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Abstract: This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic
aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living
near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were
collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the
industrial area and three comparative schools more than 20 km away from any industrial activity.
A gas chromatography–mass spectrometer was used to determine the analysis of 16 United States
Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly
selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured
in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m−3 and from 5.93 to
35.06 ng m−3. The PAH emission in exposed schools was contributed mainly by traffic and industrial
emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime
cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed
children and comparative populations was 2.22 × 10−6 and 2.95 × 10−7, respectively. The degree of
DNA injury was substantially more severe among the exposed children relative to the comparative
community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects
and cancer among children.

Keywords: polycyclic aromatic hydrocarbons (PAHs); children; DNA damage; industry

1. Introduction

Particle-bound polycyclic aromatic hydrocarbons (PAHs) are highly lipophilic and
pervasive harmful organic pollutants. They are present ubiquitously in the environment
and eventually enter the human body through three main routes: inhalation, ingestion
and dermal absorption [1–3]. They can be absorbed into air particles, with carcinogenic
and mutagenic properties [4–7]. The Agency for Toxic Substances and Disease Registry
(ATSDR) ranks PAH congeners at 9 of 275 in a priority list of hazardous substances due to
the potential severe health threat for humans and the environment [8].

Atmospheric PAHs, primarily derived from anthropogenic activities such as industrial
operations, vehicle exhausts, refineries, waste incineration and domestic heating, are
emitted by incomplete combustion of organic matters at high temperatures [9]. Numerous
international studies in petrochemical industrial areas and oil refineries have tracked
particulate contamination and severe particulate PAH emissions [10–14]. Nevertheless,
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the adverse health effects on children living in nearby industrial areas have not been
extensively investigated.

Owing to their developmental stage and physical and biological conditions, children
are among the most vulnerable populations [15]. They are known to have a low metabolism
capacity than adults; therefore, contaminated air inhalation can increase the metabolism
burden in their small bodies [16]. Health symptoms encountered early in life increase
a child’s future risk of disease and lead to permanent consequences [15]. In previous
research, PAH exposures among a vulnerable population, such as children, have been
highlighted [16–23]. Inhalation of particulate-bound PAHs was found to have a significant
impact on the well-being of children and to be correlated with their growth [24], lung
function impairment [25], obesity [26], low-grade inflammation [2], respiratory symptoms,
tachycardia and cell damage [27].

Exposure to high urban and industrial air contaminant concentrations has been closely
correlated with genetic damage in the children [20,28–30]. Research by Sánchez-Guerra et al.
found that school children living in industrial areas and heavy traffic suffered significant
DNA damage compared to students living in less polluted areas [31]. Investigations of the
chronic impact of exposure to PAHs helped understand the contribution of environmental
exposure as a risk factor for cancer, especially in moderate or low air pollution, with
biomarker application [32–34]. In addition, increasing proximity to the industrial zone and
the busiest road exposed children to higher PAH contamination levels, increase the risk of
childhood cancer and respiratory implications [35–39].

This present study aims to quantify the level of particulate PAH exposure in the indoor
and outdoor environments of schools located in the vicinity of the petrochemical indus-
trial area. The exposure sources of PAHs were identified based on the source diagnostic
and principal component analysis (PCA). The incremental lifetime cancer risk (ILCR) for
children due to PAH inhalation was assessed using Monte Carlo simulation. Moreover,
this study investigated the association of exposure to particulate PAHs with potential
genotoxicity among primary school children, as indicated by the DNA damage level in
their buccal epithelial cells.

2. Methods
2.1. Study Location

The 24 h PM2.5 (fine particle with a diameter generally less than 2.5 µm) sampling
for five consecutive school days was carried out at three primary schools located within
5 km of the petrochemical industrial area, which were referred to as schools S1, S2 and
S3. Meanwhile, schools C1, C2 and C3 were three comparative schools situated more
than 20 km away from the industrial area and away from any industrial activity. Both the
exposed and the comparative regions were situated in Terengganu, Malaysia (Figure 1). A
comprehensive description of the sampling sites can be found in Table S1 (Supplementary
Materials). The PM2.5 samples were collected between January to May 2017.

2.2. Study Population

The comparative cross-sectional analysis included 234 children aged between 9 and
11 years who met the inclusion and exclusion requirements of the respondent selection.
These criteria were determined to evaluate the confounding factor because there was a
significant association between the increase in chromosomal damage in a respondent and
chronic diseases [40]. Children with a family history of cancer who received radiotherapy
or chemotherapy in the past 12 months or X-rays in the past 3 months were excluded
from this research. Any radiation exposure might have induced cytogenetic alteration and
influence the validity of the outcome of this study [41]. Before the sample collection was
conducted, written informed consent was sought from the children’ parents or guardians.
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Figure 1. Map of peninsular Malaysia and the study area (Terengganu State). The six schools are
located in the districts of Dungun and Kemaman, Terengganu.

2.3. Measurements of Particulate Matter

A total of 60 indoor and outdoor PM2.5 samples were collected using a low-volume air
sampler equipped with cyclone (Airmetrics Mini Vol, Springfield, OH, USA) with a flow
rate of 5 L min−1 through weighted quartz microfiber filters (47 mm diameter). The air
sampler was positioned approximately 1 m above the floor and was placed in the school
garden and the preferred classroom in a safe area.

2.4. PAH Analysis

With a few modifications, the extraction of particulate PAHs by Sulong et al. and
Khan et al. was adopted [5,42]. In a glass bottle containing a mix of 10 mL of dichloromethane
(DCM) and n-hexane (5 mL:5 mL), filter paper was cut into small pieces. For a total of
30 min, the sample was sonicated in a bath sonicator, with a 2 min run and 1 min rest.
A filtration unit containing an annealed glass fibre filter was used to filter any residual
insoluble particles, and the collected solution was purified. Under a gentle blow of ni-
trogen gas, the extract was concentrated to approximately 0.2 mL of the extract. Next, to
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reconstitute the extract residue, 0.7 mL of n-hexane was added gently and spiked with
0.1 mL of 4.0 ppm standard surrogate perylene before transferring it into a cartridge for
solid-phase extraction (SPE).

