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A B S T R A C T   

Iterative reconstruction has demonstrated superior performance in medical imaging under compressed, sparse, 
and limited-view sensing scenarios. However, iterative reconstruction algorithms are slow to converge and rely 
heavily on hand-crafted parameters to achieve good performance. Many iterations are usually required to 
reconstruct a high-quality image, which is computationally expensive due to repeated evaluations of the physical 
model. While learned iterative reconstruction approaches such as model-based learning (MBLr) can reduce the 
number of iterations through convolutional neural networks, it still requires repeated evaluations of the physical 
models at each iteration. Therefore, the goal of this study is to develop a Fast Iterative Reconstruction (FIRe) 
algorithm that incorporates a learned physical model into the learned iterative reconstruction scheme to further 
reduce the reconstruction time while maintaining robust reconstruction performance. We also propose an effi-
cient training scheme for FIRe, which releases the enormous memory footprint required by learned iterative 
reconstruction methods through the concept of recursive training. The results of our proposed method demon-
strate comparable reconstruction performance to learned iterative reconstruction methods with a 9x reduction in 
computation time and a 620x reduction in computation time compared to variational reconstruction.   

1. Introduction 

Photoacoustic tomography (PAT) imaging is a promising non- 
invasive hybrid imaging modality that combines the advantages of op-
tical and ultrasound imaging [1]. The intrinsic mechanism of the pho-
toacoustic effect allows functional imaging through the distinct 
spectroscopic specificity of endogenous chromophores in vivo [2]. PAT 
has shown great potential for preclinical research in small-animal 
whole-body imaging, for instance, mapping the microvasculature 
network and studying the resting state functional connectivity of the 
mouse brain [3–5]. More recently, it has been applied to human imaging 
such as functional human brain imaging, diagnosis of cardiovascular 
disease, cancer detection and staging, and image-guided surgery [6–12]. 

In PAT, the imaging system aims to recover the initial pressure dis-
tribution from a collection of time-resolved acoustic pressure waves 
generated by the tissue medium excited by laser pulses on a nanosecond 
timescale [13]. In vasculature imaging, hemoglobin is commonly 
excited by the optical wavelength ranging from visible to near-infrared 
(NIR) spectrum [1]. The irradiated tissue undergoes thermoelastic 

expansion by converting the absorbed light energy into thermal energy. 
The tissue medium subsequently turns into a relaxation state and pro-
duces the resulting acoustic pressure waves that propagate throughout 
the entire space. Ultimately, these acoustic pressure waves are recorded 
by the transducers arranged in arbitrary geometry (e.g., planar-view 
system [14] and hemispherical array-based system [15]) or by me-
chanically scanned detector [16]. These time-resolved signals can be 
used to reconstruct the initial pressure source, i.e., local concentration of 
light-absorbing chromophores, using analytical solutions, numerical 
methods, and variational approaches [17–19]. 

Conventional reconstruction methods (e.g., universal/filter back-
projection [20,21] and time-reversal reconstruction [22]) involve solv-
ing single wave equations, and thereby reconstruction is dramatically 
faster. However, these methods are feasible only when the sensing 
configuration is robust. Under the more realistic imaging scenarios (e.g., 
sparse, limited view, and compressed sensing), which are often 
encountered in biomedical applications, variational and iterative 
reconstruction outperform the conventional methods at the cost of 
computational time [23]. To break through the computational burden 
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inherent in variational and iterative reconstruction, the medical imaging 
community now resorts to powerful computational techniques based on 
machine learning [24–26]. In photoacoustic imaging, an intuitive 
approach to increase the image quality is fitting the acquired sensor data 
directly to the neural network and obtaining the reconstruction output 
[27]. However, neural networks typically suffer from difficulties in 
handling the transformation between time-series sensor data and spatial 
domain image data and thus are prone to overfitting to training data 
[28]. To avoid the domain transformation problem, input data to the 
neural network can be kept in the spatial domain by a single inversion 
step carried out by a fast conventional reconstruction method [29]. 
Nonetheless, this approach limits the information that the neural 
network can use after simple inversion from time-series sensor data, as a 
result, more expressive neural network architectures may be required 
[30,31]. An alternative to overcome this problem is to use a hybrid ar-
chitecture that considers both time-series sensor data and initial inver-
sion images as input to the neural network [32]. In addition, 
preprocessing techniques that preserve channel information by encod-
ing measured time-series sensor data for each transducer provide more 
useful information that can be exploited by neural networks. [28,33]. 
The above methods are defined as purely data-driven methods, where 
the reconstruction performance of the model depends only on the in-
formation from the data. Reconstructing high-quality images usually 
requires a large amount of training data, and the generalization and 
robustness of the model are not as good as variational and iterative 
reconstruction methods. More recently, the learned iterative recon-
struction method has been introduced to address this challenge [34–40]. 
The general idea of this technique is to integrate variational and itera-
tive reconstruction methods into a deep learning framework to provide 
higher model performance in terms of generalizability and robustness 
while reducing reconstruction time. Although computational time has 
been reduced by the learned iterative reconstruction approach, the 
tedious process involving repeated simulations of a physical model is 
still a requirement for each iteration. To further reduce the computa-
tional time for the proposed learned iterative reconstruction, instead of 
integrating conventional numerical solvers into a learned iterative 
reconstruction approach, we propose to leverage learned physical 
models. 

Solving complex partial differential equations (PDEs) by machine 
learning has become a paradigm change in understanding physical 
models in science and engineering [41]. Two reasons make it a fasci-
nating choice of studying physical models. First, it models underlying 
physical systems without requiring extensive prior knowledge of a cor-
responding field. Second, solving complex PDEs through machine 
learning enables efficient simulations of real-world problems on large 
scale. Examples of this approach include solutions for molecular dy-
namics [42] and turbulent flows [43]. There are four categories of 
machine-learning frameworks that have been used for solving PDEs: 
finite-dimensional operators, neural finite element models (neu-
ral-FEM), neural operators, and Fourier neural operators (FNO) [44]. 
The finite-dimensional operators are parameterized by a deep con-
volutional neural network mapping between finite-dimensional 
Euclidean spaces. However, mesh-dependent properties of these ap-
proaches restrict the new solution to query only at specific spatial res-
olutions, geometries, and discretization corresponding to the training 
data. Such approaches require neural networks to be modified and 
retrained for different levels of resolution and discretization. Likewise, 
the neural-FEM models are designed for only one specific instance of the 
PDE; thus, the neural network needs to be retrained to solve for a 
different set of function coefficients. In addition, these approaches are 
limited to the well-study physical system where the underlying PDE is 
fully understood. In contrast, the neural operators, known as 
infinite-dimensional operators, characterize as mesh-free nature and 
only need to train once for any different spatial resolution and dis-
cretization. These approaches share the same parameters and network 
architecture among different underlying functional data. Moreover, 

neural operators require no knowledge of the underlying PDE, suitable 
to the field in which formulation of the governing PDE for fundamental 
physical systems remains elusive. Similarly, the FNO has the same 
characteristics as the above-mentioned neural operators. It learns a 
mapping between infinite dimensional spaces from a finite collection, 
and the trained network can be used to query the solution in any spatial 
resolution and dimension without network retraining and architecture 
modification. Compared to the neural operators, the cost of evaluating 
the integration operator is reduced by parameterizing the integral kernel 
directly in Fourier space. In addition to gaining significant improvement 
in the computational time, the FNO exhibits superior performance and is 
robust to noise in applications for solving Bayesian inverse problems 
without any accuracy degradation [44]. 

In this study, we replace the conventional numeric solvers of the 
photoacoustic wave equation with the FNO in a learned iterative 
reconstruction pipeline where the forward and downstream inverse 
problems are solved iteratively, thereby reducing computational costs 
through a more expressive model. To the best of our knowledge, this is 
the first paper that integrates learned physical models into learned 
iterative reconstruction in medical image reconstruction specifically for 
PAT reconstruction. Since applications that require repeated evaluations 
of PDEs can greatly benefit from the reduced computation time of deep 
learning, we choose an FNO designed specifically for PDE solvers along 
with its state-of-the-art performance as the backbone of our proposed 
methods. 

