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The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in
recent years. Primary blast is one of the mechanisms in which the blast wave can cause
injury to the brain. The aim of this study was to investigate the effects of a single sub-
lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to
rodents in an open-field setting. Brain tissue from these rats was harvested for microarray
and histopathological analyses. Gross histopathology of the brains showed that cortical
neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cor-
tex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive
cells were predominant in the white matter of the brain at day 1 after blast and double-
labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes
and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity.
There was also an increase in amyloid precursor protein immunoreactive cells in the white
matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages
or microglia was not different from control post-blast. Blast exposure altered the expres-
sion of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast.
These genes were narrowed down to 10 overlapping genes after time-course evaluation
and functional analyses. These genes pointed toward signs of repair at day 4 and day 7
post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellu-
lar injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter
perturbations that showed signs of resolution. It is unclear whether these perturbations
exist at a milder level or normalize completely and will need more investigation. Specific
changes in gene expression may be further evaluated to understand the mechanism of
blast-induced neurotrauma.
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INTRODUCTION
Blast attacks involving weapons such as roadside bombs, grenades,
and improvised explosive devices (IEDs) are an increasingly com-
mon feature of terrorist attacks, with as many as 1513 such attacks
recorded in the period of January to November 2007, affect-
ing both civilian and military populations and resulting in over
16,000 casualties (Lawson Terrorism Information Centre, 2009).
In particular, blast-induced neurotrauma (BINT) is an increasing
problem for which mild traumatic brain injury (MTBI) forms the
majority of these injuries (Ling et al., 2009; Cernak and Noble-
Haeusslein, 2010). Despite the pressing urgency for accurate and
effective diagnostic, prognostic, and therapeutic approaches to
blast injuries, there remain significant gaps in our knowledge of
this condition (Kochanek et al., 2009).

Primary neurotrauma occurs when the insult delivers a direct
blow to the head which may be penetrating or non-penetrating
(closed head). In a blast injury, primary injury is a result of the
directs effects of the blast wave to the head compared to other
forms of blast injuries such as secondary (e.g., victim is hit on head
by an object propelled by the blast wave) and tertiary (e.g., victim

is flung by the blast wave against an object and injures his head)
injuries. The most commonly assessed blast wave parameter for
primary blast injury is usually the peak blast over pressure (BOP),
duration of the positive phase and impulse. The effects of pri-
mary blast injury on air-containing organs such as the lungs have
been widely investigated and characterized (Kirkman and Watts,
2011). Blast-induced pulmonary injury thresholds have also been
elucidated and refined (Bowen et al., 1968; Rafaels et al., 2010).
Advancement in body armor material and protection has been able
to mitigate in part, the vulnerability of pulmonary injuries to blast
(Phillips et al., 1988) though not totally. Together with improved
efficiencies in medical evacuations and advances in medical care
which contribute to increased survival rate, incidences of BINT
are on the rise in modern warfare.

Given the prevalence of BINT, the mechanism of primary
blast injury to the central nervous system (CNS) is less well
characterized and especially so for blast-induced MTBI. To date,
most primary blast injury rodent CNS research has focused
on peak BOPs > 110 kPa. However, it has been reported that
BOPs > 110 kPa can also cause concomitant pulmonary injury
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in animals with high incidence of mortality (Bauman et al.,
1997; Gorbunov et al., 2004; Chavko et al., 2006; Long et al.,
2009). Hence, we were particularly interested in the effects of
low-intensity blast on the brain at peak BOPS < 110 kPa without
causing overt pulmonary damage and mortality.

Previous studies investigating BINT in rodents have reported a
wide spectrum of perturbations post-blast that encompass cere-
brovascular changes, white matter damage, neuronal changes in
the hippocampus, oxidative stress, and increased blood–brain bar-
rier permeability (Bauman et al., 1997; Cernak et al., 2001a,b; Long
et al., 2009; Cernak, 2010; Readnower et al., 2010; Risling et al.,
2011). Recent literature has also pointed toward the presence of
cerebral inflammation that could be mediated by systemic inflam-
mation due to the CNS effects of the primary blast wave through
the unprotected torso (Cernak, 2010). Hence, in this low level
blast study, we aimed to profile the acute changes post-blast espe-
cially with regards to regions vulnerable to apoptotic cell death
and inflammation through the activation of microglial cells which
are the major inflammatory cells in the CNS.

Furthermore, we also sought to profile changes in gene expres-
sion post-blast for the identification of broad functional changes
through clustering and to provide a platform for biomarker dis-
covery. Biomarkers should be definitive indicators of pathogenic
processes (Biomarkers Definitions Working Group, 2001) which
are sorely lacking for MTBI for which better experimental designs
into underlying molecular mechanisms are required (Svetlov et al.,
2009). A proteomics approach to identifying relevant molecules
has previously been suggested (Agoston et al., 2009). We present
here, a microarray technique that can be applied to low level

primary blast research and also venture to provide a concep-
tual model of an alternative and complementary genomics-based
approach.

MATERIALS AND METHODS
ANIMALS AND BLAST EXPOSURE
Animal experiments were approved by the DSO Institutional
Animal Care and Use Committee (DSO IACUC). Male Sprague-
Dawley rats (250–350 g) were used for this study. Rats were anes-
thetized prior to blast exposure with an intraperitoneal injection
of 75 mg/kg ketamine and 10 mg/kg xylazine. The animals were
then secured with Velcro straps in metal cages that were anchored
to the ground at the blast site. The source of BOP was 120 kg of
2,4,6-trinitrotoluene (TNT). Blast sensors (seven side-on pressure
gages and three stagnation pressure gages) were used to monitor
intensity and duration of BOP exposure during test and actual
blast trials. Animals were placed at either 24 or 30 m away from
the TNT source and were exposed to different sub-lethal BOP
intensities (i.e., low, high). Six to eight animals were strapped
loosely using Velcro to a metal mesh cage at the specified distances
and doused with water to minimize dehydration and singeing of
fur. A 0.4 m × 0.4 m concrete block was placed between the ani-
mals and the explosive source at a distance of 1.5 m from the
animals. This block served as a shield against debris from the
explosion, thus protecting animals against secondary blast injuries
due to the projectiles. A schematic of the blast set-up is given in
Figure 1A. Preliminary trials and simulations revealed no influ-
ence of the block on the blast wave at the position of the animals
(data not shown). Control animals were transported to the blast

FIGURE 1 | (A) Schematic of blast set-up for six to eight rodents placed
in a mesh metal cage at 24 m (high intensity) and 30 m (low intensity) from
blast source (120 kg TNT) shielded from debris with a concrete block

(0.4 m × 0.4 m) at 1.5 m from the animals. (B) Actual blast parameters:
pressure (kPa) and duration (milliseconds) and mortality (%) at low and high
blast exposure.
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site then anesthetized as with the blast-exposed animals, but were
not exposed to the actual blast. After blast exposure, the animals
were returned to the animal holding facility and allowed to recover
from the effects of anesthesia. Access to food and drinks was ad
libitum. The animals were sacrificed at day 1, day 4, and day 7 after
the blast.