To clean up and pre-concentrate samples, a silica SPE cartridge (Agela Cleanert CN-
SPE 1000 mg 6 mL−1) was used. The SPE cartridge was conditioned with 10 mL of n-hexane
to activate the packing material of the chromatographic sorbent and to allow a proper phase
interface with the sample. The final procedure of the SPE operation was followed by PAH
elution by a mixture of dichloromethane and n-hexane (3.5 mL:6.5 mL). Under a gentle
stream of nitrogen gas, the eluent was blown down until scorched. Before transferring to a
2 mL autosampler vial containing a vial insert, it was diluted with 0.1 mL of n-hexane.

The gas chromatography–mass spectrometry (GCMS) instrument (Agilent Technolo-
gies) was calibrated with standard mixtures of PAHs such as naphthalene (NAP), acenaph-
thene (ACP), acenaphthylene (ACY), anthracene (ANT), fluorene (FLU), phenanthrene
(PHE), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), benzo(a)anthracene (BaA),
chrysene (CYR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene
(BaP), indeno(1,2,3-cd)pyrene (IcP), dibenzo(a,h)anthracene (DbA) and benzo(ghi)perylene
(BgP). The GC column temperature was programmed as follows: initial 40 ◦C, followed
by a temperature increase to 150 ◦C (8 ◦C per min), and an increment of 4 ◦C per min
until 310 ◦C for a 6 min hold. The PAH concentration was determined through an internal
calibration standard containing a known concentration mixture of 16 PAH congeners. The
final concentration PAHs in the PM2.5 was calculated using the following equation, in
which the total air volume was 7.2 m3:

C (ng m−3) = C determined (ng ml−1) × dilution factor/air volume (m3) (1)

2.5. Health Risk Assessment

Risk assessment is an essential method for assessing the adverse effects of PAH
exposure on human health, defining the target organ and identifying the particular effects
of chemicals to find an appropriate risk minimisation solution [43]. The carcinogenicity
potency PAHs can be determined based on the benzo(a)pyrene equivalent concentration
(BaPeq), also known as toxicity equivalent concentration (TEQ). Obtaining the TEQ for
the PAH compounds requires the involvement of reference toxicity equivalent factors
(TEFs) proposed by Nisbet and Lagoy [44], relative to the carcinogenic potency of BaP. The
TEQ was determined based on a constant TEF value multiplied with the individual PAHs’
concentration, as indicated by the following equation:

TEQ = 0.001 (NAP + ACP + ACY + FLU + PHE + PYR) + 0.01
(ANT + BgP + CYR) + 0.1 (BaA + BbF + BkF + IcP) + BaP + DbA

(2)

Afterwards, the incremental lifetime cancer risk (ILCR) model was used to estimate
the carcinogenic risk due to respiratory exposure to PAHs [45–47]. The following equation
was employed to calculate the unitless ILCR of PAH exposure in children:

ILCR =
C × 3

√
BW
70 × IR × ED × EF

BW×AT
× CSF (3)

where C indicates the carcinogenic PAHs based on BaPeq (ng m−3) and IR is the air
inhalation rate for children (12 m3 day−1) [48]. EF stands for exposure frequency or total
schooling day in the year 2017 (250 day year−1), and ED denotes the exposure duration
or length of time of contaminant contact for children (6 years) [48]. BW is the measured
body weight of children during the sampling, and AT is the averaging time of carcinogenic
PAHs exposure (70 years × 365 days) [48]. CSF refers to inhalation carcinogenic slope for
BaP, which is 3.85 mg kg−1 day−1 [49].

The ILCR model prediction could either overestimate or underestimate the actual
carcinogenic risk. Consequently, the outcome of cancer risk was not applied to the entire
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population of interest. Integrating variability and uncertainty into the risk model is a
more precise approach to determine the probabilistic carcinogenic health risk. Therefore,
Monte Carlo simulation with 10,000 iterations was employed in this study to appraise the
probabilistic ILCR range of children exposed to PAHs for the exposed and comparative
schools. The simulation also integrated the uncertainty and variability of the measured PAH
concentrations and the specific determinant of children’s exposure [47,50,51]. Afterwards,
sensitivity analysis was conducted to identify input parameters that significantly influence
the estimated risk. Both analyses were implemented using Crystal Ball software (version
11.1.2.4; Oracle Corp., Austin, TX, USA). Table 1 portrays the variable distribution types
used in the Monte Carlo simulation for both exposed and comparative schools.

Table 1. Types of variable distribution used in the Monte Carlo simulation.

Variable Unit Distribution Mode Exposed School Comparative
School

Toxicity
equivalent

concentration
(TEQ)

ng m−3 Logistic &
Log-normal 17.35 2.21, 2.51

Inhalation rate
(IR) m3 day−1 Constant 12 12

Exposure
frequency (EF) day year−1 Constant 250 250

Exposure
duration (ED) year Constant 6 6

Averaging
time days Constant 25,500 25,500

Body weight
(BW) kg Negative binomial 0.206 0.307

Cancer slope
factor (CSF)

mg kg−1

day−1 Constant 3.85 3.85

The value for logistic data is an arithmetic mean, the value for log-normal distribution is LN (arithmetic mean,
standard deviation) and the negative-binomial distribution data are represented by a p-value.

