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OBJECTIVE—Maternal adiponectin levels are reduced and
placental nutrient transporters are upregulated in obesity and
gestational diabetes mellitus; however, the effects of adiponectin
on placental function are unknown. We hypothesized that adi-
ponectin regulates placental amino acid transport.

RESEARCH DESIGN AND METHODS—Human primary tro-
phoblast cells were cultured and incubated with globular adi-
ponectin (gAd) or full-length adiponectin (fAd) alone or in
combination with insulin. System A and L amino acid transport
and SNAT1, SNAT2, and SNAT4 isoform expression was mea-
sured. The activity of the AMP-activated protein kinase (AMPK),
phosphatidylinositol 3 kinase–AKT, and peroxisome prolifera-
tor–activated receptor-� (PPAR�) signaling pathways was
determined.

RESULTS—In the absence of insulin, gAd stimulated AMPK
Thr172 phosphorylation, SNAT2 protein expression, and system
A activity. This effect appeared to be mediated by interleukin-6
release and signal transducer and activator of transcription 3
(STAT3) signaling because gAd failed to stimulate system A in
cells in which STAT3 had been silenced using small interfering
RNA. fAd alone had no effect on system A activity or SNAT
expression. Insulin increased AKT and insulin receptor sub-
strate 1 (IRS-1) phosphorylation, system A activity, and SNAT2
expression. When combined with insulin, gAd did not affect
system A activity or SNAT expression. In contrast, fAd abol-
ished insulin-stimulated AKT Thr308 and IRS-1 Tyr612 phos-
phorylation, system A activity, and SNAT2 expression.
Furthermore, fAd increased PPAR� expression and PPAR�
(Ser21) phosphorylation.

CONCLUSIONS—In contrast to the insulin-sensitizing actions
of adiponectin in liver and muscle reported in the literature, fAd
attenuates insulin signaling in primary human trophoblast cells.
As a result, fAd inhibits insulin-stimulated amino acid transport,
which may have important implications for placental nutrient
transport and fetal growth in pregnancy complications associ-
ated with altered maternal adiponectin levels. Diabetes 59:

1161–1170, 2010

M
ore than half of American women enter preg-
nancy overweight or obese and 5–10% of all
pregnant women develop gestational diabe-
tes mellitus (1). These women are more likely

give birth to babies with increased birth weight (1),
traumatic birth injuries (2), and increased risk of develop-
ing metabolic syndrome (3). The cause of fetal overgrowth
remains to be established; however, the primary determi-
nant of fetal growth is nutrient supply, which is dependent
on placental nutrient transport. Placental amino acid (4)
and GLUT activity (5,6) as well as the expression of fatty
acid–binding proteins in the placenta (7) are increased in
diabetes, suggesting that an upregulation of placental
nutrient transport capacity may contribute to fetal over-
growth (8). However, the underlying mechanisms in these
pregnancy complications are poorly understood. Obesity
in pregnancy (9,10) and gestational diabetes mellitus (11)
are associated with low maternal circulating levels of
adiponectin, but the impact of adiponectin on placental
nutrient transport functions is unknown.

Adiponectin is a protein hormone produced in adipose
tissue. The full-length form (fAd), which consists of an
NH2-terminal sequence, a complement C1q-like domain,
and a COOH-terminal globular domain (12), can multim-
erize to form multimeric structures. A truncated form
containing only the COOH-terminal portion (globular adi-
ponectin [gAd]) is produced by proteolytic cleavage and is
biologically active, although the relative serum levels of
the two forms in normal physiology and pathology are
unknown (13). The two receptors, AdipoR1 and AdipoR2,
have distinct expression patterns and bind the two forms
of adiponectin with different affinity (14). AdipoR1 is
ubiquitously expressed, with the highest levels in skeletal
muscle, and binds primarily gAd (14). AdipoR2 is abun-
dantly expressed in the liver and binds fAd with higher
affinity than gAd (15). Adiponectin exerts its cellular
effects by activating AMP-activated protein kinase
(AMPK), p38 mitogen-activated protein kinase, and perox-
isome proliferator–activated receptor-� (PPAR�); how-
ever, details of the signaling transduction pathway remain
to be determined (15). In skeletal muscle, there is signifi-
cant cross-talk between AdipoR1 and AdiopoR2 signaling
because both receptors activate PPAR� and AMPK to
increase glucose uptake and fatty acid oxidation (15,16).
In the liver, however, AdipoR1 and AdipoR2 have distinct
signaling pathways: AdipoR1 signaling is believed to be
mediated via AMPK-reducing gluconeogenesis, whereas
AdipoR2 activates PPAR� to increase fatty acid oxidation
(16).