HISTOPATHOLOGY AND IMMUNOHISTOCHEMISTRY
By method of transcardial perfusion, the animals were perfused
with Ringer’s solution until the liver and lungs were cleared of
blood followed by 10% buffered paraformaldehyde. The brains
were harvested and post-fixed in 10% buffered formalin. The
brains were then dehydrated in an ascending series of alcohol,
cleared with xylene, and then embedded in paraffin wax. Paraf-
fin sections of 4 μm thickness were then cut and microwaved
in citrate buffer for antigen retrieval and blocked with peroxi-
dase blocking reagent (S2023, DAKO UK Ltd, UK). Brain and
lung sections were stained for routine histology using hematoxylin
and eosin (H&E) for general morphology analysis. For apoptosis
staining, brain sections were stained according to the protocol pro-
vided in the ApopTag® Peroxidase In Situ Apoptosis Detection Kit
(S7100, Chemicon International, Inc., MA, USA). For the prepara-
tion of double-labeled brain sections, a second antibody of rabbit
anti-glial fibrillary acidic protein (GFAP) (AB5804, Chemicon
International, Inc., MA, USA) diluted 1:1500 in PBS, biotiny-
lated Ricinus communis Agglutinin I (RCA120) anti-lectin (B-1085,
Vector Laboratories, Inc., CA, USA) diluted 1:1000 in PBS or rab-
bit polyclonal anti-myelin basic protein (MBP; AB980, Chemicon
International, Inc., MA, USA) diluted 1:200 in PBS was used to
detect GFAP, lectin,and MBP respectively. For immunohistochem-
istry, brain sections were also incubated with rabbit polyclonal
anti-caspase-3 (#RB-1197-P, Thermo Fisher Scientific Inc., USA)
diluted 1:100 in PBS; rabbit anti-ionized calcium binding adap-
tor molecule-1 (Iba-1; #019-19741, Wako Pure Chemical) diluted
1:500 in PBS; and rabbit polyclonal amyloid β precursor protein
(APP; AB17467, Abcam) diluted 1:100 in PBS; for detection of
caspase-3, Iba-1,and APP respectively. Subsequent antibody detec-
tion was carried out using either anti-mouse or anti-rabbit IgG
(Envision + system-HRP, DAKO UK Ltd, UK) except for lectin
which was carried out using horseradish peroxidase streptavidin
(SA-5004, Vector Laboratories). All samples were then visualized
using 3,3′-diaminobenzidine (DAB) and examined under a light
microscope (Olympus, Japan). A cell count of at least three sections
at 20× magnification of TUNEL, Iba-1, and APP positive cells
in the white matter was carried out and results are expressed as
mean ± standard error of the mean (SEM). Statistical comparison
between groups was performed by one-way ANOVA with post hoc
Tukey’s HSD test. Significance was accepted at p < 0.05.

MICROARRAY
Brain tissue from animals exposed to the lower BOP were har-
vested, quick frozen in lqN2 and stored at −80˚C for subsequent
microarray analyses. RNA was isolated using standard Trizol-based
RNA extraction methods. The RNA quality was then determined
based on RNA integrity number (RIN) and an electropherogram,
both of which were analyzed using the Agilent 2100 Bioanalyzer
platform (Agilent Technologies). Only samples with RIN greater

than 6 were used (Fleige and Pfaffl, 2006). RNA samples were
amplified and labeled with Cy3, hybridized to Agilent Whole Rat
Genome Oligo Microarrays 4x44k, and analyzed using a microar-
ray scanner system. All procedures were carried out in duplicates
using commercial kits (Agilent Technologies) by a microarray
service provider (Miltenyi Biotec GmbH, Germany). Microarray
results were analyzed using R/Bioconductor and Partek Genomic
Suite (Partek, MO, USA). Two independent analyses were con-
ducted. The first set of analysis compared the expression levels of
genes in blast-exposed animals vs. that in controls at each time-
point. The second set of analysis investigated the changes in log
ratio of blast-exposed vs. control animals [log (blast/control)] over
time [e.g., log (blast/control)day 4 vs. log (blast/control)day 1, log
(blast/control)day 7 vs. log (blast/control)day 1]. The overall type I
error was taken at 0.01, and p-values were corrected for multiple
testings using false discovery rates.

RESULTS
BLAST EXPOSURE AND SURVIVAL
A total of 58 animals were used in this study, of which 11 were con-
trols, 23 were exposed to BOP at 48.9 kPa (or 7.1 psi) and positive
over pressure duration of 14.5 ms at 30 m from TNT source, and
24 were exposed to BOP at 77.3 kPa (or 11.3 psi) and positive over
pressure duration of 18.2 ms at 24 m (Figure 1B). For the purposes
of the current work, we shall refer to the blast exposure conditions
employed in simplistic terms as either high (BOP = 77.3 kPa) or
low (BOP = 48.9 kPa) intensity. Corresponding mortality rates for
the groups (low, high) were 4.4 and 8.3% respectively (Figure 1B).
All of these animals died within 30 min of blast exposure. Deaths
in the blast groups revealed pulmonary hemorrhage post-mortem.
Surviving rats were used for subsequent investigation.

HISTOLOGY AND IMMUNOHISTOCHEMISTRY OF BLAST INJURIES
Lung gross histopathology
Rats were sacrificed at day 1, day 4, or day 7 after blast for
investigation. Two tissues were examined, namely the brain and
lungs. Other tissues were not examined as no external hemorrhage
was observed. There was no apparent lung injury in both blast-
exposed groups on day 1 post-blast. However, a few petechiae and
ecchymoses were observed in the periphery of lung tissue upon
harvesting at day 4 and day 7 after blast. H&E staining of the
lung sections revealed alveolar lesions with accumulation of red
blood corpuscles in lung alveolar space at day 4 and day 7 post
high-intensity blast (Figure 2).