2.6. Collection of Exfoliated Buccal Mucosa and MN Assay

Buccal mucosa cells were obtained by gently scraping the inner sides of both cheeks
with a sterile cytology brush. The brush was then dipped into a microcentrifuge tube
containing 0.1 M phosphate buffer solution (pH 7.5) and stored in a freezer at −20 ◦C.

2.7. Comet Assay

The standard procedure of the Comet Assay Kit (Trevigen, Gaithersburg, MD, USA)
was followed to conduct this assay. The cell suspension was washed with sterile phosphate-
buffered saline (PBS) solution and centrifuged for 1 min at 2500 rpm to obtain the precipitate
cells. The cells were mixed with 75 µL of molten low melting agarose (LMA) (Trevigen,
Gaithersburg, MD, USA) and immediately embedded in the comet slide. Next, at 4 ◦C, the
fixed cells underwent a lysing procedure in a pre-chilled lysis solution for 60 min, followed
by immersion at room temperature for 60 min in a freshly prepared alkaline solution. At a
constant voltage of 20 V, the slide was immersed for 20 min in an electrophoresis buffer.
It was gently rinsed with 70% ethanol and deionised water after electrophoresis. The
comet images were visualised with a 50 µL SyBr Green diluted solution staining effect. A
fluorescence microscope randomly captured 100 comet images under 20×magnification
(Motic, Hong Kong, China). Using OpenComet software, which has greater precision and
can minimise human bias, the DNA damage was measured as a tail moment [52].

2.8. Statistical Analysis

The Statistical Package for Social Science (SPSS) version 22.0 analysed all the data.
The normality test determined the subsequent statistical analysis, either parametric or
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non-parametric tests. Bivariate analysis was applied for the mean comparison and the
association of the parameters tested in this study. Multiple linear regression was performed
to assess the factors contributing to DNA damage among the children.

Using XLSTAT 2020.5.1 software to classify and check the various sources of PAH
pollutants in the sampling areas, principal components analysis (PCA) with varimax
rotation was carried out [53]. The missing data were substituted by half of the value of
the method detection limit (MDL) [18] prior to running PCA. Before proceeding with
compatibility data testing, the entire dataset was converted to a dimensionless form. As far
as ensuring the compatibility of PCA data was concerned, the Kaiser–Meyer–Olkin (KMO)
test and Bartlett’s test of sphericity were performed [45]. A KMO value greater than 0.5
indicated that the PAH dataset was in the best condition to be applied in the PCA software.

Additionally, a significant chi-square of Bartlett’s test also indicated that the dataset
was appropriate to be used. Using the varimax method with Kaiser standardisation, the
major elements with eigenvalues greater than one were extracted and rotated. The PCA
factor loadings were interpreted depending on the correlation value, which was assumed
to be a heavy loading value above 0.75. Moderate loading varied between 0.50 and 0.75,
and weak loading ranged from 0.30 to 0.50 [54].

2.9. Quality Control

To ensure the equilibrium of mass concentration, blank filters were conditioned in a
desiccator for 24 h. All the glassware was first washed with running tap water and rinsed
with distilled water, followed by hexane, methanol and acetone, to analyse PAHs. To
volatilise and eliminate organic contaminants, the glassware and filter paper were baked in
a furnace for 4 h at 400 ◦C [5,42].

All samples were spiked with 0.1 mL of 4 ppm internal standards (chrysene-D12 and
perylene-D12) during sample preparation to test for potential organic contamination. For
the internal standards, the recovery efficiency ranged from 76% to 95%. With minimal
indirect light exposure to avoid photodegradation, all sample extraction procedures were
carried out under a fume hood. Blank filters for the actual samples were extracted and
analysed using the same approach to ensure no major background interference. To create
calibration curves, five points (0.1 to 1.0 mg L−1) of the certified reference standard of
the EPA 610 Polynuclear Aromatic Hydrocarbons Mixture (Supelco, Bellefonte, PA, USA)
were analysed. The limits of detection (LOD) was determined on the basis of independent
measurements of the blank sample and its standard deviation. The correlation coefficient
and LOD of 16 USEPA priority PAHs are presented in Table S2, Supplementary Material.

Furthermore, the quality control for the comet assay included observation of the
zigzag method to prevent overlapping views. The sample of buccal epithelial cells was
properly shielded from direct sunlight. Moreover, sample preparation and examination
were performed under dim light. During the scoring stage, a potential error in determining
DNA damage may occur. To manually mitigate false-positive occurrences, OpenComet
software used in the comet assay allows the user to discard the irregular comet shape.
Interestingly, a statistical outlier analysis of each comet image was also applied to this
software. The inconsistent image has been identified as an outlier and can minimise the
number of false positives [52].

3. Results and Discussion
3.1. Distributions of PAH Species at the Exposed and Comparative Schools

Figure 2 portrays the distributions of particulate PAHs in the exposed and compara-
tive schools, sampled 24 h during school days. The highest concentration of total PAHs
was recorded in exposed school S2, with a mean value of 67.72 ± 49.84 ng m−3, closely fol-
lowed by school S1 (64.64 ± 44.85 ng m−3) and school S3 (61.60 ± 39.74 ng m−3) (Table S3,
Supplementary Materials). On the other hand, the comparative schools located more than
20 km away from the petrochemical industrial areas reported low PAH concentrations,
especially schools C2 (5.93 ± 0.59 ng m−3 and C3 (6.36 ± 1.19 ng m−3). School C1 demon-
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strated a contrary finding, with a concentration six times higher (35.06 ± 9.71 ng m−3) than
the other two schools (5.93 ± 0.59 and 6.36 ± 1.19 ng m−3). The concentration trends in
indoor PAHs for the exposed schools were as follows: S1 (63.22 ± 33.95 ng m−3) > S2
(54.97 ± 48.94 ng m−3) > S3 (44.27 ± 28.40 ng m−3). Meanwhile, comparative school C1
demonstrated the highest indoor PAH concentration (13.09 ± 8.93 ng m−3), followed by
schools C2 (4.65 ± 0.77 ng m−3) and C3 (4.24 ± 1.14 ng m−3).
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Figure 2. Distribution of polycyclic aromatic hydrocarbon (PAH) species in PM2.5 samples ((A): out-
door; (B): indoor).