2. Methods 

2.1. Photoacoustic signal generation 

Time-resolved signals acquired by ultrasound receivers can mathe-
matically represent the initial pressure distribution p0 at a point r by the 
following equation 

p0(r) = ΓH(r), (1) 

where Γ is the Gruneisen coefficient, a dimensionless thermody-
namic constant measuring the conversion efficiency from thermal en-
ergy to pressure. It can be further defined by Γ = β∕ρCvκ, where β is the 
thermal coefficient of volume expansion, ρ is the mass density, Cv is the 
specific heat capacity at constant volume, κ is the isothermal 
compressibility. For soft tissue, κ is approximately 5 × 10− 10 Pa− 1 and β 
is around 4 × 10− 4 K− 1 [45]. H(r) is the absorbed optical energy dis-
tribution defined by the product of the local absorption coefficient μa(r)
and the optical fluence ϕ(r, μa, μs, g) where itself is governed by the ab-
sorption coefficient μa, scattering coefficients μs, and anistropy factor g. 

The equation defined above for the initial pressure distribution p0 
can be rewritten as 

p0(r) = Γμa(r)ϕ(r, μa, μs, g). (2) 

Here, Gruneisen coefficient Γ is usually assumed to be spatially 
invariant among different tissue mediums. Hence, the image contrast of 
the initial pressure distribution p0 is proportional to the product of the 
absorption coefficient and optical fluence rate. In PAT imaging, since the 
laser pulse duration is less than the thermal confinement time and stress 
confinement time, the thermal diffusion and volume expansion of the 
absorber are negligible [46]. 

2.2. Conventional solvers for the acoustic wave equation 

Well-established physical model in medical imaging plays a critical 
role in the design of imaging devices prior to the production stages and 
clinical trial deployment. It provides a comprehensive study of different 
parameters that interactively affect the simulation of measurement and, 
in turn, the downstream image reconstruction task. Furthermore, 
reconstruction methods such as variational reconstruction and iterative 
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reconstruction approximate the true solution by explicitly performing a 
forward operator to repeatedly evaluate the predicted measurements 
[47]. Consequently, high-quality images reconstructed from these 
methods require an accurate forward operator resulting in extreme 
computational demands. 

In photoacoustic imaging, the common methods for constructing the 
forward model of photoacoustic wave propagation include finite 
element method [48], finite difference method [49], and pseudospectral 
and k-space model [50]. The finite element method aims at finding 
unknown coefficients for defined N-dimensional basis functions and 
gives a solution by a linear combination of the N-dimensional functions 
based on the calculated coefficients [51]. Its flexibility in choosing basis 
functions improves efficiency through coefficients calculated from 
sparse matrix equations and allows for heterogeneities of any shape. In 
contrast, the finite difference method tackles the derivative in the PDEs 
by the differences. Generally, a large number of points are required to 
better estimate the gradient field by fitting a higher-order polynomial. 
Compared to the finite element method, the finite difference method is 
less flexible due to the restriction in the use of regular computational 
mesh. The disadvantage is that the finite element and finite difference 
methods require about 10 mesh points per wavelength to represent the 
field accurately, and small timesteps are usually required to avoid nu-
merical dispersion, limiting the capability to be used in high-frequency 
and large-scale applications for photoacoustic imaging. 

To address these limitations, the pseudospectral and k-space model 
was introduced [50], which can significantly reduce the number of 
nodes needed in finite element and finite difference methods by fitting a 
Fourier series to all data on each line in the mesh. The nature of the 
Fourier transforms results in a pseudospectral approach that requires 
only two nodes per wavelength to describe a wave. The gradient can 
simply be calculated by the Fast Fourier Transform (FFT) followed by its 
inverse. In addition, the k-space model is more suitable for biomedical 
photoacoustic imaging applications involving the modeling of 
large-scale high-frequency photoacoustic waves at larger timesteps in 
the case of acoustically heterogeneous mediums [51]. Although the 
pseudospectral and k-space model alleviates the computational burden 
required by finite element and finite difference methods, they are still 
not fast enough to achieve real-time reconstruction when incorporated 
with variational and iterative reconstruction, which is largely due to an 
inherent trade-off between accuracy and computational time of the 
model. 

2.3. Learned physical model for acoustic wave equation 

The feasibility of using machine learning for solving acoustic wave 
equations has been demonstrated in [52]. Inspired by [52], the FNO was 
adapted as the PDE solver for modeling acoustic wave propagation due 
to its superior performance. Here, training data for the FNO is generated 

using the k-wave toolbox [53] which computes the acoustic wave 
simulation through the pseudospectral and k-space model. The simula-
tion parameters are the same as following data generation section, in 
which the computational grid was 128 × 128 with a grid spacing of 100 
micrometers. The medium was assumed as non-absorptive and homo-
geneous with a speed of sound of 1540 m/s and a density of 1000 kg/m3. 
The time step for the simulations was 38.96 ns per step for 302 steps. 
The input to the FNO was simply the initial pressure distribution p0 at 
time equal to 0, reconstructed either from the initial inversion or the 
artifact-contaminated images generated from the learned iterative 
reconstruction at each iteration. Consequently, conventional solvers can 
be excluded from the following reconstruction pipeline to reduce 
computation time. Given the initial pressure distribution p0, the FNO can 
accurately infer full spatiotemporal solutions for all timesteps. 

The architecture of FNO shown in Fig. 1 begins with converting the 
inputs (e.g., initial pressure distribution p0) to a higher dimension. The 
dimensionality of these latent representations is determined by a 
hyperparameter termed channels. These N-channel latent representa-
tions then iteratively update the features through four Fourier layers. 
Each Fourier layer learns a global feature representation in spectral 
space by performing the Fourier transform and its inverse. The features 
learned in the spectral space can be truncated by another hyper-
parameter, a regularization parameter, termed modes. In biomedical 
photoacoustic imaging, the acquired signals predominantly contain 
high-frequency components throughout the simulation processes; thus, 
we retain all the modes without any spectral truncation. Spectral trun-
cation can result in smoothing of acoustic waves, resulting in an inac-
curate collection of measured time-series sensor data, which in turn 
affects downstream reconstruction pipelines. In addition to learning 
global feature representations, the convolutional neural network is also 
used to learn the local features for detailed edges and shapes. These 
iterative updates can be expressed as follows 

vt+1(x):=σ
(
Wvt(x) + F

− 1(
F

(
κϕ
)
⋅F (vt)

)
(x)

)
, (3)  

where σ is a non-linear activation function, W is a linear transformation, 
κϕ is a kernel integral operator directly parameterized in Fourier space 
by Fourier transform F , and features learned in the Fourier space are 
inversed to spatial space by its inverse F − 1. After the iterative updates, 
the updated features are then projected back to the desired dimensions 
corresponding to the acoustic wave equation simulation. 

2.4. Variational reconstruction 

Variational reconstruction has been identified as a method of solving 
the ill-posed problem for the signals acquired in the compressed and sub- 
Nyquist manner [54]. Furthermore, it also demonstrated superior per-
formance in limited-view angle tomographic image reconstruction [55]. 

Fig. 1. Architecture of Fourier neural operator for acoustic wave simulation.  
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The variational approach aims at approximating the true solution by 
solving the optimization problem and can be defined as 

x̂ := argmin
x′

{
1
2
‖A(x

′

) − y ‖2
2 + λR(x′

)

}

. (4) 

Here,y is the measured time-series signal. A denotes a forward 
operator. R represents the regularization functional encoding a-priori 
knowledge about the solution and is used to penalize the unwanted 
features. The weighting factor λ determines the impact of the regulari-
zation. The fidelity term ‖A(x′

) − y ‖2
2 measures the difference between 

acquired time-series signals and the predicted signals evaluated by the 
known forward operator. This optimization problem can be solved 
iteratively through a proximal gradient descent scheme. Although 
introducing the regularization functional can increase the generaliz-
ability of the model performance and avoid overfitting by penalizing the 
unfeasible features, inappropriate choice of the regularization func-
tional and weighting factor potentially leads to poor reconstruction and 
the need of many iterations for a model to converge. 

The popular regularization in medical imaging reconstruction in-
cludes the Tikhonov regularization [56] and total variation regulariza-
tion [54]. Among them, total variation is widespread use for recovering 
noise-contaminated images under the restricted imaging configuration. 
Compared to Tikhonov regularization which measures the l2 norm of x′ , 
total variation is a non-smooth and edge-preserving technique charac-
terized by removing the unimportant features with spatial sparsity 
constraints through the l1 penalization on the gradient field of x′ . 