Brain and lung gross histopathology
No obvious extra- and/or sub-dural hemorrhage was observed in
the brains of all blast-exposed animals relative to the untreated
controls H&E staining of brain sections from cerebral cortex
showed darkened neurons (identified from the presence of project-
ing dendrites and polygonal shape of cell body) after high-intensity
blast mostly at day 1 post-blast which appeared to abate at day 4
and day 7. These darkened neurons were also shrunken as evi-
denced by the presence of peri-somal spaces. Furthermore, the
vasculature appeared to be narrowed at day 1 and day 4 post-blast
compared to control (Figure 3).
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FIGURE 2 | Hematoxylin and eosin stained sections of lung tissues

from (A) control, and low-intensity blast-exposed animals at (B) day 1

(C) day 4, and (D) day 7, after blast signs of hemorrhage, macrophage

infiltration, and thickening of the alveolar septae, were observed at

day 4 and day 7 after blast injury.

FIGURE 3 | Hematoxylin and eosin stained sections of brain cerebral

cortex from (A) control, and low-intensity blast-exposed animals at (B)

day 1 (C) day 4, and (D) day 7 after blast. Darkened and shrunken
neurons evidenced by the presence of peri-somal spaces at day 1
post-blast compared to control and in lesser quantities at day 4 and day 7
post-blast. Vasculature appears to be narrowed in day 1 and day 4 post-blast
compared to control.

White matter damage
To confirm the presence of injury in the brains of rats exposed
to high- and low-intensity BOP, TUNEL and caspase-3 staining
was carried out to identify apoptotic cells in the brains. There
were only a few cells positive for caspase-3 (not shown) com-
pared to TUNEL-positive cells in the white matter. There was
significantly more TUNEL-positive cells in the white matter of
blast-exposed rats at high- and low-intensity relative to con-
trol on day 1 after blast (Figure 4). By day 7, however, there

appeared to be no major difference between controls and blast-
treated rats (data not shown). Double-staining for TUNEL and
non-neuronal cells (GFAP, lectin, or MBP) revealed that the cells
with DNA fragmentation were mainly oligodendrocytes and astro-
cytes, but not microglial cells (Figure 5). Iba-1 staining for CNS
macrophages/microglia also showed no changes in microglia den-
sity between control and both blast-groups at day 1 post-blast
(Figure 6). In addition to the presence of apoptotic astrocytes
and oligodendrocytes, APP immunostaining was also significantly
increased in both blast conditions compared to control on day 1
after blast (Figure 7).

GENE EXPRESSION CHANGES IN MILD TRAUMATIC BRAIN INJURY
Microarray analyses of brain RNA samples from both control
and rats exposed to low-intensity blast was carried out to deter-
mine gene expression changes. For the purpose of analysis, we
hypothesized that functionally relevant genes are likely to include
those whose expressions are significantly altered by blast exposure
and/or show a significant time evolution after blast.

In our first set of analyses, we found 5786 probe sets which
showed significant changes in the blast-exposed group relative
to the controls at least one time-point. Most of these probe sets
either had no confirmed identities or no known biological func-
tions. Only 676 were established genes with well-defined functions
(Table A1 in Appendix). We grouped these genes according to
their functions and the results are shown in Figure 8. It appears
that most changes took place at day 1 and day 4 after blast, with
far fewer alterations observed at day 7. Clustering of the genes
whose expressions varied most between arrays revealed high con-
cordance between two replicates under the same condition which
cluster together. In particular, day 1 and day 7 replicates clusters
seemed similar while day 4 is different (Figure 9).

Our second set of analyses revealed 203 probe sets
that showed significant time-course evolution, i.e., the log
(blast/control)day 4 or day 7 was different relative to that at day 1.
Based upon their time-evolution pattern, these 203 probe sets were
grouped into eight clusters based on similar evolution (Figure 10).
The biological functions of genes in each cluster, except clusters
5 and 8 which do not have genes with information, are given
in Table A2 of Appendix. Out of the 203, only 34 are known
genes with established functions (Table 1). Between our two sets
of microarray analyses, there was an overlap of 10 genes (Table 2).

DISCUSSION
Blast-induced neurotrauma is the signature of the modern war
(Elder et al., 2010). We were particularly interested in mild TBI
as it accounts for over 77.8% of all TBI injuries sustained dur-
ing combat (Defense and Veterans Brain Injury Center, 2010). In
our open field blast test, we set out to investigate the effects of
two relatively low BOP exposures of 77.3 and 48.9 kPa to cause
mild BINT and to determine its effects on pulmonary injury in
rodents with no body armor. The low BOP exposure was deter-
mined from the Bowen’s curve to determine if these BOP values
could cause mild BINT without any overt pulmonary damage and
also to minimize mortality in the animals. At the time of our
study, there was only one report investigating the effects of peak
BOP < 100 kPa on the effects in the rodent CNS (Saljo et al., 2009).
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FIGURE 4 | Iba-1 immunostaining (brown) of (A) control (B) low, and (C)

high, blast exposure 1 day after blast. Scale bar = 50 μm. (D) Mean number
of Iba-1 positive cells per field view in the corpus callosum of control, low

(p = 0.26 vs. control) and high (p = 0.019 vs. control) blast-exposed animals
1 day after blast at ×20 magnification. No difference in Iba-1 positive cells was
found between blast exposure groups (low and high) and control. *p < 0.05.

FIGURE 5 | Double-labeling of non-neuronal cells withTUNEL for

apoptotic cells (light brown staining, indicated by small arrows) and

glia markers (purple staining) for (A,B) apoptotic astrocytes, indicated

by thick arrows (TUNEL and GFAP double-labeling). (C,D) Apoptotic
oligodendrocytes, indicated by thick arrows (TUNEL and MBP
double-labeling). (E,F) Lectin-positive microglia and TUNEL-labeled cells
(TUNEL and lectin double-labeling). Control animals (A,C,E), low-intensity
blast-exposed animals (B,D,F). Note lack of overlapping of labeling in
apoptotic cells and microglia in low-intensity blast-exposed animals. Scale
bar = 50 μm.

