prediction.

Table 2 presented the top 10 target proteins with high docking
scores predicted by the server for NTP. The target protein of
remdesivir, RdRp, has a score of �11.37 kcal/mol in Pocket 1,
icting drug targets and for multi-target and multi-site based virtual



Figure 3 Pocket stability of SARS-CoV-2 Mpro. The protein and

the binding pockets were prepared with PyMOL (The PyMOL mo-

lecular graphics system, version 2.4.2019, Schrodinger LLC.).
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which ranks the 3rd among all protein pockets (42 proteins, 69
conformations and 557 binding pockets). However, it should be
noted that docking score alone does not perform well in many
cases according to our experience. We recommend the users to
check the top 10 docking results carefully to identify potential
target protein.

One superiority to use the docking method to predict the target
is that the docked binding mode of the compound is useful for the
mutagenesis validation and is also useful to ligand optimization.
According to the binding mode, the residues, e.g., TRP-800, ASP-
761, and CYS-622 of NTP were found to form hydrogen bonds
with the RdRp (Fig. 6), and there is a strong electrostatic attraction
between the phosphate group of NTP and two Mg2þ. Thus, the
residues and the cations are essential for the strong binding of
NTP to RdRp. Comparing with the newly reported
RdRperemdesivir complex structure36, 4 of the 6 key interaction
residues, viz., D618, D623, D760 and D761, are included in our
predicted key residues (Fig. 6). Therefore, the docking results by
D3Targets-2019-nCoV webserver should be acceptable.

To further test the reliability of D3Targets-2019-nCoV server,
we performed literature survery and found 5 more active com-
pounds with experimental informaiton of target protein and
bioactivity. Therefore, we performed target predition for the 5
active compounds to test whether the predicted targets are ranked
in top 10 among the 42 potential target proteins. The predicted
results were summarized in Table 3, in which all the experimen-
tally reported targets were predicted to be among top 5, demon-
strating that the results from D3Targets-2019-nCoV should be
acceptable at least to the systems we tested.
3.6. Discussion

We have presented the user-friendly D3Targets-2019-nCoV web-
server for predicting drug targets and for multi-target and multi-
site based virtual screening against COVID-19. Compared with
existing reverse docking platforms43,44, the D3Targets-2019-nCoV
webserver is specifically focused on COVID-19, including not
only the experimental structures and homology models, but also
the conformations with potential allosteric binding sites predicted
by enhanced sampling method (vsREMD)21 and D3Pockets20,
Figure 2 Graphical interface for input (A)
respectively. The abundant conformations and binding pockets
make the webserver much possible to successfully predict target
proteins and to discover hit compounds. It is also important to
notice that other reverse docking platforms should be tried as the
true targets of an active compound may not be included in
D3Targets-2019-nCoV due to the unknown pathogenic mecha-
nisms of COVID-19. Because the protein conformation obtained
by homology modelling may not be the most stable conformation,
and some docking models still need further optimization, for
example, the positions of two Mg2þ on the RdRp, the workflow of
D3Targets-2019-nCoV needs to be further improved.

In order to keep the D3Targets-2019-nCoV server fresh and
active, we will continue to update the webserver in the future. To
make better use of the docking platform, some applications are
listed as follows: (1) target prediction of multi-target drugs; (2)
target prediction of old drugs and novel active compounds; (3)
virtual screening of drugs for specified targets; (4) prediction of
binding modes of drugs to known targets, and (5) users can
download protein models for free from the webserver for
and output (B) of D3Targets-2019-nCoV.



Figure 4 Pocket correlation of SARS-CoV-2 Mpro.

Figure 5 Remdesivir is converted to its pharmacologically active

NTP in human cells.

Figure 6 Binding mode of NTP to the RdRp from the docking

simulation.
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molecular dynamics simulation, molecular docking or
structureeactivity relationship studies, etc. In particular, predict-
ing target based only on the highest docking score may not be
reliable. Therefore, we strongly recommend that the users take
into account the docked binding mode and docking scores
together with protein function. The D3Targets-2019-nCoV web-
server will keep regularly update when the new structures of
Table 2 Top 10 proteins and their docking scores for NTP.

No. Protein S

1 Eukaryotic initiation factor 4A-I /

2 Dihydroorotate dehydrogenase /

3 RNA-dependent RNA polymerase þ
4 cGMP-specific 3ʹ,5ʹ-cyclic phosphodiesterase /

5 Spike protein O

6 ADP ribose phosphatase D

7 Mitogen-activated protein kinase 10 /

8 Uridylate-specific endoribonuclease M

9 Guanine-N7 methyltransferase /

10 RAC-alpha serine/threonine-protein kinase /
potential target proteins related to COVID-19 are available and
meet one of the 4 criteria, viz., natural mutant, RMSDs of the
overall structure or ligand binding pockets or any key residue in
the pockets �2 Å to any structures in the webserver.
tate/Conformation Pocket code Docking score

2 �11.88

1 �11.54

Mg2þ 1 �11.37

1 �10.35

pen 8 �10.28

imer 2 �10.15

1 �9.98

onomer 1 �9.84

1 �9.67

1 �9.40



Table 3 Case studies of potential antiviral agents against the SARS-CoV-2.

Antiviral agent

Target Molecular structure Antiviral activity (mmol/L) Score Rank Ref.

Remdesivir-active form RdRp EC50 Z 0.77 �11.37 3/42 34

Favipiravir-active form RdRp EC50 Z 61.88 �10.74 2/42 34,37,38

Ribavirin-active form RdRp EC50 Z 109.50 �10.39 2/42 34,38,39

Penciclovir-active form RdRp EC50 Z 95.96 �8.82 5/42 34,40

N3 compound 3CLpro EC50 Z 16.77 �9.45 4/42 41

Teriflunomide DHODH IC50 Z 0.31 �9.26 2/42 42
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4. Conclusions

SARS-CoV-2 has caused more than 2,800 deaths as of 29 February
2020 worldwide. Although there is no effective drug approved, many
clinical trials are incoming or ongoing in China. Moreover, many
groups are working on the cytopathic effect assay for discovering
active compound. In many cases, the target protein of the discovered
active compoundsmight be unknown. Therefore, identifying potential
drug targets will be of great importance. Here, we developed a web-
server for predicting potential target protein for active compounds and
for virtual screening against multi-target and multi-pockets. The
webserver database currently has 42 proteins (20 viral proteins and 22
human proteins related to virus infection, replication and release) with
69 conformations collected by means of downloading directly from
PDB, homology and de novomodeling, and theMD simulation. With
the program D3Pockets, 557 potential ligand binding pockets were
successfully predicted and used for molecular docking by the server.
Each submitted compound will be docked to all the binding pockets
by smina, and the docking results will be presented in ascending order
of docking score. Tests with 6 active compounds/drugs with experi-
mental reported target proteins and bioactivity data demonstrated the
potential usefulness of the D3Targets-2019-nCoV server. The webser
is accessible via internet free of charge at https://www.d3pharma.com/
D3Targets-2019-nCoV/index.php.
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