In general, the distribution of individual PAHs was strongly dominated by the species
of heavy-molecular-weight (HMW) PAHs, structured by four to six rings (Figure S1, Sup-
plementary Materials). Schools C2 and C3 showed a contrasting finding; however, the
low-molecular-weight (LMW) PAHs dominated the total concentration of PAHs relative to
HMW PAHs. The outdoor LMW PAH concentrations of the three schools were 5.15 ± 0.52,
5.19± 1.16 and 16.38± 11.67 ng m−3, respectively. The findings also depicted that the ACY
and ACP were barely undetected by the instrument due to the low concentration present
in all samples. The majority of HMW organisms, especially in schools C2 and C3, were
present in small and intense concentrations. BaP and PYR were the most prominent species
in particulate PAH samples for all the exposed schools, with concentrations exceeding
10.00 ng m−3. Besides, PYR was also the highest species found in the outdoor samples
of school C1. The higher fraction of HMW PAHs could be influenced by the degree of
solvent extraction efficiency [55]. In this study, dichloromethane and n-hexane had similar
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polarity properties as the HMW PAHs, thus favouring the excellent extraction efficiency of
the heavier PAH component.

On the other hand, particulate PAHs measured at schools C2 and C3 were highly influ-
enced by FLU species in outdoor and indoor samples, with a concentration of 4.00 ng m−3.
The results specifically demonstrated that schools within a distance of 5 km from the
industrial areas were subject to higher PAH concentrations relative to comparative schools.
In the outdoor samples, the results also revealed a higher degree of PAHs than the indoor
samples. Traffic emissions, idling vehicles during school dismissals and parking could
lead to this condition [56]. In addition, the location of air-sampling pumps in the shielded
environment in the classroom (i.e., doors and windows were closed during school hours)
may be the justification for the low concentration of indoor PAHs [57].

The PAH concentration in the research area was higher than in a study by Di Gilio et al.,
as the indoor concentration was up to 2.36 ng m−3 at a school near the steel industrial
area [58]. BbF, BgP, IcP, BkF, and DbA species were identified as the most abundant con-
stituents in that study, which was scientifically known as a proxy for traffic and coke oven
emissions. Meanwhile, at the two primary schools in North Portugal, the industrial air
pollutant and traffic exposure caused elevated PAH levels, with values of 20.00 and 48.00
ng m−3 [59]. In a school dormitory in an urban area of Tehran, Hassanvand et al. reported
higher indoor and outdoor PAH concentration levels of 281.25 and 361.75 ng m−3, respec-
tively [60]. The researchers eloquently mentioned that PHE, FLU, BaA, CYR and BgP were
the most abundant PAH species, contributing significantly to fuel combustion activities
(traffic and domestic heating emissions). Meanwhile, a school in Beijing demonstrated a
higher PAH concentration (36.83 ng m−3) than the comparative schools, heavily dominated
by ACY and FLA species [61].

Several subsequent studies on petrochemical air pollutant exposure have reported
a higher PAH concentration than this present study. In a township within 10 km of the
largest petrochemical complex in Taiwan, research by Yuan et al. found a higher PAH
concentration, with an average PAH concentration of 15.20 ± 15.18 µg g−1 [11]. BbF, FLA,
PYR, BaP, BgP and IcP were the most prominent PAH species and could be emitted from oil
refinery plants and coal power plants. The concentration of particulate PAHs (PM10) from
petrochemical-related factories in the Niger Delta, Nigeria, meanwhile, was 9.2 µg m−3 [62].
Similarly, in a petrochemical industrial complex in Ulsan, Korea, the PAH concentration
obtained in road dust was 55.33 ± 15.83 µg g−1, which was comparatively higher than
the current study [13]. The study eloquently defined that the ring number distribution of
PAHs in the petrochemical area was close to a heavily trafficked area, possibly because of
the similarity in pollution sources. A study by Bozlaker et al. in Turkey, however, showed
that the comparable concentration of PAHs (particulate and gas) varied in summer from
7.30 to 44.80 ng m−3 [14].

3.2. Source Diagnostic Ratio

The diagnostic ratio of the analysis source determined the possible sources by contrast-
ing parent PAH ratios with frequently found PAH emissions (Figure S2, Supplementary
Materials). The ratio of LMW/HMW PAHs was shown by the anthropogenic source appor-
tion index, with values lower than 1 indicating pyrogenic emissions [63]. The ANT/(ANT
+ PHE) ratio was also an anthropogenic source indicator for PAH emissions, with values
less than 0.1 suggesting a petrogenic source. In contrast, any value greater than 0.1 implies
a pyrogenic source [64]. Pyrogenic sources were possibly correlated with around 89.5%
(n = 17) samples from the exposed school. The petrogenic source was an IcP/(Icp + BgP)
ratio of less than 0.2, and the fuel combustion source is denoted by a value ranging from
0.2 to 0.5 [65].

A diagnostic ratio value that is higher than 0.5 indicates combustion of grass, wood or
coal. The data specifically showed that all classes, except comparative school C1, which
had a mean ratio of 0.46, were predominantly grass-, wood- or coal-combustion-sourced.
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Relatively, exposed school S1 had the highest sample number (n = 7, 63.6%) originating
from fuel combustion.