Our findings showed the appearance of hemorrhagic lesions in the
lung which is a feature of pulmonary blast injury even at the test
levels of BOP of 77.3 and 48.9 kPa compared to previous stud-
ies in which lung injury was reported at higher BOP exposure
of 118 kPa (Chavko et al., 2006; Gorbunov et al., 2006). The late
appearance of lung petechiae and alveolar hemorrhage at day 4
and day 7 after blast suggests a delayed response as opposed to
immediate (as early as 2 h) pulmonary injury that could occur at
higher BOPs (Gorbunov et al., 2006). Recent evidence investigat-
ing a BOP model <110 kPa also demonstrated that a shockwave
of 11.5 kPa resulted in no evidence of lung injury but was evi-
dent at 66 kPa (Park et al., 2010). Hence, it may be suggested
that the BOP range of 48.9–77.3 kPa represents the threshold for
blast-induced lung injury in the unprotected rodent. The use of
improved protective body armor in combat situations has largely
mitigated against pulmonary injury and mortality (Phillips et al.,
1988). It is now generally accepted that the threshold for BINT
is higher than that of pulmonary injury. Pulmonary blast injury
has been reported to be due to the pressure changes at the tissue-
density interface (DePalma et al., 2005). The Bowen’s curve for
which the study’s sub-lethal BOP levels were chosen was based on
this theory. However, other factors such as the viscoelasticity of
the tissue (Stuhmiller, 1997) and internal spalling and implosion
(Treadwell, 1989) may also contribute to pulmonary blast injury.

The BOP exposure to animals in our study resulted in the“dark-
ening” or enhanced H&E staining of cortical neurons in the gray
matter which may be due to the condensation of the neuronal
cytoplasm which has also been previously reported to occur in
a global cerebral ischemic condition (Kawai et al., 1992). These
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FIGURE 6 | Iba-1 immunostaining (brown) of (A) control (B) low, and (C)

high, blast exposure 1 day after blast. Scale bar = 50 μm. (D) Mean number
of Iba-1 positive cells per field view in the corpus callosum of control, low

(p = 0.26 vs. control), and high (p = 0.019 vs. control) blast-exposed animals
1 day after blast at ×20 magnification. No difference in Iba-1 positive cells was
found between blast exposure groups (low and high) and control. *p < 0.05.

FIGURE 7 | Amyloid β precursor protein immunostaining

(brown) of (A) control (B) low, and (C) high, blast exposure

1 day after blast. Scale bar = 50 μm. (D) Mean number of APP positive
cells per field view in the white matter of control, low (p = 0.26 vs. control)

and high (p = 0.019 vs. control) blast-exposed animals 1 day after
blast at ×20 magnification. Both low and high blast exposure
animals had significantly higher APP+ cells than
control. *p < 0.05.
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FIGURE 8 | Functional categorization of genes whose expression levels

are altered by blast. Genes were categorized based on their biological
functions. Probe sets with unknown functions were ignored in this
analysis. A total of 1200 functionally characterized genes were

identified in our microarray experiments using brain tissue from rats
exposed to a BOP of 48.9 kPa. As each gene can have multiple functions,
every gene may contribute more than once to the gene count
shown here.

cortical changes is also consistent with our previous study inves-
tigating BOP of 20 kPa in rodents 1 day post-blast (Moochhala
et al., 2004). Furthermore, the changes in vascular profiles post-
blast suggest the occurrence of vasospasm which has also been
reported as a feature of blast injury (Armonda et al., 2006). The
alleviation in darkening at day 4 and day 7 post-blast and a res-
cue in vascular morphology at day 7 points to the existence of
an acute transient ischemic cerebral environment that can recover
with time after blast. Interestingly, cerebrovascular changes such as
microvascular density and vasospasm have also been reported in
studies in blast and impact TBI (Armonda et al., 2006; Park et al.,
2010; Svetlov et al., 2010). However, it is unclear whether there
is a complete recovery to the original state and whether the mild
changes persist. Despite these cortical histopathological changes,
TUNEL-staining was not observed in the white matter. This sug-
gests that cortical gray matter and vasculature is affected by the
blast wave in a differential manner from white matter.

Our study also showed that low BOP exposures at <110 kPa
predominantly caused DNA fragmentation in the glial cells of the
white matter with corresponding accumulation of APP proba-
bly due to axonal damage which is apparent at day 1 post-blast.
The presence of white matter damage post-blast is becoming

well-documented and the presence of this damage at low BOP
levels suggest that primary injury from the shockwave can act to
disrupt axonal transport and to cause cell death in oligodendro-
cytes and astrocytes which play important supportive functions
in the white matter. This axonal pathology is further corrobo-
rated by findings of early increases in α-II spectrin, an axonal
cytoskeletal protein, and sustained expression of NF200, an axonal
neurofilament, in a mild BINT rodent model (Park et al., 2010).

Our study was only focused on the head-on exposure of the
shockwave to the skull of the animal although it has been sug-
gested that different orientations of the animal can have different
pressure transmission, whether direct or reflected off the skull
(Chavko et al., 2011), and the effects of different wave propagation
on the CNS due to orientation remains to be investigated. Despite
reports of blood–brain barrier permeability changes and inflam-
mation post-blast (Bauman et al., 1997; Cernak et al., 2001a,b;
Long et al., 2009; Cernak, 2010; Readnower et al., 2010; Risling
et al., 2011), we did not find any changes in AQP-4 expression
on S100B+ astrocytes (results not shown) as well as changes in
Iba-1 immunoreactivity for microglia, the main inflammatory
macrophages in the CNS, as well as systemic cytokines (results not
shown). These negative findings may be explained by the lower
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FIGURE 9 | (A) Cluster dendrogram of genes whose expression varied
most from control between arrays for two replicates (r1, r2) of the same
condition at day 4, day 1, and day 7 after low-intensity blast. Replicates are
observed to cluster at the same level whilst clusters for day 4 appear
different from day 1 and day 7. (B) Clustering of 203 genes that show
similar behavior between replicates of day 4 (column 1), day 7 (column 2),
and day 1 (column 3) after light intensity blast. Green color represents
upregulation whilst red color represents downregulation from control. The
topmost cluster (checked box) shows genes that are up-regulated at day 4
but down-regulated at day 1 and day 7, whilst the middle and bottom
clusters (checked box) show the opposite trend.

BOPs used in our study or that the animals were not observed for
longer periods of time post-blast.

Given that the lethal threshold is lowest for blast lung injury
than other organ systems, no significant mortality was expected
in our blast model used here. This was confirmed by our findings
(4.4% low BOP, 8.3% high BOP). Although two different BOPs
were investigated in this study, both lie on the lower limit of the
BOP range tested across many experimental blast studies. This may
explain the non-significant differences in mortality,histopatholog-
ical, and immunohistochemical changes between the low and high
BOP. However, the blast set-up employed in this study can be used
to establish a blast pressure-dependent mortality or morbidity
response curve by placing animals at varying distances from the
TNT source and by varying the amount of TNT.

