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Extent of linkage disequilibrium and effective population size of 
the Landrace population in Korea

Donghyun Shin1, Sung-Hoon Kim2, Joowan Park3, Hak-Kyo Lee1,4, and Ki-Duk Song1,4,*

Objective: The genetic diversity of the Landrace population, a representative maternal pig 
breed in Korea, is important for genetic improvement. Previously, the effective population 
size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, 
we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequili­
brium (LD) and the Ne of the Korean Landrace population. 
Methods: We genotyped 1,128 Landrace individuals from three representative Korean major 
grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, 
which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromo­
somes. We estimated the expected LD and current Ne, as well as ancestral Ne.
Results: In the Korean Landrace population, the mean LD (r2) of 3.698 million SNP pairs 
was 0.135±0.204. The mean r2 decreased slowly with as the distance between SNPs increased, 
and remained constant beyond 3 Mb. According to the r2 calculations, 8,085 of 3.698 million 
SNP pairs were in complete LD. The current Ne (±standard deviation) of the Korean Lan­
drace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited 
a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, 
we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared 
with other intervals.
Conclusion: We have presented an overview of LD and the current and ancestral Ne values 
in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace 
population confirm the genetic diversity and reflect the history of this pig population in Korea.
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INTRODUCTION 

The genetic diversity of a commercial pig breed must be monitored to ensure the sustainable 
use of genetic resources and continuous genetic improvements in the future [1]. The im­
portance of proper management of inbreeding through systemic breeding programs should 
be emphasized [2]. Traditionally, inbreeding has been estimated from the pedigree infor­
mation [3], and the inbreeding rate can be converted to an effective population size (Ne), 
which is considered a general indicator of the risk of genetic erosion [4]. However, pedi­
gree-based estimates of Ne depend on the completeness of the available pedigree. Genomic 
data are widely used improve the accuracy of Ne estimation without pedigree data, as these 
data allow estimations of current and previous Ne. This estimation is based on linkage dis­
equilibrium (LD) patterns [5-7]. Genome-wide single nucleotide polymorphism (SNP) 
genotyping of in pigs has been possible since 2009 [8]. In animal breeding, recent genomic 
methods such as genome-wide association studies and SNP-based genomic selection depend 
on the extent of LD and the association between the rate of LD decline with the distance 
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between loci within a population. Researchers or animal 
breeders can apply mass SNP data, made available by SNP 
Genotyping Beadchips, to several genomic analyzes of domes­
tic animals, including pigs. Researchers have already applied 
SNP chips to genome-wide association studies [9-11] and ge­
nomic selection of pigs [12-15]. This new SNP technology 
provides useful tools for studying the genetic diversity of pig 
populations and enables more detailed comparisons of pop­
ulations than did earlier pedigree-based approaches.
  In finite populations, several meaningful evolutionary pro­
cesses involving artificial or natural selection can induce LD, 
or the nonrandom association of alleles in two different loci 
[16]. In particular, most traits of interest in animal breeding 
are complex traits, and genomic selection techniques are more 
successful than genome-wide association, which is used to in­
vestigate some significant genomic regions closely linked to 
each trait [17]. In animal breeding, these genomic methods 
strongly depend on the extent of LD and the sample size. 
Therefore, the characterization of LD is essential when plan­
ning future genomic technique-based animal breeding studies 
of complex traits. LD between loci can provide insights into 
the evolutionary history of each population through Ne, the 
number of individuals in an idealized population that would 
give rise to the degree of inbreeding in the current population 
[18]. If we accurately estimate Ne, we can use this value to in­
vestigate genetic diversity in each domesticated pig population 
and explain the observed extents and patterns of genetic vari­
ation. Using Ne, we can also prospectively predict the loss of 
genetic variation and infer the accuracy of genomic selection 
before applying genomic selection at an industrial level for a 
particular domesticated animal. Additionally, we can infer 
the ancestral Ne from the strength of LD at different genetic 
distances between markers. Knowledge of the historical Ne 
pattern in each pig population could increase our understand­
ing of the effects of recent animal breeding strategies.
  Although the Korea pig industry includes several breeds, 
this study focuses on the Landrace population. Although this 
is not a domestic breed in Korea but rather has been imported 
from several countries, Landrace is considered a representative 
maternal pig breed in Korea, and Korean grand-grandparent 
(GGP) Farms maintain a considerable number of Landrace 
animals as breeding stock. For the Korean Landrace popula­
tion, a good growth rate, efficient feed conversion rate, and 
increased piglet number are considered the main selection 
targets. The patterns of LD in Landrace populations from other 
countries have already been characterized, and estimated Ne 
values have been predicted using SNP chip data. Badke [19] 
characterized the extent of LD in four US pig breeds, includ­
ing Landrace. Lei Wang [20] characterized the extent of LD 
in three Danish pig breeds, including Landrace. Veroneze [21] 
characterized the extent of LD of six commercial pig breeds 
(including Landrace) in the Netherlands. This study identified 

that the LD declined as a function of distance (using 37,326 
SNPs with an average minor allelic frequency of 0.283 in the 
Illumina PorcineSNP60 chip) and all pig lines had an average 
r2 above 0.3 for markers 100 to 150 apart. Uimari [22] char­
acterized the extent of LD and estimated the LD-based actual 
and ancestral Ne values using 86 Finnish Landrace boars. This 
study reported average LD (r2) between adjacent SNP in the 
Illumina PorcineSNP60 BeadChip was 0.43 (57% of the ad­
jacent SNP pairs had r2 >0.2) for Finnish Landrace and Ne 
estimates based on the decay of r2 with distance were similar 
to those based on the pedigree data: 80 for Finnish Landrace.
  The objective of the present study was to characterize LD 
within the Korean Landrace population, using data from the 
Illumina PorcineSNP60 BeadChip and to estimate the current 
and ancestral Ne values and thus dissect the genetic charac­
teristics of Korean Landrace population. The estimated Ne 
(±standard deviation [SD]) of the Korean Landrace popu­
lation was 92.27 [79.46; 105.07] individuals. Additionally, 
ancestral Ne was estimated in previous generations. Compared 
with other studies, our results are considered in the context 
of current knowledge regarding the establishment of genomic 
methods for the Korean Landrace population.