Adiponectin has an insulin-sensitizing action and circu-
lating adiponectin levels are reduced in insulin-resistant
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states such as obesity and type 2 diabetes (17,18). The
mechanisms underlying the increase in insulin sensitivity
in response to adiponectin remains to be fully established
and may include a multitude of pathways (19–21). For
example, in skeletal muscle, adiponectin stimulates glu-
cose transport by increased GLUT4 translocation (22),
activates insulin signaling, and upregulates molecules in-
volved in fatty acid transport, fatty acid oxidation, and
energy dissipation, resulting in decreased triglyceride con-
tent (20). In the liver, adiponectin increases �-oxidation
and decreases gluconeogenesis (12).

Although earlier reports suggested that adiponectin is
produced and secreted by the human placenta (23,24),
more recent studies show that adiponectin mRNA is not
expressed in the placenta (25,26). However, the placenta is
a likely target for circulating adiponectin because AdipoR2
mRNA is expressed in the human placenta (23,27), and
AdipoR2 protein has been localized to the syncytiotropho-
blast (23). Both AdipoR1 and AdipoR2 proteins were
expressed in cytotrophoblast cells freshly isolated from
human placenta as well as in human primary trophoblast
cells in culture (28). Apart from reports that adiponectin
stimulates placental cytokine production (29), reduces the
gene expression of GLUT isoform 3 and lipoprotein lipase
in rat placenta (23), and inhibits endocrine function (28),
effects of adiponectin on placental function remain
unknown.

There are many observations in the literature implicat-
ing changes in placental amino acid transport in the
regulation of fetal growth (30). For example, placental
system A amino acid transport is downregulated prior to
the onset of impaired fetal growth in a rat model of
intrauterine growth restriction (31). We recently reported
markedly increased placental system A amino acid trans-
port capacity associated with fetal overgrowth in mice fed
a high-fat diet (32). Amino acid transport system A is
ubiquitously expressed and mediates the cellular uptake of
small, neutral amino acids by cotransporting sodium.
There are three isoforms of system A: SNAT1, SNAT2, and
SNAT4 (30). In placental cells, the system A amino acid
transporter is regulated by several hormones including
insulin, cortisol, and leptin (30). Another key amino acid
transporter is system L, which transports large neutral
amino acids in a sodium-independent manner (33,34).
Regulation of system L is dependent on which light chain
is present, and studies show that regulation of large
neutral amino acid transporter 1 involves protein kinase C
or intracellular calcium concentrations (34). To the best of
our knowledge, the regulation of amino acid transporter
function by adiponectin has not been studied in any tissue.
Interestingly, administration of gAd in pregnant rats was
recently reported to decrease placental gene expression of
GLUT isoform 3 and lipoprotein lipase (23), compatible
with a role of maternal adiponectin in the regulation of
placental nutrient transport.

The aim of this study was to determine the effects of gAd
and fAd, with or without insulin, on intracellular signaling
and amino acid transport in cultured primary human
trophoblast cells. We tested the hypothesis that adiponec-
tin downregulates placental amino acid transport medi-
ated by inhibition of insulin signaling.

RESEARCH DESIGN AND METHODS

Cytotrophoblast isolation. Isolation of cytotrophoblasts from normal-term
placentas was based on the protocol published by Kliman et al. (35) and
performed as we reported previously (36,37). Cells were plated on 35-mm