FIGURE 10 | Clustering of probe sets with significant time-course

evolution. A total of 203 probe sets showing such evolution were
identified, and grouped into eight clusters based on their time-evolution
profiles. Probe sets in cluster 1 showed no major variation over time. They
are consistently and weakly up-regulated or down-regulated across all
time-points. Those in clusters 2 and 6 were up-regulated while those in
clusters 3 and 7 were down-regulated at day 4. Probe sets in clusters 4, 5,
and 8 were respectively down-regulated at day 7, up-regulated at day 1 and
day 4, and up-regulated at day 1 only.

Besides the low BOP, the animals were also exposed to a long
positive duration of 14.5 and 18.2 ms in the low and high inten-
sity settings respectively due to the distance that the subjects were
placed away from the TNT explosive as opposed to other mod-
els of blast injury using compressed air, helium, oxyhydrogen or
cyclotrimethylenetrinitramine (Reneer et al., 2011). The duration
of the overpressure is thought to be of much significance in causing
damage (de Candole, 1967) as the length of this positive duration
would also affect the impulse at which the animals are subjected to.
This longer positive overpressure duration also reflects the increas-
ing use of thermobaric and other novel explosives in the modern
war (Rafaels et al., 2010) and could have different mechanisms
from other models investigating short positive overpressure dura-
tions (Cooper and Jonsson, 1997). However, it is unclear whether
the long positive duration in our study had any impact on CNS
injury and is a component of the blast wave that will require a
more thorough examination and comparison against other blast
models of the same BOP but of different duration.

Separately, the blast set-up and exposure in our study also pro-
vides a platform for scaling up to other animal species and to
allow comparison between species on BINT thresholds and injury
presentation. In a separate study investigating effects of sub-lethal
BOP on non-human primates (NHPs) in the same blast set-up,
increases in TUNEL-positive cells and APP immunoreactivity in
white matter, together with the darkening of neurons were also
observed in NHPs exposed to 80 kPa BOP as in our rodent study
(unpublished). Further investigations with different small and
large animal species using the same blast set-up but with additional
strain gages in the body and brains will provide useful informa-
tion in how blast waves of the same pressure transmit differently
through skull and brain tissue properties between species.

Our microarray studies focused on brain samples from ani-
mals exposed at the lower BOP of 48.9 kPa vs. the controls.
We found 676 genes whose expression profiles were significantly
altered by blast. A common feature of trauma to the CNS involves
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Table 1 | Genes whose expressions show significant time-course evolution after blast in the brains of rats exposed to a BOP of 48.9 kPa.

AR FCER1A ITGB5 PPIB SH3GLB1

ARHGAP4 FLT1 KIF11 PRKACB SLC40A1

CETN1 FOLR1 KLHL10 PRKCH TFG

COQ6 GADAY 1 MMP11 PTTG1 TPM1

CRYAB GHR NFKBIA PYY UCP1

DNAJB11 GTF2F2 PARP1 RALBP1 VEGFA

F2RL3 HMGA1 PLG RASA3

Table 2 | List of genes whose expression levels are significantly altered in blast-exposed animals and which also show a time-course evolution

pattern between day 1, day 4, and day 7 after blast.

FLT1 GADAY 1 KIF11 PARP1 PRKCH

FOLR1 HMGA1 NFKBIA PRKACB SLC40A1

Table 3 | Table of illustrative examples of how genes may be classified into non-target and target groups.

Type of gene Gene expression ratios

Day 1 Day 4 Day 7 Linear/

quadratic time

trend

Gene expression is not significantly altered at any time-point and shows no

time-course evolution

1.1 (p > 0.05) 1.1 (p > 0.05) 1.1 (p > 0.05) p > 0.05

Gene expression is significantly altered by blast in some or all time points, but no 1.1 (p < 0.05) 1.1 (p < 0.05) 1.1 (p < 0.05) p > 0.05

significant time-course evolution 1.1 (p < 0.05) 1.1 (p > 0.05) 1.1 (p > 0.05)

Gene expression is not significantly altered by blast but overall show significant

time-course evolution

1.1 (p > 0.05) 1.2 (p > 0.05) 2 (p > 0.05) p < 0.05

Gene expression is significantly altered at least one time-point, and shows 1.1 (p < 0.05) 5 (p < 0.05) 1.1 (p < 0.05) p < 0.05

time-course evolution (overlapping genes) 1.1 (p > 0.05) 5 (p < 0.05) 1.1 (p > 0.05)

p-values represent the statistical significance of comparisons between blast-exposed and control samples at each time-point.

pronounced changes in the expressions of cell proliferation and
apoptotic genes (Byrnes and Faden, 2007). Accordingly, we found
the highest number of blast-affected genes to belong to these func-
tional groups, suggesting that our model was fundamentally sound
in approach. We also observed that the number of genes affected
in all functional groups decreased from day 4 to day 7 post-blast.
Based on our H&E and TUNEL observations, this corresponds
to a period during which there was almost complete recovery of
the brain from blast injury, suggesting that recovery from blast
injury was associated with a return to baseline of the expression of
most genes. However, we did not observe a similar correspondence
from day 1 to day 4 post-blast, which suggests that the injury-gene
expression association may be time-dependent and differ between
the immediate (<day 4) and the short (day 4 to day 7) terms after
blast. The difference in the expression levels at day compared to
day 1 and day 7 points toward a quadratic expression profile post-
blast, i.e., cluster of genes up-regulated or down-regulated at day 4
as opposed to day 1 and day 7 expression. The lack of significance
may be due to the small sample size used and the result should be
followed up with more extensive sampling and further analysis.

In this study, we also took a multi-pronged approach using a
strategy based upon the hypothesis that any gene whose expression

is significantly altered by blast exposure is more likely than any
other random gene to be critically involved in blast. Likewise,
genes whose expression patterns show significant time evolu-
tion following blast have higher probability than others to be
functionally relevant. Note that genes in the two groups may
overlap or be distinct. Based upon our strategy, it follows then
that genes in the overlapping group are the more likely genes
to influence clinical outcome in blast injuries. The identities of
functionally relevant genes will be especially important in the
design of novel therapeutics or treatment approaches in blast
victims. In terms of diagnostics, however, there could be an addi-
tional level of approach besides identifying specific genes. This
would involve studying the overall pattern of functional changes
in gene expressions based upon the functional categorization of
genes whose expressions are modulated following blast expo-
sure. Thus, our model enables the identification of four potential
markers for diagnostics and/or treatment design as summarized
in Table 3.