2.5. Learned iterative reconstruction 

Learned iterative reconstruction aims at solving the same optimiza-
tion problem in variational reconstruction methods. However, instead of 
using proximal gradient descent to find the true solution of the recon-
structed image, the neural network replaces conventional methods to 
solve the optimization problem. It has been shown the state-of-the-art 
performance in medical imaging reconstruction [24]. Compared to the 
variational reconstruction, the handcrafted parameters (e.g., step size, 
regularization function, and the weighting factor of the regularization 
function) are implicitly learned from the data in the training phase. 
Hauptmann et al. proposed an iteratively learning strategy for PAT 
reconstruction termed deep gradient descent (DGD) or learned gradient 
scheme (LGS) [57]. The reconstruction pipeline is illustrated in Fig. 2a 
and can be mathematically expressed as 

xi+1 = CNNθi (xⅈ,A
∗(Axi − y)),where i = 0,…,N − 1. (5) 

Here, y is the measured time-series signal. A denotes a forward 
operator. A∗ represents an adjoint operator. CNNθi shown in Fig. 3a is the 
convolutional neural network parameterized at ith iteration. The initial 
pressure distribution x0 is computed by the adjoint reconstruction on the 
acquired sensor data y. In each iteration, the reconstructed images from 
the previous iteration and the computed gradient information are served 
as a pair of inputs to the neural network. Then, the objective function of 
this optimization problem can be formulated as 

Lθi = ‖CNNθi (xi,A∗(Axi − y) ) − xtrue ‖
2
2,

where i = 0,…,N − 1. (6) 

Here, xtrue denotes the ground truth image. Unlike the end-to-end 
training scheme, this training strategy unrolls the entire model into 
multiple iterations and computes the objective function in each itera-
tion, thereby, the parameters of the convolutional neural network are 
updated based on its current iteration. Ideally, an end-to-end training 
scheme potentially can offer better reconstruction performance by being 
evaluated on a single objective function for whole iterations. However, 
this training strategy is not feasible for PAT image reconstruction. The 
main reason is that the end-to-end training strategy for PAT requires 
excessive memory footprint and expensive computation costs during the 
processes requiring repetitive evaluations of forward and adjoint oper-
ators. In other words, training one epoch with the N iterations necessi-
tates 2 N times of simulations on each training data, making the training 
impractical. Hence, this inherent characteristic prevents the end-to-end 
training strategy to be exploited in PAT image reconstruction. 

2.6. Fast iterative reconstruction 

Compared to variational reconstruction which generally requires a 
large number of iterations to converge, learned iterative reconstruction 
can reconstruct high-quality images with a small number of iterations. 
Although there has been a substantial improvement in the learned 
iterative reconstruction approach, evaluating the physical models at 
each iteration is an indispensable process. To release the computational 
burden, we propose the Fast Iterative Reconstruction (FIRe) exploiting 
the learned physical model. Instead of using pseudo-spectral and k-space 
models for solving time-domain photoacoustic wave propagation in the 
learned iterative reconstruction, the FNO is used as the learned forward 
operator to further reduce the computational time required by the 
conventional methods. In addition, gradient information originally 
computed by the adjoint operator in the learned iterative reconstruction 
is then replaced by the pixel-interpolation [28], resulting in N channels 
of gradient maps. Pixel interpolation is an operation that converts 
time-series sensor data into channel-specific pressure maps based on the 
assumption of the speed of sound and a known computational grid. 
Here, N is determined by the number of sensors. Pixel-interpolation, 
which is a delayed data for each channel, provides more information 
without background artifacts, and deep neural network can suppress 
unwanted signals channel-wise during training phase. Nonetheless, 
backprojection collapses the channel dimension which leads to the 
reconstructed images contaminated with severe artifact especially in the 
sparse-sensing and limited-viewed scenarios, and this poor recon-
structed image will directly influence the subsequent iterations 
sequentially, resulting in more iterations to converge. The comparison of 
the reconstruction performance for the MBLr using adjoint and 
pixel-interpolation respectively is shown in supplementary Fig. A.1, 
observing that pixel-interpolation as the reconstruction operator per-
forms better than the adjoint operator after five iterations in both PSNR 

Fig. 2. Block diagram of the iterative reconstruction algorithm at ith iteration. (a) Model-based learning (MBLr) (b) Fast Iterative Reconstruction (FIRe).  
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and SSIM metrics. The block diagram of the proposed method is illus-
trated in Fig. 2b. Similar to (5) and (6), the reconstruction process can be 
expressed as 

xi+1 = CNNθi (xⅈ,A
†(Fθi (xi) − y ) ),

where i = 0,…,N − 1 (7)  

and objective function can be written as 

Lθi = ‖CNNθi (xi,A†(Fθi (xi) − y) ) − xtrue ‖
2
2,

wherei = 0,…,N − 1. (8) 

Here, the initial pressure distribution x0 is acquired by simple 
backprojection from measured time-series signal. The forward operator 
Fθi is parameterized based on the FNO framework at ith iteration, and A†

represents a pixel-interpolated operation. 
The training scheme is similar to learned iterative reconstruction 

using an iteratively adjusting manner, in which the reconstruction 
model is unrolled to multiple iterations, and parameters are updated 
based on its current objective function. In FIRe, the architecture of the 
reconstruction model (CNN) shown in Fig. 3b is similar to the model 
used in the DGD, with a small adjustment to the gradient input where it 
constitutes the channels of the gradient map. In addition to the recon-
struction model, the learned forward operator is trained iteratively as 
well. Specifically, the learned forward operator at ith iteration is trained 
on the artifact-contaminated images generated from the reconstruction 
model at i − 1 th iteration. The reconstruction model is then trained on 
the combination of reconstructed images and the gradients estimated 
from a current learned forward operator followed by a pixel- 
interpolated operation. Therefore, N iterations of FIRe generate 2 N of 

models. 
To reduce the memory footprint, herein, we propose the lightweight 

training scheme and reconstruction pipeline built on FIRe, termed two- 
stage FIRe (2S-FIRe). The illustration of the training scheme of 2S-FIRe is 
shown in Fig. 4. In the first iteration of 2S-FIRe, the training of the 
learned forward operator and reconstruction model is identical to the 
training scheme of the FIRe. Starting from the second iteration, recon-
structed images from all previous iterations excluding the initialization 
x0 are aggregated for the training of the learned forward operator and 
reconstruction model. Here, models in the first iteration are not used for 
following iterations as a result of the task in the first iteration involving 
the removal of the server artifact background. Another consideration is 
that features in the initialization x0 does not contain the unrealistic 
features that generate from the subsequent reconstruction models; it 
only contains the artifact arising from the backprojection. Conversely, 
the later iterations gradually update the reconstruction in a fine-tuning 
manner. In the reconstruction pipeline, the same learned forward 
operator and reconstruction model are reused for each iteration to 
evaluate the simulation and reconstruction, respectively, resulting in a 
closed-form reconstruction model. Thereby, the output of the model is 
served as the input itself, and only four models including two learned 
forward operators and two reconstruction models are used for the entire 
reconstruction pipeline. The reconstruction process after the first itera-
tion can be expressed mathematically as 

xi+1 = CNNθ(xⅈ,A†(Fθ(xi) − y ) ),

where i = 1,…,N − 1, (9)  

and objective function can be written as 

Lθ = ‖CNNθ(xi,A†(Fθ(xi) − y) ) − xtrue ‖
2
2,

Fig. 3. Convolutional neural network for (a) Model-based learning (MBLr) and (b) Fast Iterative Reconstruction (FIRe).  

Fig. 4. Block diagram of two-stage fast iterative reconstruction (2S-FIRe).  
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where i = {1,…,N − 1}. (10) 

This recursive training scheme allows trained models to be reused for 
every iteration. Therefore, increasing the number of iterations for 
reconstruction does not increase the use of number of the models. The 
memory footprint for 2S-FIRe is primarily based on the number of time 
steps compared to FIRe. On the other hand, the memory footprint in the 
FIRe is proportional to both the number of iterations and times steps. 

