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Multiple regimes of robust 
patterns between network 
structure and biodiversity
Luis F. Jover1, Cesar O. Flores1, Michael H. Cortez2 & Joshua S. Weitz1,3

Ecological networks such as plant-pollinator and host-parasite networks have structured interactions 
that define who interacts with whom. The structure of interactions also shapes ecological and 
evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, 
e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that 
examining variation in life history traits is key to disentangling the potential relationship between 
network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria 
interactions across a spectrum of network structures. Consistent with prior studies, we find plausible 
parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. 
Yet, the same model can exhibit negative relationships between nestedness and biodiversity when 
examined in a distinct, plausible region of parameter space. We discuss steps towards identifying 
when network structure could, on its own, drive the resilience, sustainability, and even conservation 
of ecological communities.

Ecological communities are often composed of a large number of interacting types, e.g., species, morphs 
or strains. Interaction patterns in a community can be represented as a network where nodes denote 
distinct types and links between nodes denote connections between individuals of the respective types. 
These connections can represent distinct modes of ecological interactions including predation, mutu-
alism, competition and parasitism. Understanding the relationship between network structure and the 
subsequent dynamics of populations has, for decades, been facilitated by theory. For example, Robert 
May’s seminal work in the early 1970s introduced the idea that large complex networks were more 
likely to be unstable1,2. Whether or not complexity begets instability in an ecological community remains 
controversial, as May’s original conclusions depend, in part, on assumptions regarding the choice of the 
underlying interactions and random network structure3–7.

In reality, ecological interactions are both complex and structured. Realized networks may differ in 
terms of their connectance, nestedness and modularity - as but three examples of differentiating features. 
Connectance is defined as the ratio of realized links to potential links; nestedness quantifies the extent to 
which there exists a hierarchy such that interaction ranges of increasingly specialized types are organized 
as proper subsets of the interaction ranges of more generalist types8; and modularity quantifies the extent 
to which organisms tend to interact within densely connected groups rather than between groups9,10. 
Network features, including connectance, modularity, and nestedness11–13 have been shown, in theory, to 
affect the biodiversity and stability of the underlying community11,14.

For example, Bascompte and colleagues showed that mutualistic plant-pollinator networks tend to be 
nested and conjectured that nestedness increases biodiversity, quantified in terms of the relative fraction 
of surviving types in a dynamic model14. Yet, in contrast, James and colleagues15 argued that nestedness 
is a covariate of, rather than a driving factor for, increases in biodiversity. Similarly, Suweis et al. showed 
that elevated nestedness can emerge as a consequence of adaptations that increase species-level and total 
community abundance16. As a second example, phage-bacteria infection networks are often significantly 
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nested13. Phage-bacteria communities with nested networks have been shown to be stable17, so long as 
there are trade-offs between interaction ranges and other life history traits. Nestedness may even facilitate 
the emergence of increased biodiversity of both bacteria and phage given a single limiting resource for 
bacterial growth when contrasted to the dynamics of bacteria-only environments18.

How is theory used to study the relationship between network architecture and biodiversity? By and 
large, theoretical studies typically represent an ecological community via a system of differential equa-
tions that describe the change in the population abundances of interacting types. In some instances, it is 
possible to determine the relationship between network architecture and biodiversity18. Yet, when ana-
lytical solutions are not available, then many studies select model parameters from biologically plausible, 
prior distributions and simulate system dynamics to identify statistical relationships between network 
structure and biodiversity (see Fig. 1 and 11,15,19). Such approaches raise a question: how does the selection 
of the prior parameter distribution influence model dynamics and the resulting relationship between 
network structure and biodiversity? Further, is it possible that there are distinct, robust relationships 
between network structure and biodiversity given different parameter assumptions?

In this manuscript, we examine the entanglement of network architecture and model parametriza-
tion and their combined effect on biodiversity (Fig.  1). To do so, we simulate ensembles of models 
given distinct assumptions of plausible life history traits. We find that the relationship between patterns 
of network architecture and ecological dynamics can vary qualitatively with model parameterization. 
Throughout, we focus on a specific model of virus-bacteria dynamics and study the relationship between 
one ecological property – community biodiversity, i.e., the fraction of surviving strains – and one net-
work property – nestedness. Nonetheless, we explain how our findings can be applied to other systems 
in which there is uncertainty with respect to the life history traits of interacting strains.