culture dishes (5 � 106 cells/dish) and six-well plates (2 � 106 cells/well) in 5%
CO2, 95% atmosphere air at 37°C. Media were changed daily for 90 h. At 66 h
after plating, cells were exposed to control media or control media plus gAd
or fAd for 24 h. A subset of cells was pretreated with 1 nmol/l insulin for 4 h,
gAd or fAd was subsequently added, and cells were incubated for an
additional 20 h. At 90 h after plating, cells were used in amino acid uptake
assays or expression studies, and culture media were collected for cytokine
analysis. The concentration of insulin used corresponds to normal postpran-
dial insulin levels in pregnant women (38).
Small interfering RNA. Dharmafect2 transfection reagent (Thermo Scien-
tific, Rockford, IL) and small interfering RNA (siRNA), targeted against
glyceraldehyde-3-phosphate dehydrogenase, signal transducer and activator
of transcription 3 (STAT3), or a scrambled sequence, were added to cells after
20 h in culture, incubated for 24 h, and removed, and fresh media were added
to wells (36). After a total of 66 h in culture, cells were treated with gAd or
control media for 24 h and used in the amino acid uptake assay.
Amino acid uptake assay. The activity of the system A and L amino acid
transporters was measured in cultured trophoblast cells as previously de-
scribed (36,37). Cells in duplicate were incubated in buffers with and without
Na� (iso-osmotic choline replacement) and in the presence and absence of
2-amino-2-norbornane-carboxylic acid (BCH; 64 �mol/l). Radioactivity in cell
lysates was counted in a liquid scintillation counter and mediated uptake
calculated as pmol/(min � mg protein) using standards with known amounts
of isotope.
Western blot. Protein expression of the system A transporter isoforms
SNAT1, SNAT2, SNAT4; phospho-AKT Ser473 and phospho-AKT Thr308;
phospho-AMPK Thr172; AMPK; STAT3; phospho-STAT3 Tyr705; suppressor of
cytokine signaling 3 (SOCS3); PPAR�; phospho-PPAR� Ser21; insulin receptor
substrate (IRS-1; Tyr612); and �-actin was analyzed using Western blotting. A
polyclonal SNAT2 antibody was generated in rabbit by Dr. P.D. Prasad
(Medical College of Georgia), and affinity-purified polyclonal anti-SNAT1 and
-SNAT4 antibodies were generated in rabbits by Eurogentec (Seraing, Bel-
gium). Antibodies targeted against phospho-AKT Ser473, phospho-AKT
Thr308, phospho-AMPK, AMPK, SOCS3, and STAT3 were purchased from Cell
Signaling, and anti–�-actin antibodies were obtained from Sigma. Protein
concentrations were determined by Bradford assay, and Western blotting was
performed as previously described (36). Analysis of the blots was performed
by densitometry using Alpha Imager (Alpha Innotech, San Leandro, CA).
Real-time PCR. After exposure of syncytiotrophoblast cells to insulin (1
nmol/l), globular adiponectin (5 �g/ml), full-length adiponectin (5 �g/ml), or
control media for 24 h, total RNA was isolated using TRIzol reagent (Invitro-
gen, Carlsbad CA) and reverse transcribed using a Quantitect Reverse
Transcription kit (Qiagen, Valencia, CA). Proprietary Quantitect Primer As-
says for SNAT1, SNAT2, and SNAT4 and succinate dehydrogenase were
obtained from Qiagen. Quantitative PCR was performed in triplicate in 96-well
plates following the standard Quantitect SYBR PCR protocol in a 7300
(Applied Biosystems, Foster City, CA). For analysis, SNAT1, SNAT2, and
SNAT4 were standardized against succinate dehydrogenase expression. As
negative controls, preparations lacking RNA were used. RNAs were assayed
from six independent biological replicates. The RNA levels are expressed as a
ratio, using the comparative cycle threshold method for comparing relative
expression results between treatments in real-time PCR.
Cytokine enzyme-linked immunosorbent assays. Syncytiotrophoblast cell
culture media were collected after 24-h incubation with 5 �g/ml gAd or fAd.
Interleukin-6 (IL-6) and tumor necrosis factor-� concentrations in media were
determined using colorimetric ELISA (Thermo Scientific), following instruc-
tions provided by the manufacturer.
Data presentation and statistics. Data are presented as means � SEM.
Statistical significance of differences between control and treated cells was
assessed using repeated-measures ANOVA or Student t test. A P value �0.05
was considered significant. n � number of individual placentas that cells were
isolated from in each treatment group. Experiments were run on duplicate
sets of cells from each placenta.

RESULTS

The effect of adiponectin on amino acid uptake in cultured
human primary trophoblast cells was highly dependent on
the presence or absence of insulin. In the absence of
insulin, gAd significantly (P � 0.05 repeated-measures
ANOVA [RMANOVA], n � 6) increased system A amino
acid transporter activity, as measured by sodium-depen-
dent methylaminoisobutyric acid (MeAIB) uptake (Fig.
1A). However, system L amino acid transport activity was
not altered by gAd (Fig. 1C). Both MeAIB and leucine
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uptake in fAd-treated cells remained at control levels (Fig.
1B and D). Insulin in concentrations corresponding to
postprandial levels in pregnant women (38) markedly
increased (P � 0.05, RMANOVA, n � 6) system A transport
activity (Fig. 2A and B), in agreement with previous
studies (39,40), with no effect on system L (data not
shown). gAd did not modify the insulin-stimulated system
A amino acid transport activity (Fig. 2A). However, fAd
abolished the insulin-stimulated system A activity (P �
0.05, RMANOVA, n � 6) (Fig. 2B).