2.7. Deep learning implementation 

The experimental platform is based on Windows 10 64-bit operating 
system, Intel i9–10980XE CPU, 256 GB memory, and two NVIDIA RTX 
A5000 (each with 24 GB memory). All proposed and established deep 
neural networks are implemented in Python 3.9 with an open-source 
deep-learning library (Pytorch 1.12.1). 

FNO is trained using the Adam optimizer, and parameters are 
updated based on the mean squared error (MSE) loss for 1000 epochs. 
Additionally, the learning rate is decreased by 0.5 every 100 epochs 
starting from 10e− 3. The batch size of 1 is used for training the FNO. As 
for the training of CNN for both FIRe and 2S-FIRe, Adam optimizer is 
used, and parameters are update based on the MSE for 1000 epochs. 
Besides, the learning rate is decreased by 0.5 every 100 epochs starting 
from 10e− 4. The batch size of 8 is used for training CNN. 

3. Results and discussion 

3.1. Data generation 

Synthetic vasculature was generated from a simple vasculature 
phantom provided by the k-Wave toolbox [53], a well-established 
photoacoustic wave simulation software. The diversity of the synthetic 
vasculature was increased by superimposing a different number of 
transformed synthetic vasculature phantoms by some augmentation 
techniques (e.g., rotation, translation, scaling, and shearing). As a result, 
a dataset containing 750 images of synthetic vasculature was used for 
training purposes. In addition, in vivo mouse brain vasculature was used 
for evaluating the model reconstruction performance in terms of 
generalizability. Here, in vivo mouse brain was acquired by 
contrast-enhanced micro-CT, providing high-resolution volumetric data 
with fine vasculature [58]. This volumetric mouse brain vasculature was 
then processed into 2D images by performing a Frangi vesselness filter to 
extract the vessel-like features in the 3D volume, followed by simple 
thresholding to remove the remaining background. Subsequently, 
maximum intensity projections (MIPs) were applied to randomly 
selected sub-volumes. To maximize the preservation of realistic mouse 
brain vascular features, advanced augmentation techniques were not 
performed on the generated mouse brain MIPs. Consequently, a dataset 
containing 300 images of mouse brain vasculature was generated. 

In the simulation process, brain both synthetic vasculature and 
mouse vasculature were defined inside the computational grid of 
128 × 128, and the grid spacing was 100 micrometers. The medium was 
assumed as non-absorptive and homogeneous with a speed of sound of 
1540 m/s and a density of 1000 kg/m3. The time step for the simulations 
was 38.96 ns per step for 302 steps. The photoacoustic signals were 
simulated in a sparse sensor configuration, with 32 sensors evenly 
distributed on a circle with a 6.3 mm radius. The simulated signals were 
backprojected into the initial pressure distribution contaminated with 
the severe artifact. All models were then trained in a supervised manner 
where backprojected synthetic vasculature images served as inputs and 
generated synthetic vasculature images served as the ground truth. 

3.2. FNO forward simulation 

A visual comparison of the k-Wave (ground truth) and FNO forward 
simulations for photoacoustic wave propagation on an instance of 

mouse brain vasculature at selected time steps are shown in Fig. 5 and its 
corresponding full-time series wave propagation video is attached. The 
error distributions suggest that a little nuance difference is measured 
between k-Wave and FNO simulations. The color in red indicates that 
the simulation of FNO does not fully recover the intensity of the pho-
toacoustic waves generated by the k-Wave in the defined computational 
grid. Conversely, the color in blue indicates that FNO’s simulations 
accidentally introduce false-positive photoacoustic waves. Although 
FNO simulations accidentally introduce slight false-positive photo-
acoustic waves at selected time steps, they do not randomly generate 
artifacts in the context of the defined computational grid, but instead, 
enhance the wavefront of the mouse brain vasculature. Consequently, 
sampled time-series sensor data may result in reconstructed images 
having a slightly stronger intensity than the actual imaged targets. In 
summary, the simulation between k-Wave and FNO cannot visually 
distinguish the difference. 

The FNO-based simulations are quantitatively compared to k-Wave 
simulations with root mean square error (RMSE) measured at different 
iterations in Fig. 6. This finding demonstrates that the error of FNO 
simulations is inversely proportional to the timesteps. Furthermore, 
FNO simulations of the initial distribution for the first iteration exhibit 
larger errors compared to all subsequent iterations. In addition, the FNO 
simulation for subsequent iterations (from second to fifth) shows similar 
errors. These findings strongly support the proposed 2S-FIRe, which 
separates the learned iterative reconstruction using learned physical 
models into two stages. Since the task in the first iteration usually in-
volves the removal of severe background artifacts, the subsequent iter-
ations gradually update the reconstructed images in a fine-tuning 
manner. 

3.3. Mouse brain vasculature reconstruction 

Models trained on synthetic vasculature are evaluated for general-
izability by reconstruction on the out-of-domain mouse brain vascula-
ture data. Fig. 7 quantitively shows the reconstruction performance of 
the models on the unseen mouse brain vasculature over five iterations 
under the sparse sensing configuration scenario. After the five iterations, 
FIRe reaches an SSIM of 0.928 ± 0.024 and a PSNR of 28.918 ± 1.938. 
2S-FIRe reaches an SSIM of 0.921 ± 0.025 and a PSNR of 28.055 
± 1.624. MBLr achieves an SSIM of 0.936 ± 0.024 and a PSNR of 
29.573 ± 2.054. Compared to the learned iterative reconstruction 
methods (MBLr, 2S-FIRe, and FIRe), the single-step post-processing 
method based on the U-Net has an SSIM of 0.709 ± 0.051 and a PSNR of 
22.628 ± 1.588. This experiment demonstrates that all learned iterative 
reconstruction methods outperform the single-step post-processing 
method. Furthermore, there is no significant difference between learned 
iterative reconstruction methods. 

The reconstruction time of different models shown in Table 1 is 
evaluated on an average of 300 instances. U-Net as a single-step post- 
processing method executes the fastest reconstruction time with 5 ms. 
Learned iterative reconstruction method using MBLr with 5 iterations 
executes a reconstruction time of 4.69 s. In addition, FIRe and 2S-FIRe 
with 5 iterations perform a reconstruction time of 510 ms. TV varia-
tional reconstruction with 50 iterations performs a reconstruction with 
316 s. 

A visual comparison of an instance of the mouse brain vasculature is 
shown in Fig. 8. U-Net as a single-step post-processing method fails to 
reconstruct the fine vasculature while MLBr and 2S-FIRe reconstruct 
successfully. FIRe also captures the fine vasculature but is slightly dull 
compared to the MBLr and 2S-FIRe. Although the TV result demon-
strates the capability of reconstructing the fine vasculature, it is 
contaminated by random artifacts distributed in the background. The 
bottom row of Fig. 8 shows the error distribution between ground truth 
and reconstruction in the mouse brain vasculature. The color in red 
indicates the reconstruction does not capture the vasculature as it should 
have been in the original ground truth. Conversely, the color in blue 
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indicates the reconstruction accidentally introduces false-positive 
vasculature. Compared with all other learned iterative methods, the 
error distribution of the U-Net reconstruction shows worse results as can 
be seen in darker red and blue regions. Among the learned iterative 
reconstruction methods, the error distribution of MBLr reconstruction is 
slightly better than 2S-FIRe and FIRe. In addition, the learned iterative 
reconstruction methods are less prone to introducing false-positive 
vasculature than single-step post-processing reconstruction with U-Net. 

The robustness of the models is then evaluated on the noise-added 
mouse brain vasculature data in Fig. 9. Here, the mouse brain vascula-
ture sensor data is introduced Gaussian noise with a 15 dB signal-to- 
noise ratio (SNR). After the five iterations, FIRe reaches an SSIM of 

0.901 ± 0.028 and a PSNR of 28.037 ± 1.971. 2S-FIRe reaches an SSIM 
of 0.915 ± 0.026 and a PSNR of 27.850 ± 1.638. MBLr achieves an SSIM 
of 0.907 ± 0.033 and a PSNR of 28.695 ± 2.090. The single-step post- 
processing method based on the U-Net has an SSIM of 0.699 ± 0.051 
and a PSNR of 22.562 ± 1.593. Among the learned iterative recon-
struction methods, 2S-FIRe performs the best reconstruction in SSIM, 
with the mean SSIM only slightly decreasing from 0.921 to 0.915. In 
contrast, MBLr and FIRe perform in mean SSIM with a drop from 0.936 
to 0.907 and 0.928–0.901, respectively. In terms of PSNR, MBLr per-
forms the best compared to all other reconstruction methods. 