Results
A rule-based framework to identify distinct domains of biodiversity-nestedness relation-
ships.  We are interested in studying coexistence of multiple strains in virus-bacteria systems and its 
relationship to model parametrization. We define biodiversity as the fraction of surviving strains in the 
system and simulate the interactions between strains using the model described in the Methods. In 
general, coexistence of all the strains in a system, i.e., a biodiversity value of 1, requires the existence of 
a steady state with positive densities for all strains. For a given interaction matrix, we refer to a steady 
state with positive densities for all strains as a feasible steady state and to the associated parameter set 
as a feasible parameter set.

The mathematical conditions for feasibility can be formulated in terms of the parameters of a model: 
r, bacterial growth rate; K, carrying capacity; a, bacterial competition; as well as φ, m, and β; denoting 

 

Figure 1.  Schematic of how studies using numerical simulations have drawn insights into the 
relationship between network structure and biodiversity. (Left panel) A focal region of parameter space is 
examined (the blue square, in the parameter space of θ1 −  θ2). (Middle panel) Given parameter variation in a 
focal region, the network is modified across a spectrum of configurations, here from low to high nestedness 
from bottom to top (where white cells denote interactions and blue cells denote the absence of interactions). 
Then, the dynamics of each system are simulated and/or analyzed given variation in network structure and 
model parameters. The proportion of surviving species in the simulations determines the biodiversity of 
each community. (Right panel) Variation in resulting biodiversity is compared to the variation in network 
structure, e.g., nestedness (right panel). Given the large number of parameters, such studies do not exclude 
the possibility that distinct structure-biodiversity relationships may exist for different life history parameters 
(the red and green boxes in the left panel).
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virus adsorption rate, decay rate, and burst size respectively. As an example, consider a low-dimensional 
system with two bacteria, two viruses, and a nested infection network (virus 1 infects bacteria 1 and 2 
and virus 2 infects only bacteria 1). To simplify the analysis we assume that virus adsorption rates and 
burst sizes are independent of bacterial strains (i.e. φij =  φj, βij =  βj) and that intra-specific and inter-specific 
competition between bacterial strains is equal (i.e. aii′ =  1). Under these assumptions the conditions for 
feasibility are: r1 >  r2 and > >

β φ β φ
K m m1

1 1

2

2 2
. These conditions represent a feasible “volume” in the 

9-dimensional parameter space, i.e., a region of parameter space where coexistence of all 4 strains is 
possible. Further, we see that the condition for feasibility involving growth rates divides the correspond-
ing two-dimensional parameter subspace into two areas: a feasible region where coexistence of all strains 
is possible(r1 >  r2), and an infeasible region where coexistence of all strains is not possible (r2 <  r1). As 
should be evident, randomly sampling parameter space would affect conclusions regarding the total 
potential biodiversity in the system.

We can extend the analysis of this low-dimensional example to the case of a perfectly nested  
infection network with 10 bacteria and 10 viruses (Fig.  2a). The rules for feasibility are an extension  
of the rules from the previous 2 virus, 2 bacteria example, namely: > > … >r r r1 2 10 and 
> > > … >
β φ β φ β φ

K m m m1

1 1

2

2 2

10

10 10
. These rules can be generalized for a perfectly nested network of arbi-

trary size with equal number of bacterial and virus strains17. In the case of 10 bacteria and 10 viruses, 
the rules define a feasible region in the 41-dimensional parameter space of the model. We sample param-
eters from two different regions of parameter space to illustrate the effect of model parameterization on 
biodiversity-nestedness relationships. First, we sample parameters from the feasible region of the 
perfectly-nested network (Fig. 2a) where all strains coexist when the interaction matrix is nested. Second, 
we sample parameters from the feasible region of a low-nestedness network (Fig. 2b); details of the net-
work and its feasible region are presented in the Methods for the rule-based framework.

Given the sampling regions, numerical simulations of model dynamics are averaged over an ensem-
ble of 100 infection networks representing a gradient in nestedness while conserving the connectance 
of each network in the ensemble. When parameters are chosen from the feasible region of the perfectly 
nested network (Table 1), we observe a positive biodiversity-nestedness relationship (Fig. 3a). In contrast, 
when parameters are chosen from the feasible region of a low-nestedness network (Table  2), we see a 
negative biodiversity-nestedness relationship (Fig. 3b). The perfectly nested network was included in the 
ensemble of 100 networks. Sampling parameters from its feasible region resulted in survival of all the 
strains in the system (average biodiversity of 1, Fig. 3a). The low-nestedness network used to obtain the 
second sampling region was not included in the ensemble because it has a different connectance than 
the perfectly nested network and the rest of the networks. We found that the trends in biodiversity were 
robust to changes in initial conditions when sampling values from biologically plausible regions. The 
key point of this analysis is that the relationship between biodiversity and nestedness differs qualitatively 
when examining two distinct feasible sets of parameters.