Because altered mRNA and protein expression of spe-
cific SNAT isoforms, in particular SNAT2, constitutes a
key mechanism by which placental system A activity is
regulated (32,36), we determined the gene and protein
expression of SNAT isoforms in response to insulin, gAd,
and fAd. SNAT1, SNAT2, and SNAT4 RNA expression
levels were not altered by gAd (Fig. 2C). In contrast,
insulin significantly increased mRNA expression of all
SNAT isoforms (Fig. 2C). Furthermore, in the presence of
insulin, fAd significantly decreased the expression levels
of SNAT2 and SNAT4 mRNA, but not SNAT1 RNA, com-
pared with both fAd and insulin treatment alone (Fig. 2C).
Indeed, SNAT1, SNAT2, and SNAT4 mRNA levels after fAd
treatment in the presence of insulin were not significantly
different from control cells (Fig. 2C). A significant increase
in SNAT2 protein expression was observed after insulin,
gAd, and insulin/gAd incubations (Fig. 2D and E). Whereas
fAd alone had no effect on SNAT2 protein expression, fAd
completely reversed the insulin-stimulated increase in
SNAT2 expression (Fig. 2E).

AMPK is one of the key mediators of adiponectin
signaling in muscle and liver (15,16). We determined the

effect of gAd and fAd on AMPK activation, which is
dependent on the phosphorylation of the Thr172 residue
(41). Incubation with gAd alone for 24 h increased the
level of phospho-AMPK, but this was not observed in the
presence of insulin (Fig. 3). On the other hand, fAd did not
alter the phospho-AMPK expression, in the presence or
absence of insulin. fAd alone significantly increased the
total expression of AMPK, but this effect was lost in the
presence of insulin (Fig. 3).

It is well established that adiponectin may affect the
synthesis/release of proinflammatory cytokines in other
tissues (42–44). Furthermore, Lappas et al. (29) showed an
increase in cytokine secretion after exposure of placental
villous fragments to gAd. Because we recently reported
that IL-6 and TNF-� stimulate system A transporter activ-
ity in cultured primary human trophoblast cells (36), it is
possible that the effects of gAd on system A activity may
be mediated by the release of proinflammatory cytokines.
We demonstrated that gAd significantly increased the
levels of IL-6 and TNF-� produced by the trophoblast cells
(Fig. 4A and B). In contrast, fAd dramatically reduced the
levels of IL-6 produced, whereas TNF-� levels were in-
creased (Fig. 4C and D).

STAT3 is a key component in the IL-6 signaling pathway
(45) and the stimulating effect of IL-6 on system A activity
in cultured human primary trophoblast cells is mediated
by STAT3 activation (36). To investigate whether the
effects of gAd (without insulin) on system A transport
were mediated via STAT3, we transfected cultured pri-
mary human trophoblast cells with siRNA targeting
STAT3, resulting in a 70% reduction in STAT3 protein
expression, (36). The significant stimulation of MeAIB
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FIG. 1. Sodium-dependent 14C-MeAIB (A and B) and BCH-inhibitable 3H-leucine (C and D) uptake after incubation of cultured trophoblast cells
in control media, gAd (A and C), or fAd (B and D) for 24 h. Data are mean � SEM for cells isolated from six different placentas. gAd significantly
(P < 0.05) stimulated MeAIB uptake in a dose-dependent manner (RMANOVA with post hoc tests, *P < 0.05, **P < 0.01).
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uptake observed after gAd treatment alone was abolished
in cells in which STAT3 was silenced (Fig. 5). These
results clearly demonstrate that STAT3 is critical in medi-
ating the effect of gAd on system A amino acid transport
activity.