To further investigate the robustness of the models, different levels of 
Gaussian noise were introduced into the collected sensor data, ranging 

Fig. 5. Visual comparison of the ground truth (upper row) using k-Wave and FNO networks (middle row) at 1, 26, 51, 76, and 101 timesteps to simulate photo-
acoustic wave propagation for an example image of the mouse brain vasculature. Error maps between ground truth and FNO simulation are shown in bottom row. 

Fig. 6. RMSE of the time-series sensor data between k-Wave and FNO simulation on the unseen mouse brain vasculature dataset. FNO_0: FNO is used for simulated 
photoacoustic wave propagation for the initial pressure distribution. FNO_1 to FNO_4 is used to simulate the following iterations. 
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from 6 dB to 30 dB SNR in 3 dB increments. Fig. 10 demonstrates the 
reconstruction performance of the models under different levels of noise 
on the unseen mouse brain vasculature data. In addition, the evaluation 
of model performance based on SSIM and PSNR metrics is quantitatively 
shown in Table 2 and Table 3, respectively.2S-FIRe shows the greatest 
robustness in SSIM as the collected sensor data is contaminated by the 
severe Gaussian noise at 6, 9, and 15 dB. In contrast, MBLr exhibits the 
greatest robustness in PSNR at all levels of noise. When the acquired 
signal involves severe distortion at lower SNR, the reconstruction per-
formance of 2S-FIRe is better than the MBLr in terms of the SSIM metric, 
indicating that 2S-FIRe is shown to be more tolerant to signal distortion 
when evaluated using local metrics. In contrast, MBLr performs better 

than the 2S-FIRe when evaluated using the global metric (PSNR). Iter-
ative reconstruction schemes are already known for their robustness and 
generalizability [34]–[40]. The robustness of the proposed FIRe and 
2S-FIRe reconstructions can be attributed in part to the generalizability 
of FNO networks. A test performed using a smaller 64×64×151 FNO 
model indicated that when trained using vasculature data, FNOs were 
able to match forward photoacoustic wave propagation results obtained 
using K-Wave toolbox even when the tests were performed using 
non-biological initial pressure sources such as a Shepp-Logan phantom 
and Mason-M logo (supplementary Fig. A.2.). These results were 
promising and provided evidence that the trained FNO network was 
generalizable to other initial photoacoustic sources not in the training 
data. Inclusion of a more diverse and larger training dataset can further 
improve the generalizability of the FNO network. 

4. Conclusion 

In this research, we propose novel photoacoustic image reconstruc-
tion methods incorporating learned physical models for photoacoustic 
wave simulation into an established MBLr framework. Furthermore, we 
propose a lightweight reconstruction pipeline (2S-FIRe) to reduce the 

Fig. 7. Comparison of the model reconstruction performance on the unseen mouse brain vasculature under sparse sensing configuration. Left: SSIM is used as the 
metric for the comparison. Right: PSNR is used as the metric for the comparison. MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two-stage 
fast iterative reconstruction. U-Net: single-step post-processing. 

Table 1 
Reconstruction speed of different methods.  

MBLr FIRe 2S-FIRe TV U-Net 

4.69 s 510 ms 510 ms 316 s 5 ms 

MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two- 
stage fast iterative reconstruction.TV: total variation. U-Net: single-step post- 
processing. 

Fig. 8. Visualization of photoacoustic image reconstruction on unseen mouse brain vasculature in different models under sparse sensing configuration scenario. 
Green arrows point out the details of the fine vasculature reconstructed in the different models. MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S- 
FIRe: two-stage fast iterative reconstruction. TV: total variation. U-Net: single-step post-processing. BP: backprojection. 
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memory footprint required in FIRe. Our proposed methods demonstrate 
comparable performance to the state-of-the-art MBLr approach. 
Furthermore, leveraging the learned physical model reduces the 
computational time by a 9x factor compared to the MBLr and a 620x 
factor compared to the TV variational reconstruction method. Using 
learned forward operators for learning-based iterative reconstruction is 
still in the early stage of research. Here, we provide a comprehensive 
study of the use of learned physical models in learned iterative inverse 
problems. Moreover, incorporating the learned physical models exhibits 
stronger robustness and reconstruction performance when the image is 
contaminated with more severe noise. 

Although our proposed methods can reduce computational time, the 
training time is much longer than the MBLr and TV variational 

reconstruction methods. In the future, developing the methodology to 
reduce the training time of the learned physical models can benefit our 
proposed methods to be used in a higher number of iterations for image 
reconstruction, taking full advantage of the essence of learned iterative 
reconstruction methods. Although the proposed methods are built for 
photoacoustic image reconstruction, the concept of the frameworks can 
be generalized to other imaging modalities which require repeatedly 
solving forward and backward simulations. 
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Fig. 9. Comparison of the model reconstruction performance on the noise introducing mouse brain vasculature under sparse sensing configuration. Left: SSIM is used 
as the metric for the comparison. Right: PSNR is used as the metric for the comparison. MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two- 
stage fast iterative reconstruction. U-Net: single-step post-processing. 

Fig. 10. Model performance evaluated on mouse brain vasculature under different levels of noise. Left panel: SSIM is used as a metric for different levels of noise. 
Right panel: PSNR is used as a metric for different levels of noise. MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two-stage fast iterative 
reconstruction. TV: total variation. U-Net: single-step post-processing. 

K.-T. Hsu et al.                                                                                                                                                                                                                                  



Photoacoustics 29 (2023) 100452

10

Declaration of competing interest 

The authors declare that there are no conflicts of interest. 

Data Availability 

Data will be made available on request. 

Acknowledgment 

Ko-Tsung Hsu would like to acknowledge Steven Guan and Parag V. 
Chitnis for their substantial guidance and advice on this study. Ko-Tsung 
Hsu is responsible for all experiments and for writing the manuscript, 
edited by Steven Guan and Parag V. Chitnis. The authors acknowledge 
the source code for Fourier neural operator available at https://github. 
com/zongyi-li/fourier_neural_operator. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.pacs.2023.100452. 

References 

[1] P. Beard, Biomedical photoacoustic imaging, Interface Focus vol. 1 (4) (2011), 
https://doi.org/10.1098/rsfs.2011.0028. 

[2] H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy 
for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol. vol. 24 (7) 
(2006), https://doi.org/10.1038/nbt1220. 

[3] J. Xia, L.V. Wang, Small-animal whole-body photoacoustic tomography: a review, 
IEEE Trans. Biomed. Eng. vol. 61 (5) (2014) 1380–1389, https://doi.org/10.1109/ 
TBME.2013.2283507. 

[4] P. Zhang, et al., High-resolution deep functional imaging of the whole mouse brain 
by photoacoustic computed tomography in vivo, J. Biophotonics vol. 11 (1) (2018), 
https://doi.org/10.1002/jbio.201700024. 

[5] M. Nasiriavanaki, J. Xia, H. Wan, A.Q. Bauer, J.P. Culver, L.V. Wang, High- 
resolution photoacoustic tomography of resting-state functional connectivity in the 
mouse brain, Proc. Natl. Acad. Sci. vol. 111 (1) (2014) 21–26, https://doi.org/ 
10.1073/pnas.1311868111. 

[6] S. Na, L.V. Wang, L.V. Wang, “Photoacoustic computed tomography for functional 
human brain imaging [Invited, Biomed. Opt. Express vol. 12 (7) (2021) 
4056–4083, https://doi.org/10.1364/BOE.423707. 

[7] M. Wu, N. Awasthi, N.M. Rad, J.P.W. Pluim, R.G.P. Lopata, Advanced ultrasound 
and photoacoustic imaging in cardiology, Sensors vol. 21 (23) (2021) 7947, 
https://doi.org/10.3390/s21237947. 

[8] M. Mehrmohammadi, S.J. Yoon, D. Yeager, S.Y. Emelianov, Photoacoustic imaging 
for cancer detection and staging, Curr. Mol. Imaging vol. 2 (1) (2013) 89–105, 
https://doi.org/10.2174/2211555211302010010. 

[9] S.H. Han, Review of photoacoustic imaging for imaging-guided spinal surgery, 
Neurospine vol. 15 (4) (2018) 306–322, https://doi.org/10.14245/ 
ns.1836206.103. 