A feasibility-based framework to identify distinct domains of biodiversity-nestedness rela-
tionships.  For a general interaction network the conditions for feasibility are more complicated than 
the conditions presented for the perfectly-nested network derived in the previous section. As a conse-
quence, we developed an alternative framework for selecting parameter sets that maximize biodiversity 
in Eqs. (1)-(2) for any non-trivial infection network. This alternative framework does not require finding 
the rules for feasibility explicitly. Instead, we choose a subset of the parameters randomly from a bio-
logically plausible region (Table 3), specify the target steady state densities of the bacteria and viruses, 
and then solve for the rest of the parameters using the steady state equations. In this way it is possible 
to obtain a particular feasible parameter set for any infection network for which all nodes have at least 

ba

Figure 2.  Focal matrices used in the rule-based framework. (a) Low nested network (NODF =  0.21). (b) 
Perfectly nested network (NODF =  1). White cells denote that a virus in that column is able to infect the 
bacteria in that row, whereas blue cells denote the absence of infection.
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one link (see Methods for more details). We selected three particular parameter sets for which biodi-
versity is maximized for three different infection networks of 10 bacteria and 10 viruses. We calculated 
average biodiversity for an ensemble of 100 matrices which included the three focal networks (Fig. 4). 
Figure 4 shows that not only is it possible to maximize biodiversity for different networks, but it is also 
possible that the resulting trends are qualitatively different. We show that, by maximizing biodiversity 
for a low-nestedness matrix, we obtain a negative trend of biodiversity vs. nestedness (Fig.  4 left). In 
contrast we obtain a positive trend of biodiversity vs. nestedness by selecting parameters that maxi-
mize biodiversity for a perfectly nested networks (Fig.  4 right). It is also possible that the quantitative 
strength of the relationship can differ, approaching the case where the is no significant relationship 
between biodiversity and nestedness (Fig.  4 middle). This analysis supports the prior conclusions, i.e., 
that biodiversity-nestedness relationships depend on model parameterization.

Parameter (units) Range\Value

ri (1/d) 3.61–43.35

φj (ml/(virus · d)) 2.4 ×  10−7–2.4 ×  10−6

βj (virus/cell) 10–100

mj (1/d) 0.037–0.52

K (ml) ( ) × = . ×
β φ

max 10 2 17 10mi
i i

6

Table 1.   Parameter ranges used to obtain feasible parameter sets for the perfectly nested network. 
Parameters were sampled from uniform distributions and sorted according to the rules of feasibility for the 
perfectly nested network presented in rule-based framework of the Results. The limits of the distributions 
are specified in the column titled Range. A fixed value was used for K.
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Figure 3.  Average biodiversity over 100 different sets of parameters for 100 different matrices spanning 
nestedness values from 0.35 to 1. (a) Parameter sets sampled from the feasible region of the perfectly 
nested networks (Table 1). (b) Parameter sets sampled from the feasible region of a low-nestedness network 
(Table 2).
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Biodiversity-nestedness relationships are robust to local perturbation of parameter 
sets.  Here, we examine biodiversity-nestedness relationships when parameters and network structure 
are both varied. To do so, we sampled parameter values from regions of parameter space centered about 

Parameter (units) Range\Value

ri for i =  1, 2, 3, 5, 6, 8, 9, 10 (1/d) 4.06–4.51

ri for i =  4, 7 (1/d) 3.61–4.06

φj (ml/(virus · d)) 1.32 ×  10−6

βj (virus/cell) 30

mj for j =  1, 2, 3, 5, 6, 8, 9, 10 (1/d) 0.47–0.52

mj for j =  4, 7 (1/d) 0.42–0.47

K (ml) × = . ×
βφ
+ 10 2 36 10m m4 7 5

Table 2.   Parameter ranges used to obtain feasible parameter sets for the low-nestedness network. Range 
denotes the limits of the uniform distribution used to generate parameters. The limits were calculated such 
that the parameters satisfy the rules of feasibility for the low-nestedness network presented in the feasibility-
based framework as shown in the Methods. Fixed values were used for φ, β, and K.