We separately found 34 genes to show a time-course evolution
over time after blast exposure. Ten genes were common to both our
analyses (i.e., blast exposure significantly modulated their expres-
sion profiles which also changed over time). It is unclear whether
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these 10 identified genes and/or their protein products critically
affects injury outcome in blast victims and its reliability to form
a consistent “fingerprint” of blast-induced mild TBI. Considering
the 10 overlapping genes in which the involvement of some such as
FLT1 (involved in cell proliferation and angiogenesis) and PARP1
(participates in DNA repair) could be said to be instinctive, that of
others such as HMGA1 (commonly found in prostate tumors and
thought to be involved in transformation) may be less so. It is pos-
sible that genes such as HMGA1 are also involved in injury repair
which have yet to be defined. Further studies would be required to
determine if this is so. However, the potential for genes and “fin-
gerprints” identified here to be used as biomarkers and therapeutic
targets in blast research cannot be denied.

Overall, we have presented a primary blast injury rodent model
exposed to low BOP levels in an open-field setting. Pulmonary
injury was mild and delayed whilst neuronal and non-neuronal
changes were immediate at day 1 and was found to be alleviated
at day 4 and day 7 suggesting the ability of the brain to recover
from mild BINT on the histopathological level although it is not
clear whether there is complete recovery. Acute CNS changes after
low BOP exposure suggest that cortical cerebrovascular changes
and white matter changes are key features of acute low level BINT.
In the first, ischemia may be a resultant effect whilst predomi-
nant white matter damage suggests vulnerability to primary blast

injury. Furthermore, the concomitant increases in gene expression
at day 1 and day 4 suggests a time-dependent injury response and
recovery period. Of the 676 genes that were significantly altered,
a framework was derived to narrow these to 10 according to the
time-course evolution and functional relevance. Some of these
up-regulated functional genes such as FLT1 and PARP1 point
toward repair after injury and may contribute to the recovery in
the histopathological changes seen at day 4 and day 7. Future work
will center upon the validation of our model. This would involve
efforts to determine if the “fingerprints” identified here are con-
sistent and reproducible across different animal models of blast
injury and in different tissues from blast-exposed animals. Most
importantly, a time-course profile of the relationship between
changes in gene expression patterns, conditions of blast exposure
(e.g., BOP), histopathological changes, and blast injury sever-
ity should also be evaluated and for a longer time post-blast to
observe for sustained changes or the development of secondary
pathobiology.
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APPENDIX

Table A1 | Genes whose expressions are significantly altered by blast in the brains of rats exposed to a BOP of 48.9 kPa.