[10] M.A. Lediju Bell, J. Shubert, Photoacoustic-based visual servoing of a needle tip, 
Sci. Rep. vol. 8 (1) (2018), https://doi.org/10.1038/s41598-018-33931-9. 

[11] Y. Wu, et al., System-level optimization in spectroscopic photoacoustic imaging of 
prostate cancer, Photoacoustics vol. 27 (2022), 100378, https://doi.org/10.1016/ 
j.pacs.2022.100378. 

[12] E. Najafzadeh, H. Ghadiri, M. Alimohamadi, P. Farnia, M. Mehrmohammadi, 
A. Ahmadian, Application of multi-wavelength technique for photoacoustic 
imaging to delineate tumor margins during maximum-safe resection of glioma: a 
preliminary simulation study, J. Clin. Neurosci. vol. 70 (2019) 242–246, https:// 
doi.org/10.1016/j.jocn.2019.08.040. 

[13] Y. Fan, A. Mandelis, G. Spirou, I. Alex Vitkin, Development of a laser 
photothermoacoustic frequency-swept system for subsurface imaging: theory and 
experiment, J. Acoust. Soc. Am. vol. 116 (6) (2004), https://doi.org/10.1121/ 
1.1819393. 

[14] N. Nyayapathi, et al., Dual scan mammoscope (DSM)—a new portable 
photoacoustic breast imaging system with scanning in craniocaudal plane, IEEE 
Trans. Biomed. Eng. vol. 67 (5) (2020), https://doi.org/10.1109/ 
TBME.2019.2936088. 

[15] N. Nyayapathi, J. Xia, Photoacoustic imaging of breast cancer: a mini review of 
system design and image features, J. Biomed. Opt. vol. 24 (12) (2019), https://doi. 
org/10.1117/1.JBO.24.12.121911. 

Table 2 
Evaluation of model performance on the mouse brain vasculature in ssim metrics at different noise levels.   

MBLr FIRe 2S-FIRe TV U-Net 

6 dB SNR 0.736 ± 0.048 0.788 ± 0.038 0.797 ± 0.047 0.515 ± 0.031 0.432 ± 0.049 
9 dB SNR 0.831 ± 0.044 0.847 ± 0.033 0.853 ± 0.039 0.583 ± 0.032 0.559 ± 0.049 
12 dB SNR 0.887 ± 0.037 0.886 ± 0.030 0.886 ± 0.033 0.635 ± 0.034 0.636 ± 0.052 
15 dB SNR 0.907 ± 0.033 0.901 ± 0.028 0.915 ± 0.026 0.660 ± 0.034 0.699 ± 0.051 
18 dB SNR 0.926 ± 0.027 0.918 ± 0.026 0.912 ± 0.027 0.698 ± 0.035 0.692 ± 0.052 
21 dB SNR 0.931 ± 0.025 0.923 ± 0.025 0.916 ± 0.026 0.712 ± 0.036 0.701 ± 0.051 
24 dB SNR 0.934 ± 0.024 0.926 ± 0.024 0.919 ± 0.025 0.720 ± 0.036 0.705 ± 0.051 
27 dB SNR 0.935 ± 0.024 0.927 ± 0.024 0.920 ± 0.025 0.724 ± 0.036 0.708 ± 0.051 
30 dB SNR 0.936 ± 0.024 0.928 ± 0.024 0.920 ± 0.025 0.726 ± 0.037 0.708 ± 0.051 
- 0.936 ± 0.024 0.928 ± 0.024 0.921 ± 0.025 0.729 ± 0.037 0.709 ± 0.051 

MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two-stage fast iterative reconstruction.TV: total variation. U-Net: single-step post-processing. 
-: no noise included in collected sensor data. 

Table 3 
Evaluation of model performance on the mouse brain vasculature in psnr metrics at different noise levels.   

MBLr FIRe 2S-FIRe TV U-Net 

6 dB SNR 25.568 ± 1.999 25.236 ± 2.012 25.012 ± 1.831 23.204 ± 1.762 20.854 ± 1.599 
9 dB SNR 27.180 ± 2.065 26.624 ± 1.998 26.170 ± 1.723 24.552 ± 1.791 21.724 ± 1.619 
12 dB SNR 28.243 ± 2.091 27.614 ± 1.963 26.970 ± 1.683 25.483 ± 1.789 22.184 ± 1.606 
15 dB SNR 28.695 ± 2.090 28.037 ± 1.971 27.850 ± 1.638 25.911 ± 1.810 22.562 ± 1.593 
18 dB SNR 29.211 ± 2.080 28.565 ± 1.964 27.743 ± 1.645 26.468 ± 1.818 22.515 ± 1.594 
21 dB SNR 29.397 ± 2.066 28.740 ± 1.938 27.895 ± 1.637 26.681 ± 1.824 22.580 ± 1.591 
24 dB SNR 29.481 ± 2.050 28.834 ± 1.934 27.976 ± 1.618 26.776 ± 1.825 22.602 ± 1.585 
27 dB SNR 29.528 ± 2.055 28.884 ± 1.933 28.011 ± 1.627 26.830 ± 1.823 22.615 ± 1.587 
30 dB SNR 29.554 ± 2.048 28.911 ± 1.932 28.034 ± 1.626 26.862 ± 1.822 22.624 ± 1.589 
- 29.573 ± 2.054 28.918 ± 1.938 28.055 ± 1.624 26.887 ± 1.824 22.628 ± 1.588 

MBLr: model-based learning. FIRe: fast iterative reconstruction. 2S-FIRe: two-stage fast iterative reconstruction.TV: total variation. U-Net: single-step post-processing. 
-: no noise included in collected sensor data. 

K.-T. Hsu et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.pacs.2023.100452
https://doi.org/10.1098/rsfs.2011.0028
https://doi.org/10.1038/nbt1220
https://doi.org/10.1109/TBME.2013.2283507
https://doi.org/10.1109/TBME.2013.2283507
https://doi.org/10.1002/jbio.201700024
https://doi.org/10.1073/pnas.1311868111
https://doi.org/10.1073/pnas.1311868111
https://doi.org/10.1364/BOE.423707
https://doi.org/10.3390/s21237947
https://doi.org/10.2174/2211555211302010010
https://doi.org/10.14245/ns.1836206.103
https://doi.org/10.14245/ns.1836206.103
https://doi.org/10.1038/s41598-018-33931-9
https://doi.org/10.1016/j.pacs.2022.100378
https://doi.org/10.1016/j.pacs.2022.100378
https://doi.org/10.1016/j.jocn.2019.08.040
https://doi.org/10.1016/j.jocn.2019.08.040
https://doi.org/10.1121/1.1819393
https://doi.org/10.1121/1.1819393
https://doi.org/10.1109/TBME.2019.2936088
https://doi.org/10.1109/TBME.2019.2936088
https://doi.org/10.1117/1.JBO.24.12.121911
https://doi.org/10.1117/1.JBO.24.12.121911


Photoacoustics 29 (2023) 100452

11

[16] S. Gao, et al., Compact and low-cost acoustic-resolution photoacoustic microscopy 
based on delta configuration actuator, 2020 IEEE Int. Ultrason. Symp. . (IUS) 
(2020) 1–4, https://doi.org/10.1109/IUS46767.2020.9251640. 

[17] S. Li, B. Montcel, W. Liu, D. Vray, Analytical model of optical fluence inside 
multiple cylindrical inhomogeneities embedded in an otherwise homogeneous 
turbid medium for quantitative photoacoustic imaging, Opt. Express vol. 22 (17) 
(2014) 20500–20514, https://doi.org/10.1364/OE.22.020500. 

[18] C. Huang, K. Wang, R.W. Schoonover, L.V. Wang, M.A. Anastasio, Joint 
reconstruction of absorbed optical energy density and sound speed distributions in 
photoacoustic computed tomography: a numerical investigation, IEEE Trans. 
Comput. Imaging vol. 2 (2) (2016) 136–149, https://doi.org/10.1109/ 
TCI.2016.2523427. 

[19] K. Hammernik, T. Pock, R. Nuster, Variational photoacoustic image reconstruction 
with spatially resolved projection data, Photons Ultrasound.: Imaging Sens. 2017 vol. 
10064 (2017) 500–503, https://doi.org/10.1117/12.2254863. 