Parameter (unit) Range\Value

φj (ml/(viru · d)) 2.4 ×  10−8–2.4 ×  10−7

βj (viruses/cell) 10–100
⁎Hi  (cell/ml) 103–104

⁎V j  (virus/ml) 106–107

K (ml) ( ) × =⁎max H 10 10i
5

Table 3.   Parameter and target steady state density ranges used in the feasibility-based framework. 
Bacteria growth rates, ri, and virus decay rates, mj, were derived using the steady state equations and the 
parameters presented in this table (see Methods, given feasibility-based framework). The range denotes the 
limits of the uniform distributions used to generate parameters.
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Figure 4.  For fixed parameter values in different regions of parameter space, the relationship between 
biodiversity and nestedness can be positive, negative, or exhibit a weak trend. Each panel corresponds 
to a different (fixed) parameterization of the model. Each point represents the biodiversity for a particular 
interaction matrix whose nestedness (NODF) lies between 0.35 and 1. The matrix for which biodiversity 
is maximized is plotted above each panel. (Left, red) A negative biodiversity-nestedness relationship arises 
when the parameter set maximizes biodiversity for a network with low nestedness (NODF =  0.35). (Middle, 
green) A weaker negative trend arises when the parameter set maximizes biodiversity for network with 
intermediate nestedness (NODF =  0.57). (Right, blue) A positive biodiversity-nestedness relationship arises 
when the parameter set maximizes biodiversity for a network with high nestedness (NODF =  1). The slope 
of a linear fit α and coefficient of determination R2 are presented (p <  10−5 for all the fitted lines).
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the original parameter set which maximized biodiversity for a particular interaction network (as explained 
in the previous section). The size of the region was set by the parameter δ such that for a given value of 
a parameter, θ̂ , the random parameter values were sampled from the interval θ δ θ δ( − ), ( + )^ ^[ 1 1 ]. 
Here θ is a dummy parameter denoting any of the life history traits, r, K, m, β and φ that impact Eqs. (1)-
(2). Figures 5(a–f) show evidence for a robust, negative biodiversity-nestedness relationship that persists 
even as the interval width increases. We see that the negative trend is robust to selecting parameters from 
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Figure 5.  Biodiversity-nestedness relationships are robust to local perturbations of parameter values. 
(Panels (a–f) red) Average biodiversity for 100 parameter sets sampled from a uniform distribution 
centered around a parameter set that maximizes biodiversity for a low-nestedness network. (Panels (g–l) 
blue) Average biodiversity for 100 parameter sets sampled from a uniform distribution centered around 
a parameter set that maximizes biodiversity for a perfectly nested network. Each plot corresponds to a 
different value of δ which determines the size of the region used for sampling. The slope of a linear fit α and 
coefficient of determination R2 are presented (p <  10−5 for all the fitted lines).

Figure 6.  Schematic representation of parameter space: biologically plausible region and feasible regions 
for different infection networks. Black squares represent sampling regions that result in different trends of 
biodiversity vs. nestedness.
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a region, but the trend becomes weaker as the size of the intervals are increased. Similarly, Figures 5(g–l) 
show evidence for a robust, positive biodiversity-nestedness relationship observed in a different area of 
parameter space that also persists as the sampling interval is increased. In summary, qualitatively distinct 
biodiversity-nestedness relationships persist, i.e., are robust, when parameter values are chosen at ran-
dom from a region of parameter space.

Discussion
We analyzed a nonlinear model of phage-bacteria dynamics (Eqs.  (1)-(2)) as a means to investigate 
the entanglement between interaction network structure, life history traits, and biodiversity. Given the 
complexity in the space of possible networks, we considered ensembles of networks that varied in a 
particular structural feature – nestedness – such that interaction ranges differ in the extent to which 
they form partially ordered subsets of one another. We found that there is not one globally applicable, 
positive relationship between biodiversity and nestedness in this model (Fig.  3). Instead, we identified 
distinct regions in parameter space where there are contrasting relationships, both positive and negative 
(Figs 4 and 5).