In comparison, coal combustion and vehicular emissions can be distinguished by
BaA/CYR [65]. A value of 0.2 and 0.35 denoted coal combustion, while vehicular emissions
were responsible for a value greater than 0.35. The ratio indicated that the concentration
of PAHs could have been caused by coal combustion, with 10 of the exposed school
samples providing a large pollution source tracer. However, the majority of the samples
were predominantly from traffic pollution. A diagnostic ratio of BaA/(BaA + CYR) was
proposed by Yunker et al. for the determination of the PAH emission source [66]. The
ratio value of the petrogenic source was less than 0.2, while that of the mixed source was
between 0.2 and 0.35. The contribution of combustion activity was demonstrated by a
ratio larger than 0.35. The petrogenic source denominated five samples of the exposed
school based on the analysis. In contrast, the mixed source may emit two samples, and the
remainder of the samples (70.8%) may be released from the combustion activity.

Two vital anthropogenic sources contributed to air emissions in traffic, gasoline and
diesel, comprising multiple constituents with congeners of high-molecular-weight PAHs.
According to Fang et al., it is possible to use a diagnostic ratio formulated with FLU/(FLU
+ PYR) to discriminate between two origins of traffic emissions having a value less than 0.5,
suggesting the origin of gasoline [67]. On the other hand, a value greater than 0.5 means
a source is diesel-combusted. Diesel emissions (93.3%, n = 14) were the major influence
for the comparative schools, while 100% samples of schools S2 and S3 were suspected of
containing a gasoline marker, which may be contributed positively by heavy-duty vehicles
passing by. Comparative schools are situated less than 50 m from the main road frequently
used by palm oil lorries owned by the nearby plant oil plantation.

The exposed schools had a higher percentage of gasoline emissions, primarily due to
heavy-duty vehicles (i.e., diesel-powered trucks) from the midstream area of the logistics
hub of the petrochemical industry, contributing to the FLU/(FLU + PYR) diagnostic ratio.
Gasoline combustion was also abundantly present in the samples of schools S1 and S2. The
schools were less than 100 m from the main road and had a higher fraction of PAHs with a
heavy molecular weight. This result was parallel to [5,42,68], as light- and medium-duty
tailpipe vehicles contribute to a higher concentration of heavy congener PAH emissions.
Lin et al. suggested that automobiles powered by gasoline contribute to PAHs of medium
and high sub-atomic weight [69].

Furthermore, diesel-fuelled vehicles have also been correlated with lower PAH per-
centages. This study’s findings suggested that PAH sources may come from emissions
from the oil and gas industry and traffic, wood, grass or coal combustion. A similar finding
was reported in a previous study [11], as the location near a petrochemical complex was
predominantly sourced from coal combustion based on the BaA/(BaA + CYR) diagnostic
ratio measured at 0.67. In addition, it was proposed that the bituminous coal used in the
petrochemical complex, in particular PYR, BaP and BbF, could emit a higher proportion of
four- and five-ring PAHs.

3.3. Principal Components Analysis (PCA)

Three significant major principal components (PCs) for PAH emissions with a value
above 1 were discovered by PCA, accounting for 75.06% variability data of the exposed
schools. The contributing emission factors from the PCA of 28 samples of exposed schools
and 18 samples of comparative schools are shown in Table 2. The hefty contribution of
NaP, FLU, PYR, BbF, CYR, IcP and BgP was defined by PC1, with a total variance of 45.12%.
BbF, CYR, IcP and BgP were indicative species for vehicle exhaust emissions [42,70]. Some
studies have identified the emission of coke ovens as being supported by NAP, BgP and
IcP [71,72]. Petroleum combustion is indicated by a higher fraction of HMW species,
especially BbF, IcP and BgP [73]. Meanwhile, 14.48% of the overall variation was clarified
by PC2, primarily weighted by BkF, BaA, and FLA. As a tracer for diesel emissions, the
three species in PC2 were identified [71]. PC3 had a difference of 15.10% and had heavy
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ANT loading and moderate PHE and DbA loading. The superiority of ANT, PHE and
DbA [74] was represented by wood combustion behaviour. Vehicular traffic and industrial
pollution may be positively attributed to the mixture of PC1 and PC2.

Table 2. Principal components analysis with varimax rotation.

Principal
Component (PC) Species Factor

Loading Eigenvalue Variability (%) Source

PC1
Exposed schools

NAP 0.824

7.201 45.120 Vehicle and
coke oven

FLU 0.829
PYR 0.741
BbF 0.827
CYR 0.859
IcP 0.889
BgP 0.804
BaP 0.630

PC2
Exposed schools

BkF 0.828

1.782 14.836 Gasoline
FLA 0.728
BaA 0.758
BbF 0.293
BaP 0.233

PC3
Exposed schools

ANT 0.948

1.526 15.103
Wood com-

bustion,
diesel

PHE 0.700
DbA 0.558
NAP 0.341
PYR 0.335

PC1
Comparative

schools

PHE 0.853

7.130 47.040 Vehicle

PYR 0.931
BbF 0.938
BaP 0.907
IcP 0.918
BgP 0.832

PC2
Comparative

schools

BaA 0.941
2.857 27.27 DieselBgP 0.954

CYR 0.714

PC3
Comparative

schools

ANT 0.977
1.080 9.34 Wood com-

bustion
NAP 0.231
FLU 0.258

On the other hand, three PCs were greatly derived from the same study, with 83.66%
variance in the dataset of the comparative schools. With 47.04% of the overall variation, the
first identified PC clarified the dominant contribution of six species (PHE, PYR, BbF, BaP,
IcP and DbA). Meanwhile, with 27.27% data variance, the high loadings of BaA, BgP and
CYR distinguished PC2. PC3 accounted for 9.34% of the overall variation, with heavy ANT
loading and poor NAP and FLU loading. The activities of vehicle emissions (PC1), diesel
combustion (PC2) and wood combustion (PC3) were better represented in comparative
schools by the profile of PAHs.