ABCA2 CAPZA3 DLK1 GPX3 KIF11 OMP RAMP2 ST3GAL5

ABCC3 CASR DNAJA3 GRIN1 KIF1C ONECUT1 RAP1B STAG3

ABCG2 CATSPER2 DNAJA4 GRINL1A KIF2C OPRL1 RAPGEF1 STC1

ABRA CBARA1 DNAJB4 GRK1 KIT OPRM1 RASDAY 1 STK38

ACCN2 CBR1 DNDAY 1 GRM5 KLF15 ORC2L RASSF2 STX1A

ACHE CCL2 DNM1L GRPR KLF5 OXT RASSF5 SUFU

ACSL1 CCL3 DNMT3B GSPT1 KLF6 P2RX2 RB1 SULT1B1

ACTB CCL4 DPP4 GUCY1A3 KNG1 P2RY2 RBM17 SYNJ1

ADAM10 CCNB2 DPYSL5 GUSB KRT20 PA2G4 RBP3 SYT1

ADAM9 CCNDAY 1 DR1 GZMA LHB PAH RCOR2 TAAR1

ADCY6 CCNG1 DRD2 GZMB LITAF PAQR3 REG3G TAC1

ADIPOR1 CCR4 DRDAY 4 H1F0 LPIN1 PARG REST TACC2

ADM CCR5 DSP HAVCR2 LPL PARP1 RFX3 TAF5L

ADORA2A CCT6A DUSP5 HCLS1 LRPAP1 PARVA RGS10 TAPBP

ADRA2B CDAY 14 DUSP9 HCRT LRRK2 PAX4 RGS19 TAX1BP1

AES CD2 EBF1 HERPUDAY 1 LTB4R PCDHAC2 RHOA TBCE

AGRP CD2AP ECEL1 HES3 LTBP1 PCNA RHOH TBX3

AGT CD320 ECM1 HINT1 LYPD3 PDCDAY 4 RIPK2 TCEA1

AK2 CD36 EDNRA HIST1H1T LZTS1 PDCD6IP RLN1 TCIRG1

AK3L1 CD38 EGF HIVEP1 MAEA PDCL RNF10 TDG

AKAP13 CD3G EGFR HMGA1 MAL PDE4B RNF14 TEAD2

AKAP4 CDAY 44 EGR1 HMMR MAP1B PDHA2 ROBO4 TERF1

ALB CDC25A EGR2 HNF4A MAP3K10 PDLIM2 RPN2 TGFB1

ALDH2 CDC25B EHDAY 1 HOMER1 MAPK1 PDYN RPS15A TGFB1I1

ALDOA CDC2L5 EIF4B HOMER2 MAPK14 PDZK1IP1 RRM1 TGM1

ALG5 CDC42BPB ELA2 HOXA5 MAPK8 PELO RTKN TH

AMDAY 1 CDCA2 ENAH HOXC6 MAPK9 PELP1 S100A8 THAP1

AMHR2 CDH16 ENTPDAY 1 HP MAPRE1 PEMT SAA4 THBD

ANTXR1 CDH22 EP400 HPS1 MAT1A PHGDH SATB1 THEM4

ANXA2 CDK10 ERBB2 HPSE MATK PIK3C3 SBDS THPO

AOC3 CDKN1A ESM1 HSDAY 11B2 MATR3 PIR SCAMP2 TIAM1

APBA1 CDKN1B ETS2 HSPA1A MBL2 PKDAY 1 SCARB1 TK1

APCS CDKN1C ETV6 HSPA8 MCF2L PKNOX1 SCN10A TLE4

APH1A CDX2 F12 HSPBP1 MFN2 PLA2G4A SCN4B TMOD2

APH1B CEBPE F2R HSPDAY 1 MGAT2 PLAT SCN9A TMOD3

APLN CES1 F2RL2 HTR1B MINA PLCG1 SCNN1B TNF

APOC2 CFH F5 HTR1D MLH1 PLD2 SEMA3D TNFRSF1A

AQP4 CFTR FABP7 HTR2A MLL PLEKHF1 SENP2 TNNI2

AREG CGA FADS1 HTR2B MST1 PLXNA3 SERINC3 TNNT1

ARF6 CHI3L1 FAIM IBSP MSX2 PMCH SERPINB2 TNP2

ARHGEF7 CHMP5 FAU ICAM1 MTA1 PNLIP SERPINI1 TNR

ARL11 CHRM4 FCGR3A ID2 MTPN POLA1 SFRP2 TOB2

ARL2BP CHRNA10 FGF13 ID3 MXD3 PON2 SFRS2 TOP2A

ASAH2 CIT FGF4 IFNG MXI1 POU2F1 SFTPC TPH1

ATF3 CITED2 FGFR1 IGF1R MYCL1 POU2F2 SGTB TPM3

ATG7 CKAP5 FGG IGFBP1 MYO5A POU3F1 SH3BP5 TPST1

ATP1A1 CLDN11 FGL2 IGFBP4 NAP1L1 PPAP2C SHC1 TPT1

ATP2A3 CLU FGR IGHMBP2 NCR3 PPEF1 SHH TRADD

ATP2C2 CNR1 FHIT IKBKG NDFIP1 PPIL2 SHMT1 TRIB3

(Continued)
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Table A1 | Continued

ABCA2 CAPZA3 DLK1 GPX3 KIF11 OMP RAMP2 ST3GAL5

ATP6V1C1 CNTF FKRP IL12RB2 NDN PPM1J SIP1 TRIM32

ATP6V1F CNTN3 FLT1 IL13 NDRG1 PPP1R1B SIX3 TRIM63

ATP7B CNTN4 FN1 IL13RA1 NEFL PPP2R2B SLC16A2 TRPC3

AVP COL16A1 FOLR1 IL13RA2 NEO1 PPP2R3A SLC16A4 TRPM6

AZGP1 COL2A1 FOXM1 IL18RAP NEU1 PPP2R5B SLC17A3 TRPM7

AZI2 COMT FSHR IL1A NEU3 PPYR1 SLC18A2 TRPV1

B4GALNT1 CORO1B FTH1 IL1B NEUROG3 PRDX5 SLC1A3 TTN

BACE1 CREB1 FUBP1 IL22RA2 NFIA PRIM1 SLC22A2 TTR

BAD CRKRS FUT4 IL4 NFKBIA PRKAB1 SLC24A3 TUBB2C

BAK1 CRTC2 FXYD5 IL8RB NFKBIB PRKACB SLC25A10 TWIST1

BCAN CRY1 GABBR1 IMPACT NGFR PRKCD SLC25A14 UBC

BCAP31 CSDA GADAY 1 IMPDH2 NIDAY 1 PRKCH SLC25A27 UBE2D2

BCL2 CSF3 GADDAY 45GIP1 INHBB NINJ2 PRKCZ SLC2A4 UBE2D3

BCL2L10 CSNK1A1 GALNS INSIG2 NKX3-1 PRLR SLC34A1 UBTF

BDKRB2 CSNK1G1 GAP43 INSRR NLGN3 PRM1 SLC36A2 UCHL1

BID CSPG4 GATA1 IPPK NMT1 PRPF19 SLC37A4 UCP2

BMP4 CSPG5 GATA6 IRS1 NNT PRPF8 SLC40A1 UGCG

BNIP3 CTH GATAD2A ITGA1 NOS3 PSMB2 SLC6A3 USH2A

BTRC CTNNB1 GFAP ITGA2 NOVA1 PSMD2 SLC6A4 USP14

BYSL CTSB GGCX ITGA4 NPDC1 PSMDAY 4 SLC6A5 VNN1

C3AR1 CUGBP1 GHRL ITGA5 NPEPPS PSMD9 SLC7A2 VPS4B

C9 CXCL11 GLI1 ITGAL NPFF PTGDS SLC7A5 VTCN1

CA3 CYB5R4 GLIPR1 ITGB2 NPR1 PTGER4 SLC8A1 WEE1

CABP1 CYP1A1 GLP2R ITPKB NPY PTGES SLC9A1 WNT2

CACNA1B CYP2E1 GLTSCR2 JAG1 NR1D2 PTGS2 SMAD3 XRCC1

CACNB2 CYR61 GNA14 JAM2 NR1I2 PTHLH SMO YBX1

CALCA DAB2 GNAL KCNA1 NR2C2 PTK2 SNAPC2 ZBTB10

CALCRL DBH GNB2 KCNA6 NR2F2 PTMS SNCA ZDHHC2

CALDAY 1 DCC GNB5 KCNC1 NR4A3 PTPN2 SOD3 ZHX2

CAMK2A DCLK1 GNG2 KCNC3 NR5A2 PTPN3 SP2 ZIC1

CAMK4 DDR1 GNG4 KCNH1 NRTN PTPRV SPG7 ZMYNDAY 11

CAMKK1 DEAF1 GNG5 KCNJ11 NRXN2 PTS SPP1 ZP2

CAMKK2 DGAT1 GNRH1 KCNMA1 NTRK1 QPRT SQSTM1

CAMP DGAT2 GPC1 KCNMB1 NTRK2 RABGGTA SREBF2

CANT1 DKC1 GPR44 KCNN3 NUP98 RAG1 SST

CAPN2 DLC1 GPS1 KIDINS220 OMG RALGDS ST18
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Table A2 | Biological functions of genes in each cluster (clusters 1–4, 6,

and 7; except clusters 5 and 8 which do not have genes with

information).