Elevated nestedness is a common feature of interaction networks spanning both plant-pollinator and 
phage-bacteria systems12,13. Moreover, prior theoretical work has suggested that ecological communities 
whose interaction networks are nested are more likely to have higher relative biodiversity12. Our results 
highlight the need to understand the life history context underlying a given biodiversity-nestedness 
relationship. The totality of parameter space includes a subspace of biologically plausible values. Such 
subspaces often have relatively uninformative prior distributions. Therefore, using biologically plausible 
regions to restrict the parameters of a model is not a strong enough restriction to uniquely define the 
effect of network structure on community dynamics.

Recently, it has been pointed out that different model parameterizations can lead to different biodi-
versity levels and consequently to contradictory results20. We expand on this point to show that this is 
also the case for whole regions of parameter space. This is important because studies using numerical 
simulations often average over different parameterizations. Indeed, Rohr et al.20 examine to what extent 
parameters can vary for a given network structure before the community make-up changes. In contrast, 
our work examines how changes in network structure affects community make-up for a fixed set (or 
region) of parameters. These approaches are related, but they are not the same. Our results show how 
averaging over parameterizations is not sufficient to account for the effects of life history traits and that 
a more systematic study of parameter space is necessary. Additionally, we make a stronger case for the 
effect of parametrization by showing that it is possible to not only maximize biodiversity for specific 
networks but to obtain completely different trends of biodiversity vs. nestedness (Fig. 6).

In our view, statistical inference from numerical simulations can be informative and even advantageous, 
so long as certain precautions are kept in mind. The key point is that systematic analysis of parameter 
space is necessary whenever a numerical approach is used to characterize network structure-biodiversity 
relationships in nonlinear ecological systems. Studies that rely on analytical methods to estimate biodi-
versity or related features usually focus on fixed-point equilibrium states that are stable either locally or 
globally. This could be problematic for two reasons. First, general analytical solutions could be hard to 
find or interpret. Second, coexistence in high-dimensional ecological models could be characterized by 
non-equilibrium steady states. In such circumstances, fixed-point analyses would overlook configura-
tions that are ecologically relevant.

In the case of phage-bacteria dynamics, our study highlights the value of additional measurements of 
life history traits, complementary to the recent focus on methods for characterizing who infects whom21. 
We used a particular phage-bacteria model to highlight the importance of systematically studying model 
parametrization in distinct regions to better understand the relationship between network structure and 
biodiversity - yet the findings are relevant to a wider debate. The current findings point to the need to 
revisit the relationship between network structure, life history traits and biodiversity in other systems 
and given other kinds of network patterns. Optimistically, the systematic study of model parametrization 
could be of service in resolving ongoing debates concerning the relationship, or relationships, between 
biodiversity and network structure in plant-pollinator systems14,15,20,22.

Methods
Model.  The dynamics of virus-bacteria systems can be modeled using systems of coupled, nonlinear 
differential equations23,24. Here we use a system of equations that extend the basic Lotka-Volterra equa-
tions25,26 to incorporate multiple types of virus and bacteria and competition between bacteria17:

∑ φ=

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−
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where there are nh bacteria types, each with density Hi and nv virus types, each with density Vj. In this 
system: ri is the growth rate of bacteria i in the absence of phage and other bacteria, aii′ is the competitive 
effect of bacteria i′  on bacteria i (set to 1 for the analysis), K is the system-wide carrying capacity, φij is 
the adsorption rate of phage j when attaching to bacteria i, βij is the effective burst size of phage j when 
infecting bacteria i, and mj is the decay rate of virus j. Finally the element Mij denotes which virus infects 
which bacteria such that Mij =  1 if bacteria i is infected by virus j and is zero otherwise; altogether these 
interactions can be represented as a network (Fig. 7) where each type is equivalent to a strain27. 

Figure 7.  Focal matrices used in the feasibility-based framework. The left-most network has low 
nestedness and the rightmost network has high nestedness. Each row represents the interactions of a given 
bacteria type with all viruses and each column represents the interaction of a given virus type with all 
bacteria. White cells denote instances in which a given virus in column j infects a given bacteria in row i 
(i.e., Mij =  1), whereas blue cells denote the lack of infection (i.e., Mij =  0).