3.4. Health Risk Assessment

Generally, exposed school S1 showed the highest TEQ values (20.01 ng m−3), followed
by S3 (16.89 ng m−3) and S2 (13.69 ng m−3) (Table S4). The TEQ values for comparative
schools C1, C2, and C3 were 5.51, 0.54 and 0.21 ng m−3, respectively. A similar finding
was observed in two elementary schools in Portugal, with TEQ values reaching up to
22.00 ng m−3 [75]. Besides, it was found that TEQ values in this study were higher than
in studies reported in the urban city of Kuala Lumpur, i.e., 640.01 and 266.27 pg m−3,
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respectively [5,76]. Oliveira et al. mentioned that Asian schools had higher TEQ values
(range: 4.70–49.4 ng m−3) than European schools (range: 0.04–29.8 ng m−3) [6].

On average, BaP contributed over 50% of TEQ values, thus explaining this congener’s
predominant role in assessing the cancer risk due to PAH exposure [76]. Meanwhile, DbA
portrayed the second-highest contributor to TEQ values ranging between 0.93% and 33.86%.
Furthermore, the DbA congener predominantly contributed up to 69% for school C3, and
the rest of the schools had an average percentage TEF of less than 50%. Oliveira et al. also
identified that BaP and DbA were the most influential contributors to TEQ values in the
health risk assessment [59].

Based on the ILCR model proposed by USEPA, the cancer risk due to exposure to
PAHs through inhalation was determined [48]. The exposed children relatively had a sub-
stantially higher cancer risk than the comparative groups. It can be arranged in increasing
order: C3 (1.37 × 10−8) < C2 (3.62 × 10−8) < C1 (3.81 × 10−7) < S2 (9.28 × 10−7) < S3
(1.09 × 10−6) < S1 (1.29 × 10−6). Differences in body weight, physiology and variation in
PAH exposure in individuals contribute to the uncertainty in evaluating health risks [47].
Hence, a more precise cancer risk estimation of PAH inhalation was obtained through
Monte Carlo simulation, as depicted in Figure 3. The mean value of the simulated probabil-
ity cancer risk for the exposed and comparative schools was 1.20 × 10−6 and 8.38 × 10−8,
respectively. Both mean values show similarity to the actual generated ILCR in SPSS
software (1.13 × 10−6 and 1.6 × 10−7). The 95th percentiles of the ILCR calculated the risk
for the exposed and comparative populations as 2.22 × 10−6 and 2.95 × 10−7, respectively.
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The ILCR for the exposed children exceeds the acceptable risk limit of the USEPA refer-
ence and denotes a non-negligible risk [48]. The estimated carcinogen risk in this study for
the exposed group was notably higher than two recent local studies in Kuala Lumpur (the
year 2014: 3.32 × 10−8; the year 2019: 2.64 × 10−8), which was predominantly contributed
by traffic emission [5,76]. Meanwhile, the magnitude of the ILCR for comparative schools
was relatively lower than the risk calculated in elementary school children in Portugal,
between 1.0 × 10−8 to 5.0 × 10−8 [75]. Oliveira et al. also eloquently concluded that
Asian children are exposed to a higher magnitude of the ILCR (1.3 × 10−6 to 5.4 × 10−5)
as compared to European children (5.9 × 10−9 to 1.1 × 10−8) [6]. Moreover, exposure to
PAHs originating from vehicles, biomass, coal combustion and petroleum combustion
increased the ILCR values to 2.1 × 10−5 for children in Ulaanbaatar City, Mongolia [77].
Drastic environmental health control measures are required to effectively mitigate the
non-negligible cancer risks due to PAH exposure [78].

Sensitivity analysis disclosed the most persuasive variable for the carcinogenic risk
due to PAH inhalation. For the exposed group, the children’s body weight (−0.78) and the
PAH concentration in the TEQ value (0.42) were the most influential determinants in the
ILCR estimation (Figure 4A). A negative value of correlation shows that the increase in the
predictor is related to a decrease in the ILCR prediction. Meanwhile, the TEQ value in the
comparative dataset contributed about 66.7% variance of the risk output (Figure 4B). Simi-
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larly, the body weight of children in the comparative area had an antagonistic relationship
(−0.19), which is consistent with health risk assessment studies [51,79,80].
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3.5. Individual Factors in DNA Damage

The tail moment of the exposed group (27.20 ± 8.21) was significantly longer than
the value recorded in comparative school children (21.03 ± 4.88). The respondents from
school S2 had the highest amount of DNA damage (31.89 ± 11.28) compared to children
in other schools. On the other hand, the shortest tail moment, 20.43 ± 5.34, was shown
by children in school C1. When statistically evaluated by one-way ANOVA, the result
indicated that the exposed group had more substantial DNA damage than the comparative
group (Table S5). Interestingly, this result was higher than in previous studies [22,31], when
it was found that children living in proximity to the petrochemical industry in Mexico had
an olive moment of 9.52 (8.65, 10.48) and 8.3 (3.1–16.8), respectively. This disparity may be
attributed to the different cellular samples used (lymphocytes vs. buccal epithelial cells)
and the broader age span of children (6 to 12 years old).

Using independent t-test and one-way ANOVA, the individual tail moment variables
were stratified and compared. The most significant factors for the comparative group
were the age factor and mosquito coil use, according to Table 3. Compared to children
aged 10 and 11 years, children aged 9 years had the shortest comet tail (exposed group:
25.40 ± 4.12; comparative group: 18.44 ± 3.38). In comparison, there was a significantly
larger tail moment (27.24 ± 7.34) for children who lived with smoking family members
than for children who were not exposed to cigarette smoke. In comparison, there was a
considerably longer tail moment (27.41 ± 7.33) for grilled food users than for children who
ate grilled food less regularly (27.08 ± 6.16). Interestingly, children who were exposed
to mosquito coil pollutants, especially in the comparative community (22.27 ± 4.32 vs.
20.20 ± 4.20) (p < 0.05), had a slightly higher tail moment value.