[20] M. Xu, L.V. Wang, Universal back-projection algorithm for photoacoustic 
computed tomography, Phys. Rev. E vol. 71 (1) (2005), https://doi.org/10.1103/ 
PhysRevE.71.016706. 

[21] L. Zeng, X. Da, H. Gu, D. Yang, S. Yang, L. Xiang, High antinoise photoacoustic 
tomography based on a modified filtered backprojection algorithm with 
combination wavelet, Med. Phys. vol. 34 (2) (2007). 

[22] E. Bossy, et al., Time reversal of photoacoustic waves, Appl. Phys. Lett. vol. 89 (18) 
(2006), https://doi.org/10.1063/1.2382732. 

[23] E. Najafzadeh, et al., Photoacoustic image improvement based on a combination of 
sparse coding and filtering, J. Biomed. Opt. vol. 25 (10) (. 2020), 106001, https:// 
doi.org/10.1117/1.JBO.25.10.106001. 

[24] A. Hauptmann, B. Cox, Deep Learning in Photoacoustic Tomography: Current 
approaches and future directions, J. Biomed. Opt. vol. 25 (11) (2020), https://doi. 
org/10.1117/1.JBO.25.11.112903. 

[25] G. Zeng, et al., A review on deep learning MRI reconstruction without fully 
sampled k-space, BMC Med. Imaging vol. 21 (1) (2021) 195, https://doi.org/ 
10.1186/s12880-021-00727-9. 

[26] A. DiSpirito, T. Vu, M. Pramanik, J. Yao, Sounding out the hidden data: a concise 
review of deep learning in photoacoustic imaging, Exp. Biol. Med. vol. 246 (12) 
(2021) 1355–1367, https://doi.org/10.1177/15353702211000310. 

[27] D. Allman, A. Reiter, M.A.L. Bell, Photoacoustic source detection and reflection 
artifact removal enabled by deep learning, IEEE Trans. Med. Imaging vol. 37 (6) 
(2018) 1464–1477, https://doi.org/10.1109/TMI.2018.2829662. 

[28] S. Guan, A.A. Khan, S. Sikdar, P.V. Chitnis, Limited view and sparse photoacoustic 
tomography for neuroimaging with deep learning, Sci. Rep. vol. 10 (1) (2020) 
8510, https://doi.org/10.1038/s41598-020-65235-2. 

[29] S. Antholzer, M. Haltmeier, J. Schwab, Deep learning for photoacoustic 
tomography from sparse data, Inverse Probl. Sci. Eng. vol. 27 (7) (2019), https:// 
doi.org/10.1080/17415977.2018.1518444. 

[30] K.-T. Hsu, S. Guan, P.V. Chitnis, Comparing deep learning frameworks for 
photoacoustic tomography image reconstruction, Photoacoustics vol. 23 (2021), 
100271, https://doi.org/10.1016/j.pacs.2021.100271. 

[31] S. Guan, A. Khan, S. Sikdar, P.V. Chitnis, Fully dense UNet for 2D sparse 
photoacoustic tomography artifact removal, IEEE J. Biomed. Health Inform. vol. 24 
(2) (2020), https://doi.org/10.1109/JBHI.2019.2912935. 

[32] H. Lan, D. Jiang, C. Yang, and F. Gao, Y-Net: A Hybrid Deep Learning 
Reconstruction Framework for Photoacoustic Imaging in vivo, ArXiv190800975 Cs 
Eess, Aug. 2019, Accessed: May 29, 2020. [Online]. Available: http://arxiv.org/ 
abs/1908.00975. 

[33] M. Kim, G.-S. Jeng, I. Pelivanov, M. O’Donnell, Deep-learning image reconstruction 
for real-time photoacoustic system, IEEE Trans. Med. Imaging vol. 39 (11) (2020) 
3379–3390, https://doi.org/10.1109/TMI.2020.2993835. 

[34] A. Kofler, M. Haltmeier, T. Schaeffter, and C. Kolbitsch, An End-To-End-Trainable 
Iterative Network Architecture for Accelerated Radial Multi-Coil 2D Cine MR 
Image Reconstruction, ArXiv210200783 Cs Eess, Feb. 2021, Accessed: Feb. 07, 
2021. [Online]. Available: http://arxiv.org/abs/2102.00783. 

[35] S.A.H. Hosseini, B. Yaman, S. Moeller, M. Hong, M. Akçakaya, Dense recurrent 
neural networks for accelerated MRI: history-cognizant unrolling of optimization 
algorithms, IEEE J. Sel. Top. Signal Process. vol. 14 (6) (2020) 1280–1291, https:// 
doi.org/10.1109/JSTSP.2020.3003170. 

[36] J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, U.S. Kamilov, RARE: image reconstruction 
using deep priors learned without ground truth, IEEE J. Sel. Top. Signal Process. 
vol. 14 (6) (2020) 1088–1099, https://doi.org/10.1109/JSTSP.2020.2998402. 

[37] Y. Yang, J. Sun, H. Li, Z. Xu, ADMM-CSNet: a deep learning approach for image 
compressive sensing, IEEE Trans. Pattern Anal. Mach. Intell. vol. 42 (3) (2020) 
521–538, https://doi.org/10.1109/TPAMI.2018.2883941. 
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reconstruction, IEEE Trans. Comput. Imaging vol. 6 (2020) 843–856, https://doi. 
org/10.1109/TCI.2020.2990299. 

[40] R. Barbano, Z. Kereta, A. Hauptmann, S.R. Arridge, and B. Jin, Unsupervised 
Knowledge-Transfer for Learned Image Reconstruction, ArXiv210702572 Cs Eess, 

Jul. 2021, Accessed: Jul. 13, 2021. [Online]. Available: http://arxiv.org/abs/ 
2107.02572. 

[41] N. Kovachki, et al., Neural operator: learning maps between function spaces, arXiv 
(2021), https://doi.org/10.48550/arXiv.2108.08481. 

[42] V.G. Satorras, E. Hoogeboom, and M. Welling, E(n) Equivariant Graph Neural 
Networks. arXiv, Feb. 16, 2022. Accessed: Jul. 30, 2022. [Online]. Available: 
http://arxiv.org/abs/2102.09844. 

[43] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, Towards Physics- 
informed Deep Learning for Turbulent Flow Prediction. arXiv, Jun. 13, 2020. 
Accessed: Jul. 30, 2022. [Online]. Available: http://arxiv.org/abs/1911.08655. 

[44] Z. Li et al., Fourier Neural Operator for Parametric Partial Differential Equations, 
ArXiv201008895 Cs Math, Oct. 2020, Accessed: Feb. 22, 2021. [Online]. Available: 
http://arxiv.org/abs/2010.08895. 

[45] J. Xia, J. Yao, L.V. Wang, Photoacoustic tomography: principles and advances, 
Electromagn. Waves Camb. Mass vol. 147 (2014) 1–22. 

[46] L.V. Wang, Tutorial on photoacoustic microscopy and computed tomography, IEEE 
J. Sel. Top. Quantum Electron. vol. 14 (1) (2008) 171–179, https://doi.org/ 
10.1109/JSTQE.2007.913398. 

[47] S.R. Arridge, M.M. Betcke, B.T. Cox, F. Lucka, B.E. Treeby, On the adjoint operator 
in photoacoustic tomography, Inverse Probl. vol. 32 (11) (2016), https://doi.org/ 
10.1088/0266-5611/32/11/115012. 

[48] B. Baumann, M. Wolff, B. Kost, H. Groninga, Finite element calculation of 
photoacoustic signals, Appl. Opt. vol. 46 (7) (2007) 1120, https://doi.org/ 
10.1364/AO.46.001120. 

[49] Y.-L. Sheu, P.-C. Li, Simulations of photoacoustic wave propagation using a finite- 
difference time-domain method with Berenger’s perfectly matched layers, 
J. Acoust. Soc. Am. vol. 124 (6) (. 2008) 3471–3480, https://doi.org/10.1121/ 
1.3003087. 

[50] B.E. Treeby, J. Jaros, A.P. Rendell, B.T. Cox, Modeling nonlinear ultrasound 
propagation in heterogeneous media with power law absorption using a k-space 
pseudospectral method, J. Acoust. Soc. Am. vol. 131 (6) (2012) 4324–4336, 
https://doi.org/10.1121/1.4712021. 