Figure 8.  Doubling the time of the simulations obtained with the stopping time heuristic results in less 
than a 1% change in the computed average biodiversity. (a) Average biodiversity using the stopping time 
heuristic. (b) Average biodiversity using double the time used in (a). Percentage change between (a,b).
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We are interested in identifying fixed points where all strains have positive densities, such that:

β φ( ) = ( )� �
�� ��M H m 3T

φ( ) =



−
∑ 


 ( )
′�

�� �M V r
H
K

1
4

i

We refer to these points as feasible fixed points. In the present model the feasible fixed point is the solu-
tion 
��⁎
H  and 

��⁎
V  to Eqs. (3) and (4). Here, 

r  and 
��m are vectors whose elements are the growth and decay 

rates and β, φ, and M are matrices whose elements are the βij, φij, and Mij respectively; “⚬” denotes 
element-wise matrix multiplication.

Network ensemble.  We generated ensembles of networks with fixed connectance and fixed size, 
nh ×  nv =  n2, given the further assumption that n =  nv =  hh. The ensemble generation procedure builds 
upon that introduced by James and colleages15. Starting with a perfectly nested network, randomly cho-
sen interactions are removed from the existing interactions among bacteria and viruses and an equal 
number of new interactions are added among bacteria-virus pairs where interactions did not exist orig-
inally. In the conventional matrix representation this is akin to random removal of interactions in the 
top left corner of the matrix followed by an equivalent addition of new interactions in the bottom right 
corner of the matrix. Figure  7 shows an example of three matrices with different values of nestedness 
generated using this procedure. To generate a large ensemble of matrices with varying degrees of nested-
ness the number of randomly selected links that where moved was varied from 1 to (n/2)2. We selected 
100 invertible matrices for our ensemble and used the Non-overlapping and Decreasing Fill (NODF) 
metric for nestedness8.

Estimating biodiversity from numerical simulation of the dynamics.  Biodiversity is defined in 
this study as the fraction of surviving strains in Eqs.  (1)-(2) after a sufficiently long transient. We esti-
mated biodiversity by numerically integrating the system using MATLAB’s ODE45 and enumerating the 
number of strains with densities greater than 10−10 ml at the end of the simulation. We used this criteria 
for survival instead of relying on stability analysis of equilibria (or other attractors) because strain coex-
istence could occur via a stable fixed point, periodic cycles, or chaotic dynamics.

The stopping time of the simulation was determined via a heuristic that evaluates the convergence of 
time-averaged densities and mitigates inconsistencies introduced by arbitrarily choosing a stopping time. 
In developing the heuristic, we leveraged the fact that the average density of each strains is equal to its 
equilibrium density in Lotka-Volterra systems. The algorithm to determine stopping time is as follows:

•	 Every 500 hours calculate the infection matrix of only those strains with densities greater than 10−10.
•	 If the subsystem is solvable (invertible community matrix) calculate the theoretical interior fixed 

point.
•	 Check if the average density over the last half of the simulation is within 10 percent of the theoretical 

prediction of the subsystem.
•	 The simulation stops when the last condition is satisfied or the simulation has run for 40000 hours.

Note that the algorithm only calculates the stopping time and does not alter the densities of the 
strains. To evaluate the robustness of the stopping criteria, we calculated persistence using the stopping 
time heuristics and compared the results with ones obtained after doubling the time for all simulations. 
Figure 8 shows the relationship between persistence and nestedness and the difference in mean persis-
tence. Note that the relationship between biodiversity and nestedness are the same whether using the 
heuristic stopping time or twice this value (Fig. 8a,b). We find that there are less than 1% differences in 
the average biodiversity between the two stopping times (Fig. 8c). Altogether, the heuristic captures the 
long term coexistence of different strains even when the dynamics do not tend to a steady state.

Parameter range selection.  We use two different frameworks to select parameter ranges. In doing 
so, we use the term “plausible” to denote those parameter sets and steady-state densities whose values are 
consistent with virus-host biology and ecology. In addition, we use the term “feasible” to denote those 
parameter sets whose associated steady state densities are all positive for a given infection matrix. The 
steps to generate parameter sets in each of the frameworks are:

Ruled-based framework:

•	 Choose a focal matrix.
•	 Solve for the feasible steady state of the focal matrix implicitly in terms of model parameters.
•	 Choose plausible regions in parameter space that satisfy the feasible steady state conditions.
•	 Generate a parameter set by sampling uniformly from feasible and biologically plausible regions.
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Feasibility-based framework:

•	 Choose a focal matrix.
•	 Sample one set of values each of carrying capacity, adsorption rate, burst size, virus and host steady 

state densities (K, φj, βj, ⁎Hi , ⁎V j ) for all species from biologically plausible regions.
•	 Solve the steady state equations to find specific values of host growth rate and virus mortality rate, ri 

and mi, respectively for all species.
•	 If the values of ri and mj are plausible, then these together with the previously sampled K, φj, and βj 

form a feasible and plausible parameter set.
•	 Generate a parameter set by sampling uniformly from a region centered around the specific feasible 

parameter set.