Confounding factors such as exposure to tobacco smoke and age can interfere with
the sensitive comet assay outcome [81]. A recent research by Aksu et al., for instance,
found that DNA damage was more serious among smoking adults than in the control
group, although no significant comparison was observed [82]. Cigarette smoke exposure
among children has been seen to have a significant elevation in DNA damage [83,84].
Gajski et al. did not find any major effect of age on DNA damage among children, although
it was found that gender had a statistical impact on the tail length, tail intensity and tail
moment [85]. In comparison, 25 female children (50%) were observed to have significantly
higher comet parameters than the male ones [85]. Recent research found that a group of
male children living near a waste incinerator had more severe DNA damage than female
children with a high heavy metal exposure burden [86].

The body mass index (BMI) did not influence the outcome of DNA damage in this
current research. Overweight and underweight children, however, had a more extended
tail moment than typical-BMI children. The finding agreed with a previous study [87],
which confidently showed that a higher BMI among the population of healthy Swedish
youngsters resulted in more severe DNA damage. As a result of the formation of reactive
oxygen species and lipid peroxidation, excessive body fat has been postulated to impede
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DNA stability [88]. Regarding the intake of grilled foods, it was confirmed that they contain
carcinogenic substances (i.e., PAHs) [89] and that they are associated with altering the
structure of DNA adducts and may cause DNA damage [90]. Meanwhile, intake of fruit,
vegetables and health supplements could suppress DNA damage [91]. The deficiency of
micronutrients, such as vitamin C, vitamin E, zinc and antioxidants, could also escalate the
risk of deformation of DNA strands and increase the chromosomal damage incidence [92].

Table 3. Comparison of individual factors in the tail moment among children.

Variables Exposed Group (n = 85) Comparative Group (120)

Mean ± SD p-Value Mean ± SD p-Value

Age (year)
9 25.40 ± 4.12 0.409 18.44 ± 3.38 0.005 *

10 26.70 ± 6.07 21.98 ± 4.50
11 27.96 ± 7.38 20.46 ± 4.08

Exposure to tobacco smoke
Yes 27.24 ± 7.34 0.915 20.86 ± 474 0.674
No 27.08 ± 6.31 20.52 ± 3.91

Grilled food
Yes 27.41 ± 7.33 0.804 21.14 ± 4.49 0.354
No 27.08 ± 6.16 20.37 ± 4.17

Supplement
Yes 26.98 ± 6.76 0.646 20.53 ± 4.05 0.584
No 27.60 ± 6.56 21.06 ± 4.92

Mosquito coil
Yes 30.05 ± 7.11 0.085 22.27 ± 4.32 0.034 *
No 26.71 ± 6.46 20.20 ± 4.20

Open burning
Yes 26.15 ± 6.33 0.350 20.56 ± 4.40 0.766
No 27.53 ± 6.73 20.79 ± 4.23

* p-Value is significant at level 0.001.

Various scientific studies have shown the adverse impact of insect repellent and
incense smoke exposure through animal and epidemiological studies [93–95]. Liu et al.
found that a large concentration of volatile organic compounds (VOCs), PAHs, aldehydes
and fine particles, which pose an acute and chronic health risk, could be generated by
mosquito coils [96]. Besides, mosquito coils are the most toxic insect repellents than mat
and liquid repellents [93] due to a higher lipid peroxidation response and increased free-
radical substances that can alter the cell membrane and cause damage to DNA [95]. In this
current study, DNA damage in buccal epithelial cells, especially among the comparative
population, was significantly affected by mosquito coil exposure. An in vitro study by
Szeto et al. confirmed the finding, as they discovered that insect repellents (i.e., incense
burning) could cause degradation of the DNA strands in human lymphocytes [97]. The
indoor air toxins of mosquito coils were also associated with lung cancer incidence [98,99].

3.6. Relationship between Tail Moment with PAH Exposure and Other Risk Factors

Individual factor and environmental PAHs exposure were assessed individually on
how diverse the factors contributed to DNA damage among children. Simple linear regres-
sion demonstrated a highly significant relationship between PAHs concentration and DNA
damage. Furthermore, the analysis also revealed a significant association between age, BMI,
and open burning on DNA damage (Table S6, Supplementary Materials). Multiple linear
regression was further performed to determine the best measure of the dependent variables
in order to boost statistical aid. The statistical equations indicated that the tail moment
increased with each increased unit of total outdoor PAHs and carcinogens, a decreased
unit of non-carcinogenic PAHs and frequent open burning (Table 4). The first prediction
model consists of two important variables (i.e., total outdoor PAHs and open burning),
with F (3, 206) = 9.643, p < 0.0001 and adjusted R2 = 0.110, which significantly affect the
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tail moment. A combination of two variables suggested that 11.0% of the variability of
the tail moment after confounder adjustment was clarified by the model. Similarly, the
second model includes two significant variables (outdoor PAH concentration carcinogen
and open burning), with F (4, 223) = 9.039, p < 0.0001 and adjusted R2 = 0.124; 12.4% of the
tail moment variance was described. Due to the violation of the p-value, non-carcinogenic
outdoor PAHs, age, BMI and mosquito coil were excluded from the model.

Table 4. Prediction models of the tail moment after controlling all confounders.