One key mechanism involved in the insulin-sensitizing
effect of adiponectin in liver and muscle is the ability to
enhance insulin-stimulated AKT phosphorylation (46). To
investigate possible interactions between adiponectin and
insulin signaling in trophoblast cells, we measured protein
expression of phospho-AKT Ser473 and phospho-AKT
Thr308 after incubation in insulin with or without adi-
ponectin. Incubation of cultured primary trophoblast cells
with insulin significantly increased the levels of phospho-
AKT Ser473 (Fig. 6A and B); however, incubation with gAd
or fAd with or without insulin did not alter the expression
levels. As expected, phospho-AKT (Thr308) levels were
increased by addition of insulin. In contrast, gAd or fAd

alone did not alter phospho-AKT Thr308 expression. Fur-
thermore, addition of gAd to insulin-stimulated cells did
not affect AKT phosphorylation at Thr308. In contrast, fAd
completely reversed insulin-stimulated Thr308 phosphor-
ylation of AKT (Fig. 6A and B).

We investigated intermediaries that may be involved in
modulating the insulin-signaling pathway in response to
fAd. Insulin resistance is commonly associated with in-
creased expression of the p85� subunit of phosphatidyl-
inositol 3-kinase (47), phosphatase and tensin homolog
(48), SOCS3 (49), and phospho-STAT3 (50), which all
attenuate insulin signaling. However, in our study, protein
expression of phosphatase and tensin homolog, SOCS3,
phospho-STAT3, and p85 was not different after exposure
to fAd plus insulin compared with insulin alone (data not
shown). Adiponectin has been shown to activate IRS-1
(46), and we explored the possibility that fAd alters the
activation status of IRS-1 by determining the expression of
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FIG. 2. Sodium-dependent 14C-MeAIB uptake after incubation of cultured trophoblast cells in control media, insulin (1 nmol/l), gAd (5 �g/ml) (A),
or fAd (5 �g/ml) (B) for 24 h. Subsets of cells were pretreated with insulin (1 nmol/l) for 4 h and then exposed to 5 �g/ml gAd (IgAd) or fAd (IfAd)
for an additional 20 h. Data are mean � SEM for cells isolated from six different placentas. Insulin alone, gAd alone, and insulin � gAd (P < 0.01)
significantly stimulated MeAIB uptake; however, insulin � fAd significantly (P < 0.001) reduced MeAIB uptake compared with insulin alone
(RMANOVA with post hoc tests, *P < 0.05, **P < 0.01). C: Summary data of real-time PCR of system A amino acid transporter isoforms SNAT1,
SNAT2, and SNAT4 after incubation of cultured trophoblast cells as indicated. Data are mean � SEM for six placentas. Insulin significantly
increased SNAT gene expression. In the presence of fAd, the effect of insulin on the mRNA expression of SNAT2 and SNAT4 was significantly
reduced compared with both fAd and insulin treatment alone (RMANOVA, P < 0.01; Tukey-Kramer multiple comparisons post tests, *P < 0.05,
***P < 0.01). D: Representative Western blot of SNAT1, SNAT2, and SNAT4 expression after incubation of cultured trophoblast cells as
indicated. E: Summary of SNAT2 protein expression levels. n � 6 for each treatment, RMANOVA, P < 0.01; Tukey-Kramer multiple comparisons
post tests, *P < 0.05, **P < 0.01.
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IRS-1 phosphorylated at Tyr612. In cells treated with
insulin plus fAd, phosphorylation of IRS-1 at Tyr612 was
significantly reduced compared with insulin-treated cells
(Fig. 7A and B). Because IRS-1 is activated when phos-
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phorylated at this site, these data suggest that fAd inhibits
IRS-1 activity in trophoblast cells.

PPAR� plays a critical role in the signal transduction
pathway of adiponectin receptors, in particular AdipoR2
(16). Recent data show that tissue-specific overexpression
of PPAR� in skeletal (51) and cardiac muscle (52) de-
creases insulin sensitivity, mediated by inhibition of insu-
lin signaling (52). This raises the possibility that the
inhibition of insulin signaling by fAd in trophoblast cells
may be mediated by activation of PPAR�. In addition to
ligand binding, PPAR� can be activated by at least two
mechanisms: increased total expression and phosphoryla-
tion at Ser6, Ser12, and Ser21, which enhances PPAR�
stability and decreases degradation (53,54). We observed a
significant increase in the protein expression of PPAR�
and phospho-PPAR� Ser21 after incubation of trophoblast
cells in insulin plus fAd compared with control or insulin-
treated cells (Fig. 7C and D).