Category Molecules

CLUSTER 1 FUNCTIONS

Amino acid

metabolism

GADAY 1

Antigen presentation PLG, NFKBIA, VEGFA, ITGB5

Carbohydrate

metabolism

GPI, F2RL3

Cell cycle PLG, CETN1, NFKBIA, VEGFA, KIF11, CLIP1, GPI,

CRYAB, GHR

Apoptosis LPAR1, NFKBIA, VEGFA

Cell morphology PLG, LPAR1, NFKBIA, VEGFA, CLIP1, ITGB5, GPI,

GHR

Cell signaling PLG, LPAR1, VEGFA, FCER1A, PYY, ARHGAP4,

PPIB, F2RL3

Cell-to-cell signaling

and interaction

PLG, VEGFA, PRKACB, PYY, ITGB5, GPI, GHR

Cellular assembly

and organization

CETN1, LPAR1, SH3GLB1, VEGFA, FCER1A,

ITGB5, F2RL3, CRYAB, PLG, KIF11, CLIP1,

ARHGAP4, GPI, GHR

Cellular compromise PLG, VEGFA, KIF11, GPI, GHR

Cellular development PLG, NFKBIA, VEGFA, FCER1A, GHR

Cellular function and

maintenance

PLG, NFKBIA, KIF11, PYY, ITGB5, ARHGAP4, GPI,

F2RL3, GHR

Cellular growth and

proliferation

LPAR1, VEGFA, C19ORF10, ITGB5, PYY,CRYAB,

PLG, TFG, NFKBIA, KIF11, GADAY 1, GPI, WNK1,

GHR, SKAP2

Cellular movement PLG, LPAR1, NFKBIA, VEGFA, PYY, ITGB5, GADAY

1, GPI, PPIB

DNA replication,

recombination, and

repair

VEGFA, PPIB, WNK1, GHR

Drug metabolism VEGFA, PPIB, GHR

Energy production PLG

Gene expression NFKBIA, VEGFA, GHR

Lipid metabolism NFKBIA, VEGFA, PYY, GHR

Molecular transport PLG, LPAR1, NFKBIA, VEGFA, FCER1A, PYY, GPI,

PPIB, F2RL3, GHR

Nucleic acid

metabolism

PLG, VEGFA, PPIB, WNK1, GHR

Post-translational

modification

VEGFA, GADAY 1

Protein folding VEGFA

Protein synthesis PLG, VEGFA, PYY

Protein trafficking NFKBIA

Small molecule

biochemistry

PLG, NFKBIA, VEGFA, PYY, GADAY 1, GPI, PPIB,

F2RL3, WNK1, GHR

Vitamin and mineral

metabolism

PLG, LPAR1, VEGFA, FCER1A, PYY, PPIB, F2RL3

Immune response PLG, VEGFA, FCER1A, ITGB5

CLUSTER 2 FUNCTIONS

Amino acid

metabolism

HIPK2, PRKCH, PPM1D

Antigen presentation PPM1D

Category Molecules

Carbohydrate

metabolism

UCP1

Cell cycle HIPK2, PRKCH, PPM1D

Apoptosis HIPK2

Cell morphology PRKCH, UCP1

Cell signaling HIPK2

Cellular assembly

and organization

HIPK2

Cellular compromise HIPK2, UCP1

Cellular development HIPK2, PRKCH

Cellular function and

maintenance

UCP1, PPM1D

Cellular growth and

proliferation

HIPK2, PRKCH, UCP1

DNA replication,

recombination, and

repair

PRKCH, UCP1

Drug metabolism UCP1

Energy production UCP1

Free radical

scavenging

UCP1

Gene expression PRKCH, UCP1

Lipid metabolism UCP1

Molecular transport PRKCH, UCP1

Nucleic acid

metabolism

UCP1

Post-translational

modification

HIPK2, PRKCH, PPM1D

Small molecule

biochemistry

HIPK2, PRKCH, UCP1, PPM1D

Immnue response PPM1D

CLUSTER 3 FUNCTIONS

Amino acid

metabolism

PARP1

Antigen presentation FLT1, IRF8

Carbohydrate

metabolism

PARP1, FLT1, RALBP1

Cell cycle DDB1, PARP1, FLT1, TPM1, HMGA1

Apoptosis PARP1, NDRG1, FLT1, RALBP1, TPM1, COQ6,

HMGA1, IRF8

Cell morphology FLT1, CDAY 151, RALBP1, TPM1, HMGA1

Cell signaling FLT1

Cell-to-cell signaling

and interaction

FLT1, CDAY 151, IRF8

Cellular assembly

and organization

PARP1, FLT1, TPM1

Cellular compromise KLHL10, PARP1, NDRG1, FLT1, TPM1, HMGA1

Cellular development KLHL10, PARP1, NDRG1, FLT1, VSX2, CDAY 151,

RALBP1, TPM1, HMGA1, RASA3, IRF8

Cellular function and

maintenance

PARP1, FLT1, TPM1, IRF8

Cellular growth and

proliferation

NDRG1, FLT1, VSX2, RALBP1, TPM1, HMGA1,

IRF8

Cellular movement PARP1, FLT1, CDAY 151, RALBP1, TPM1

(Continued)
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Table A2 | Continued

Category Molecules

Cellular response to therapeutics PARP1

DNA replication, recombination, and

repair

DDB1, PARP1, HMGA1

Drug metabolism PARP1, RALBP1

Energy production PARP1

Gene expression DDB1, PARP1, GTF2F2, VSX2,

RALBP1, HMGA1, IRF8

Lipid metabolism FDPS, FLT1

Molecular transport PARP1, RALBP1

Nucleic acid metabolism DDB1, PARP1, RALBP1

Post-translational modification PARP1

RNA post-transcriptional

modification

PARP1

Small molecule biochemistry DDB1, FDPS, PARP1, FLT1,

RALBP1

Immune response FLT1, IRF8

CLUSTER 4 FUNCTIONS

Amino acid metabolism FOLR1

Antigen presentation MMP11

Carbohydrate metabolism INPP5K

Apoptosis MMP11

Cellular assembly and organization INPP5K

Cellular function and maintenance FOLR1, SLC40A1

Cellular growth and proliferation MMP11, FOLR1

DNA replication, recombination, and

repair

FOLR1

Drug metabolism FOLR1

Lipid metabolism INPP5K

Molecular transport INPP5K, FOLR1, SLC40A1

Nucleic acid metabolism FOLR1

Post-translational modification MMP11

Protein synthesis FOLR1

Protein trafficking FOLR1

Small molecule biochemistry INPP5K, FOLR1, SLC40A1

Category Molecules

Vitamin and mineral metabolism FOLR1

Immune response MMP11

CLUSTER 6 FUNCTIONS

Cellular assembly and organization EIF4A1

Gene expression EIF4A1

Protein synthesis EIF4A1

RNA post-transcriptional

modification

EIF4A1

RNA trafficking EIF4A1

CLUSTER 7 FUNCTIONS

Carbohydrate metabolism PTTG1

Cell cycle AR, PTTG1

Apoptosis AR, PTTG1

Cell morphology AR, PTTG1

Cell signaling AR

Cell-to-cell signaling and interaction AR

Cellular assembly and organization AR, PTTG1

Cellular compromise AR, PTTG1

Cellular development AR, PTTG1

Cellular function and maintenance AR

Cellular growth and proliferation AR, PTTG1

Cellular movement AR

DNA replication, recombination, and

repair

AR, PTTG1

Drug metabolism AR, PTTG1

Gene expression AR, PTTG1

Lipid metabolism AR, PTTG1

Molecular transport AR, PTTG1

Nucleic acid metabolism AR

RNA damage and repair DNAJB11

RNA post-transcriptional

modification

DNAJB11

Small molecule biochemistry AR, PTTG1

Immune response AR, PTTG1
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