Model Adj R2

Model 1
Tail moment = 12.892 + 0.054 (total outdoor PAHs)—2.415 (open burning) 0.110

Model 2
Tail moment = 14.120 + 0.170 (carcinogen outdoor PAHs)—1.870 (open burning) 0.124

Model 3
Tail moment = 13.345 + 0.076 (total indoor PAHs)—2.190 (open burning) 0.115

Model 4
Tail moment = 15.468 + 0.187 (carcinogen indoor PAHs)—2.328 (open burning) 0.127

The significant variables for estimating the tail moment of F (5, 204) = 7.072, p < 0.0001
and adjusted R2 = 0.148 were the total concentration of indoor PAHs and open burning.
After controlling all the possible confounders, the third model described approximately
14.8% of the variance of the tail moment. The fourth model, containing the concentration of
carcinogenic indoor PAHs and open burning, which substantially predicted DNA damage
in the buccal epithelial cell, with adjusted R2 = 0.127, was also obtained from the multi-
variate analysis. In other words, by the interaction of indoor PAH emissions and open
burning, this model substantially explained a 12.7% variation of the tail moment. This
result was in agreement with Gamboa et al., in which more severe DNA damage was found
among Mexican children living close to the industrial area of oil extraction and correlated
with chronic PAH pollution exposure [100]. In that analysis, one of the carcinogenic PAH
species, BkF, was reported as significantly higher (47.29 ± 10.65 vs. 17.36 ± 3.79 ng m−3)
relative to regions without oil extraction activity.

Jasso-Pineda et al. also revealed more significant DNA damage in a population of
children living in a household that used biomass combustion and was strongly associ-
ated with internal PAH exposure, specifically urinary 1-hydroxypyrene (1-OHP) [20]. A
stratified analysis by Sachez-Guerra et al. showed that excretion metabolite PAHs and
DNA damage were significantly correlated, with DNA damage among children living
near the petrochemical industry [31]. Likewise, Ruchirawat et al. eloquently illustrated
a higher internal dose magnitude of PAH metabolites and DNA damage in urban chil-
dren than in the comparative group [23]. In addition, a cross-sectional analysis in Kuala
Lumpur, Malaysia, also showed a high risk of DNA injury and respiratory symptoms
among children attending school near heavy traffic areas [101].

The common practice of domestic open burning of household waste was proposed
to justify the higher incidence of respiratory disease in rural communities [102]. This
research found that the practice of open burning is also statistically established as one of
the causal factors for the higher occurrence of genotoxicity among children. Besides, it has
been conclusively proven that a higher concentration of carcinogenic PAHs is generated
by domestic open burning, especially during the dry season [103]. During school hours,
the residential areas near the schools often burned waste, having a detrimental effect on
air sampling. Therefore, public health issues will be caused by the illegal open-burning
practice among the nearby population, especially during school hours. This leads to an
unhealthy environment and may increase DNA damage among children.

In vitro studies have revealed synergism, additive or antagonism findings through
the genotoxic potency of the PAH mixture [104–106]. The cytotoxicity and genotoxicity
of a mixture of PAHs on HepG2 cells were researched in the year 2018 and disclosed an
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interesting finding [107]. It was found that the binary combination of carcinogenic BaP
with non-carcinogen PAHs is cytotoxic; however, they do not have a genotoxic effect on
the cells. The authors measured a decrease of 60% in chromosomal damage relative to a
single BaP dose. The combination effect of BaP with BbF and BaA pairwise PAHs on the
metabolic p53 pathway is synergistic [108]. Therefore, simultaneous inhalation of various
congeners of PAHs has aggravating mechanistic effects on human health.

4. Conclusions

This present research concluded that sensitive receptors experience higher exposure
to particulate PAHs in the exposed area. The results revealed that the highest concentration
of total PAHs was reported at exposed school S2, with a value of 67.72 ± 49.84 ng m−3,
followed closely by school S1 (64.64 ± 44.85 ng m−3) and school S3 (61.60 ± 39.74 ng m−3).
On the other hand, low PAH concentrations were recorded in comparative schools, es-
pecially in schools C2 (5.93 ± 0.59 ng m−3) and C3 (6.36 ± 1.19 ng m−3). The source
diagnostic ratio and PCA analysis indicated that the source of PAHs could come from
the petrochemical industry, traffic emission and also wood combustion. Monte Carlo
simulation predicted that the 95th percentiles of the ILCR for the exposed and comparative
populations were 2.22 × 10−6 and 2.95 × 10−7, respectively. Generally, the cancer risk
due to PAH inhalation for the exposed children exceeds the acceptable risk limit of the
USEPA reference and denotes a non-negligible risk. Sensitivity analysis disclosed the body
weight of children and PAH concentrations in the air were the most persuasive variables to
estimate a precise carcinogenic risk due to PAH exposure.

Comet assay microscopy analysis found that the exposed groups had a significantly
higher tail moment than the comparative groups. The mean tail moment values were
27.20 ± 8.21 and 21.03 ± 4.88 for the exposed and comparative groups, respectively. Strati-
fied analysis revealed that the age factor and exposure to mosquito coils greatly affect the
tail moment. This research strongly suggested that DNA damage is significantly affected
by particulate PAHs after controlling all possible confounding factors (e.g., demographic,
socio-economic, lifestyle and tobacco smoke exposure) in both study design and statisti-
cal analysis. The result provided evidence that children living in close proximity to the
industrial zone could be subject to greater levels of exposure to environmental PAHs and a
higher risk of genotoxicity than children living in less polluted areas.

Moreover, as limited epidemiological studies have been performed on the relationship
between industrial air pollution and genotoxicity among children in Southeast Asia, the
knowledge gap has been successfully reduced. New genotoxicity models have been
successfully established, which forecast exposure to PAHs as a valuable health impact
assessment (HIA) tool. The findings will help understand the levels, distribution and
sources of PAHs in educational institutions, providing insights into the governance of the
living environment and children’s well-being, particularly in the industrial area.
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