[51] B.T. Cox, S. Kara, S.R. Arridge, P.C. Beard, k-space propagation models for 
acoustically heterogeneous media: Application to biomedical photoacoustics, 
J. Acoust. Soc. Am. vol. 121 (6) (2007) 3453–3464, https://doi.org/10.1121/ 
1.2717409. 

[52] S. Guan, K.-T. Hsu, and P.V. Chitnis, Fourier Neural Operator Networks: A Fast and 
General Solver for the Photoacoustic Wave Equation, p. 14. 

[53] B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and 
reconstruction of photoacoustic wave fields, J. Biomed. Opt. vol. 15 (2) (2010), 
https://doi.org/10.1117/1.3360308. 

[54] S. Arridge, et al., Accelerated high-resolution photoacoustic tomography via 
compressed sensing, Phys. Med. Biol. vol. 61 (24) (2016) 8908–8940, https://doi. 
org/10.1088/1361-6560/61/24/8908. 

[55] J. Velikina, S. Leng, G.-H. Chen, Limited view angle tomographic image 
reconstruction via total variation minimization, Med. Imaging 2007: Phys. Med. 
Imaging vol. 6510 (2007) 709–720, https://doi.org/10.1117/12.713750. 

[56] S. Gutta, S.K. Kalva, M. Pramanik, P.K. Yalavarthy, Accelerated image 
reconstruction using extrapolated Tikhonov filtering for photoacoustic 
tomography, Med. Phys. (2018), https://doi.org/10.1002/mp.13023. 

[57] A. Hauptmann, et al., Model-based learning for accelerated, limited-view 3-D 
photoacoustic tomography, IEEE Trans. Med. Imaging vol. 37 (6) (2018) 
1382–1393, https://doi.org/10.1109/TMI.2018.2820382. 

[58] A. Dorr, J.G. Sled, N. Kabani, Three-dimensional cerebral vasculature of the CBA 
mouse brain: A magnetic resonance imaging and micro computed tomography 
study, NeuroImage vol. 35 (4) (2007), https://doi.org/10.1016/j. 
neuroimage.2006.12.040.  

Ko-Tsung Hsu is currently a Ph.D. candidate at George Mason 
University in the Bioengineering Department. He received a B. 
S. in Biotechnology from Ming Chuan University, and M.S. in 
Bioinformatics and Computational Biology from George Mason 
University. His current research field focuses on the develop-
ment of machine learning framework for healthcare and 
medical imaging solutions.  

K.-T. Hsu et al.                                                                                                                                                                                                                                  

https://doi.org/10.1109/IUS46767.2020.9251640
https://doi.org/10.1364/OE.22.020500
https://doi.org/10.1109/TCI.2016.2523427
https://doi.org/10.1109/TCI.2016.2523427
https://doi.org/10.1117/12.2254863
https://doi.org/10.1103/PhysRevE.71.016706
https://doi.org/10.1103/PhysRevE.71.016706
http://refhub.elsevier.com/S2213-5979(23)00005-8/sbref21
http://refhub.elsevier.com/S2213-5979(23)00005-8/sbref21
http://refhub.elsevier.com/S2213-5979(23)00005-8/sbref21
https://doi.org/10.1063/1.2382732
https://doi.org/10.1117/1.JBO.25.10.106001
https://doi.org/10.1117/1.JBO.25.10.106001
https://doi.org/10.1117/1.JBO.25.11.112903
https://doi.org/10.1117/1.JBO.25.11.112903
https://doi.org/10.1186/s12880-021-00727-9
https://doi.org/10.1186/s12880-021-00727-9
https://doi.org/10.1177/15353702211000310
https://doi.org/10.1109/TMI.2018.2829662
https://doi.org/10.1038/s41598-020-65235-2
https://doi.org/10.1080/17415977.2018.1518444
https://doi.org/10.1080/17415977.2018.1518444
https://doi.org/10.1016/j.pacs.2021.100271
https://doi.org/10.1109/JBHI.2019.2912935
https://doi.org/10.1109/TMI.2020.2993835
https://doi.org/10.1109/JSTSP.2020.3003170
https://doi.org/10.1109/JSTSP.2020.3003170
https://doi.org/10.1109/JSTSP.2020.2998402
https://doi.org/10.1109/TPAMI.2018.2883941
https://doi.org/10.1109/TMI.2018.2799231
https://doi.org/10.1109/TCI.2020.2990299
https://doi.org/10.1109/TCI.2020.2990299
https://doi.org/10.48550/arXiv.2108.08481
http://refhub.elsevier.com/S2213-5979(23)00005-8/sbref39
http://refhub.elsevier.com/S2213-5979(23)00005-8/sbref39
https://doi.org/10.1109/JSTQE.2007.913398
https://doi.org/10.1109/JSTQE.2007.913398
https://doi.org/10.1088/0266-5611/32/11/115012
https://doi.org/10.1088/0266-5611/32/11/115012
https://doi.org/10.1364/AO.46.001120
https://doi.org/10.1364/AO.46.001120
https://doi.org/10.1121/1.3003087
https://doi.org/10.1121/1.3003087
https://doi.org/10.1121/1.4712021
https://doi.org/10.1121/1.2717409
https://doi.org/10.1121/1.2717409
https://doi.org/10.1117/1.3360308
https://doi.org/10.1088/1361-6560/61/24/8908
https://doi.org/10.1088/1361-6560/61/24/8908
https://doi.org/10.1117/12.713750
https://doi.org/10.1002/mp.13023
https://doi.org/10.1109/TMI.2018.2820382
https://doi.org/10.1016/j.neuroimage.2006.12.040
https://doi.org/10.1016/j.neuroimage.2006.12.040


Photoacoustics 29 (2023) 100452

12

Steven Guan received his Ph.D. degree at George Mason 
University in the Bioengineering Department. He received a B. 
S. in chemical engineering, B.A. in physics, and M.S. in 
biomedical engineering from the University of Virginia. He 
worked as a senior data scientist for the MITRE corporation to 
support various government agencies. His primary research 
interests are in applying deep learning techniques for medical 
imaging problems such as classification, segmentation, and 
reconstruction.  

Parag V. Chitnis is an Associate Professor in the Department of 
Bioengineering at George Mason University (GMU). He 
received a B.S. degree in engineering physics and mathematics 
from the West Virginia Wesleyan College, Buckhannon, WV, in 
2000. He received M.S. and Ph.D. degrees in mechanical en-
gineering from Boston University in 2002 and 2006, respec-
tively. His dissertation focused on experimental studies of 
acoustic shock waves for therapeutic applications. After a two- 
year postdoctoral fellowship at Boston University involving a 
study of bubble dynamics, Dr. Chitnis joined Riverside 
Research as a Staff Scientist in 2008, where he pursued 
research in high-frequency ultrasound and photoacoustic 
imaging. Dr. Chitnis joined the Bioengineering department at 
GMU as a tenure-track faculty in 2014 and was promoted to 
Associate Professor with tenure in 2020. In 2017, he was 
nominated for and selected as the State Finalist for the 
Outstanding Faculty Award (Rising Star Category). With 
funding support from DARPA, DoD, NSF, NIH, and CIT-CRCF, 
Dr. Chitnis leads a multidisciplinary team that pursues 
research in wearable sensors, therapeutic ultrasound and 
localized drug delivery, photoacoustic neuro-imaging, and 
deep-learning strategies for photoacoustic tomography. He also 
serves as an Associate Editor for Ultrasonic Imaging, and 
reviewer on NIH and NSF grant panels. 

K.-T. Hsu et al.                                                                                                                                                                                                                                  


	Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation
	1 Introduction
	2 Methods
	2.1 Photoacoustic signal generation
	2.2 Conventional solvers for the acoustic wave equation
	2.3 Learned physical model for acoustic wave equation
	2.4 Variational reconstruction
	2.5 Learned iterative reconstruction
	2.6 Fast iterative reconstruction
	2.7 Deep learning implementation

	3 Results and discussion
	3.1 Data generation
	3.2 FNO forward simulation
	3.3 Mouse brain vasculature reconstruction

	4 Conclusion
	Funding sources
	Declaration of competing interest
	Data Availability
	Acknowledgment
	Appendix A Supporting information
	References