We used three focal networks in the feasibility-based framework (Fig. 7) and two focal networks in 
the ruled-based framework (Fig. 2). The following sections explain each framework in detail.

Parameter range selection in the ruled-based framework.  In the rule-based framework, we start with a 
particular focal matrix and analytically solve for the steady states. From the steady states we obtain 
constraints on the life history traits (rules in the form of inequalities) which guarantee feasibility. For 
example, feasibility in the perfectly nested network requires an ordering of host growth rates 
( > > … > )r r r1 2 10  amongst other rules. We then choose biologically plausible regions of parameter 
space that satisfy these rules and look at how biodiversity varies with network nestedness. For this, we 
draw uniformly distributed parameters from these fixed regions and calculate average persistence for an 
ensemble of networks that span a large range of nestedness values. We followed this framework for two 
different focal matrices: one with high nestedness (Fig. 2b) and one with low nestedness (Fig. 2a). This 
framework has the advantage that the rules for feasibility characterize the entirety of parameter space by 
dividing it into feasible and non-feasible regions for each focal network. Nonetheless, it is not trivial to 
generalize this framework to an arbitrary focal network. As a consequence we were not able to find a 
low-nestedness network with the same connectance as the rest of the matrix in the ensemble and with 
simple feasibility rules. Instead, the focal low-nestedness network used to show a different trend of per-
sistence vs. nestedness has a slightly larger connectance (three more interactions) than the rest of the 
matrices in the ensemble.

1. Feasibility conditions for the perfectly nested network.  We make the following assumptions regarding 
Eqs. (1)–(2): there is equal intra-specific and inter-specific competition across bacterial strains (aii′ =  1), 
and virus adsorption rates and burst sizes are independent of bacterial strains (φij =  φj, βij =  βj). Using 
these assumptions we find general expressions for the steady states, H* and V*, in terms of the life history 
traits for a 10 by 10 perfectly nested network (Fig. 2b) by solving Eqs. (3) and (4):
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In order for all strains to have positive densities, the life history traits must satisfy:
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These expressions generalize to perfectly nested networks of any size17.

2. Feasibility conditions for the low-nestedness network.  Here we derive constraints on the life history 
traits for a low-nestedness network. In order to obtain rules that are easier to interpret we set aii′ =  1, 
βij =  β, and φij =  φ. These assumptions imply that: intra-specific and inter-specific competition between 
bacterial strains is equal and the virus burst size and adsorption rates are independent of host and virus 
strain. We use the low-nestedness matrix presented in Fig. 2a, which has several symmetries that result 
in simpler rules. By solving Eqs. (3) and (4) with this matrix we find the following steady states:
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In order for all strains to have positive densities, the life history traits must satisfy:
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Parameter range selection in the feasibility-based framework.  In this framework parameters are selected 
from intervals centered around particular feasible parameter sets of a focal network. We make the follow-
ing assumptions to the general model (Eqs. (1)–(2)): equal intra-specific and inter-specific competition 
across bacterial strains (aii′ =  1), and virus adsorption rates and burst sizes are independent of bacterial 
strains (φij =  φj, βij =  βj). These assumptions are not necessary to implement this framework, but we use 
them because they simplify the analysis. In particular, under these assumptions, a feasible coexistence 
equilibrium is guaranteed to exist whenever the infection matrix M is invertible. When these assump-
tions are not satisfied, one must check whether the matrices β ⚬  φ ⚬  M and φ ⚬  M are invertible; defined 
in Eqs. (3) and (4). If the system is not solvable then the life history traits generated contain degeneracies 
that make some combination of viral or host strains effectively equal. We selected three focal infection 
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networks M (Fig.  7), and values K, φj, βj, H*, V* from random uniform distributions in biologically 
plausible regions. Then, using Eqs. (3) and (4), we obtained values for mi and ri. With this procedure we 
obtain a set of life history traits values that yield a feasible fixed point. For each parameter value, θ, local 
perturbations are made by sampling from an interval of length 2δθ centered around θ. The particular 
values of delta used are included in the caption of Fig. 5.
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