DISCUSSION

We demonstrate that, in contrast to the insulin-sensitizing
actions of adiponectin in liver and muscle, fAd attenuates
insulin signaling in primary human trophoblast cells. As a
result, fAd inhibits insulin-stimulated amino acid trans-
port. To the best of our knowledge, this is the first report
of regulation of amino acid transport by adiponectin, in
any tissue.

It is well established that insulin stimulates placental
system A amino acid transport (39,40); however, the
underlying mechanism has not previously been explored.
We found that physiological levels of insulin increased the
mRNA expression of all system A isoforms. In contrast,
only SNAT2 was upregulated at the protein level, indicat-
ing that changes in SNAT2 protein expression are impor-
tant in mediating the regulation of system A activity by
insulin. These findings are in line with observations that
SNAT2 appears to be a highly regulated SNAT isoform
both in the placenta (31,32,55,56) and in other tissues and
cells such as the mammary gland (56) and 3T3-L1 adipo-
cytes (57).

Incubation of cultured human primary trophoblast cells
in gAd in the absence of insulin increased AMPK phos-
phorylation, in agreement with previous studies in other
tissues (15,16). Silencing of STAT3 completely abolished
the stimulation of system A amino acid transporter activity
by gAd. These data demonstrate that STAT3 activation is
critical in mediating the stimulating effect of gAd on
system A activity in the absence of insulin, findings that
are in agreement with studies showing that STAT3 medi-
ates the cellular effects of gAd in mouse cardiac fibroblast
cells (58). STAT3 constitutes a key component in IL-6
signaling (45), and we show that gAd treatment enhanced
trophoblast IL-6 secretion, observations that reflect a
report by Lappas et al. demonstrating increased IL-6
production in placental villous fragments treated with gAd
(29). Furthermore, we recently reported that IL-6 in-
creases system A amino acid transport activity in cultured
human primary trophoblast cells (36). Collectively, these
observations suggest that gAd stimulates system A activity
in cultured trophoblast cells by releasing IL-6, resulting in
STAT3 activation. However, it cannot be excluded that
mediators other than IL-6 could have contributed to the
STAT3-mediated stimulation of system A in response to
gAd. The molecular mechanisms linking AMPK activation,
IL-6 release, and STAT3 phosphorylation in trophoblast
cells remains to be established but may involve mitogen-
activated protein kinase and nuclear factor-	B signaling as
shown in other tissues (42–44,59).

The effect of gAd on trophoblast signaling and amino
acid transport was distinctly different in the presence of
physiological concentrations of insulin compared with
incubations with gAd alone. Indeed, when insulin was
present, gAd did not increase AMPK phosphorylation.
Furthermore, gAd failed to enhance insulin-stimulated
AKT phosphorylation. This is in contrast to effects in
C2C12 myotubes in which gAd further enhanced insulin-
stimulated AKT phosphorylation (46), but is consistent
with effects in HeLa cells (46) and L6 muscle cells (60).
Thus, the effects of gAd on the insulin-signaling pathway
are tissue specific, and our data suggest that gAd is not
an insulin sensitizer in human primary trophoblast cells.

Unlike gAd, fAd treatment caused a reduction in IL-6
secretion, consistent with an anti-inflammatory role for
fAd in the placenta similar to that seen in monocytic
cells (42,44). In contrast to the lack of effect of gAd
treatment on insulin-stimulated cells, fAd treatment
abolished the stimulation of system A transport activity
and SNAT2 expression elicited by insulin. Importantly,
our results demonstrate that this effect is mediated via
cross-talk between the full-length adiponectin signaling
pathway and the insulin-signaling pathway. In tropho-
blast cells stimulated by insulin, fAd significantly re-
duced the phosphorylation of both IRS-1 and AKT
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compared with cells treated with insulin alone. The
importance of AKT phosphorylation in mediating the
effects of insulin on system A amino acid transport in L6
muscle cells was demonstrated by a recent report by
Green et al. (61). Thus, our data show that fAd inhibits
insulin signaling in cultured human primary trophoblast
cells, which is in contrast to the insulin-sensitizing effect
of fAd in skeletal muscle (15).

Activation of PPAR� may link fAd to inhibition of
insulin signaling and system A amino acid transport. It has
been demonstrated that PPAR� activation inhibits insulin/
IGF-1–stimulated IRS-1 and AKT phosphorylation in sev-
eral cell types (62,63). We demonstrated that treatment of
cultured trophoblast cells with fAd in the presence of
insulin led to an increase in both PPAR� protein expres-
sion and phosphorylated PPAR� Ser21 compared with
either control or insulin-treated cells. Further studies are
needed to establish an unequivocal cause-and-effect rela-
tionship between PPAR� activation and inhibition of insu-
lin signaling in response to fAd and to identify the
molecular mechanisms linking PPAR� to the insulin-sig-
naling pathway.

One of the strengths of our study is that functional data
(amino acid transport activity) have been obtained in
primary human trophoblast cells in culture using concen-
trations of insulin and adiponectin within the physiological
range, which contributes to the physiological relevance of
our results. Because fAd was the only form of adiponectin
that altered trophoblast function in the presence of phys-
iological concentrations of insulin, we propose that the
attenuation of placental insulin signaling and trophoblast

amino acid transport by fAd constitutes the important
biological effect in vivo.

Our data show that fAd attenuated insulin signaling in
primary human trophoblast cells and reversed insulin-
stimulated system A activity. Interestingly, McDonald and
Wolfe (28) recently reported that adiponectin inhibits
endocrine functions of cultured human primary tropho-
blast cells, as evidenced by a decreased synthesis of
human chorion gonadotropin and human placental lacto-
gen. These authors did not identify the mechanisms in-
volved; however, it is possible that inhibition of insulin
signaling, as demonstrated in the current study, may
mediate the inhibitory effect of adiponectin on tropho-
blast endocrine function because it is well established
that insulin stimulates trophoblast production of hor-
mones, including human placental lactogen (64) and
human chorion gonadotropin (65).

Insulin had a marked effect on the response of cultured
human trophoblast cells to gAd and fAd. There may be a
multitude of mechanisms underlying the regulation of
adiponectin responsiveness by insulin. Human trophoblast
cells have been shown to express functional AdipoR1 and
AdipoR2 (28). Because AdipoR1 binds primarily gAd and
AdipoR2 binds fAd with higher affinity than gAd, it is
possible that insulin affects the responsiveness to adi-
ponectin by regulating the relative abundance of the two
adiponectin receptors in trophoblast cells. In support of
this hypothesis, insulin increased AdipoR2 expression
threefold in muscle cells while reducing AdipoR1 expres-
sion by 50% (60), which was associated with an increased
sensitivity to fAd and resistance to the effects of gAd
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(60,66). Considering that both AdipoR1 and AdipoR2 are
believed to mediate cellular effects by promoting in-
creased insulin sensitivity, it may be expected that dele-
tion of the receptors would result in insulin resistance.
However, deletion of AdipoR2 in transgenic mice caused
enhanced insulin sensitivity, rather than insulin resistance
(67–69). One explanation for the unexpected phenotype of
the AdipoR2 knockout mouse could be activation of
AdipoR2 inhibits insulin signaling in some tissues, possibly
including the placenta. Emerging evidence shows that
downstream signaling of the adiponectin receptors in-
volves APPL1 (adaptor protein containing pleckstrin ho-
mology domain) (70). Indeed, APPL1 associates with the
adiponectin receptors and mediates adiponectin signaling
and its effects on metabolism (71). APPL1 also functions in
the insulin-signaling pathway and is an important mediator
of adiponectin-dependent insulin sensitization in skeletal
muscle (70). Chronic insulin treatment results in translo-
cation of this signaling molecule to the nucleus, making it
unavailable for downstream propagation of the adiponec-
tin signal (70). Therefore, it is possible that the inhibitory
effect of insulin on gAd AMPK activation in primary
trophoblast cells is mediated through APPL1 translocation
to the nucleus. Recently, APPL2, an isoform of APPL1, was
identified (72) and shown to suppress adiponectin and
insulin signaling by sequestrating APPL1. We speculate
that differences between placenta and muscle in the
expression and/or function of APPL1 and APPL2 result in
distinct responses to adiponectin.

In conclusion, fAd inhibits insulin-stimulated tropho-
blast system A amino acid transport. Our data indicate that
the underlying mechanism involves activation of PPAR�,
which inhibits IRS-1 and AKT phosphorylation, resulting in
reversal of insulin-stimulated SNAT2 expression and
system A activity. Fetal growth is highly dependent on
the capacity of the placenta to transport amino acids
(8). Because insulin and IGF-I are well-established
stimulators of placental nutrient transporters and fetal
growth, the finding that fAd attenuates placental insulin
signaling and amino acid transport may have important
implications for placental nutrient transport and fetal
growth in pregnancies associated with altered maternal
adiponectin levels.
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