MATERIALS AND METHODS 

Samples and genotypic data
This study included genotype data of 1,128 Landrace indi­
viduals from three representative Korean major GGP farms 
(Table 1). This single population sample was considered rep­
resentative of the Landrace population in Korea. These pigs 
were candidate replacements for breeding pigs at each major 
GGP or grandparent (GP) farm during the period of 2015 
through 2016. Accordingly, we considered these 1,128 Landrace 
individuals representative of the current Landrace popula­
tion in Korea. The Illumina PorcineSNP60 version2 BeadChip, 
which targets 61,565 SNPs located across all autosomes and 
mitochondrial and sex chromosomes, was used to produce 
the dataset used in this study. The informative SNPs on the 
Illumina BeadChip were extracted from the latest porcine ref­
erence genome (Build 9) from the Ensemble genome database 
(www.ensembl.org). Using Illumina PorcineSNP60 version2, 
we obtained genotyping data of 1,128 Landrace individuals. 
BeadChip data were subjected to quality control using PLINK 

Table 1. Information of Landrace population (1,128 individuals) in this study

Year Individual Farm1 Farm2 Farm3 Female Male

2011 4 0 0 4 1 3
2012 69 1 2 66 65 4
2013 27 0 5 22 21 6
2014 132 93 7 32 125 7
2015 896 896 0 0 712 184
Total 1,128 990 14 124 924 204
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[19]. First, we extracted 52,257 of the total 61,565 SNPs on all 
autosomes and removed SNPs which failed to pass quality con­
trol criteria. 2,905 SNPs were excluded in a Hardy–Weinberg 
equilibrium test (p value <0.000001) and 457 SNPs failed to 
pass the missing genotype test (GENO >0.1). Also 11,947 SNPs 
with minor allele frequencies (MAF) <0.05 were removed 
after the minor allele frequency test (MAF<0.05). These stan­
dard genotype data quality control criteria were identical to 
those used by Uimari [20]. After quality control, we used the 
remaining 38,254 SNPs to characterize LD and estimate the 
Ne. Before estimating LD, missing genotype in SNP after qual­
ity control were imputed with BEAGLE [21].

Characterization LD of Korean Landrace population
We estimated LD in the Korean Landrace population using 
the R package “LDcorSV” [22]. This package was used to es­
timate pairwise haplotype frequencies from genotype data. 
The estimated pairwise haplotype frequencies were used to 
calculate the squared correlation coefficient between the two 
loci (r2). The r2 was equivalent to the covariance and correla­
tion between alleles at two different loci and was computed 
as follows:
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  Where, PA, Pa, PB, and Pb are the frequencies of alleles A, a, 
B, and b, respectively. PAB is the frequency of the genotype AB 
and D represents PAB - PAPB.
  For each SNP, the pairwise LD was calculated for 100 ad­
jacent SNPs in the genomic dataset from 1,128 Landrace pigs. 
The SNP quality and distance requirements led to the distri­
bution of approximately 3.698 million SNP pairs across the 
total autosome. The r2 values were calculated between SNPs 
located on the same chromosome. Details about the physical 
positions of the SNPs can be found in the product literature 
from Illumina. To determine LD with respect to the physical 
distance between SNPs, we divided SNP pairs into distance 
bins. After establishing two classes, 0 to 0.5 Mb and 0 to 5 Mb, 
we subsequently classified the applicable SNPs pairs from each 
class into 50 distance bins with class-dependent ranges (Supple­
mentary Table S1).

Construction model of LD with distance
Assuming an isolated population with random mating, Sved 
suggested the following approximate expression for the ex­
pected r2 [5]:
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				    (3)

  In this equation, yi is the r2 for SNP pair i at a linkage distance 
di (Morgans). Parameters a and b were estimated iteratively 
using the least-squares method. In Figure 2, chromosome-
specific megabase-to-centimorgan conversion rates were 
calculated from the total physical chromosome lengths stated 
on the UCSC Web site (genome.ucsc.edu) and from each chro­
mosome genetic length on the porcine linkage map [26]. The 
study by Tortereau [26] included porcine linkage maps for 
four pedigrees (ILL, UIUC, USDA, ROS). Because the USDA 
breed of USA pedigree contained Landrace at the time of pedi­
gree establishment, we selected USDA pedigrees for this study. 
We then applied this model to the data of each chromosome 
and estimated the described parameters. As described by 
Corbin [27] and Shin [28], the estimated parameters were com­
bined by meta-analysis in R using an inverse variance method 
for pooling and random effects method based on the DerSi­
monian-Laird method (the R package “meta”) [25,27].

Ancestral Ne estimation
We could predict the Ne using Equation (2) at a given point 
in time, expressed as a previous generation [7].
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c is the mean value of r2 for 
SNP pairs located c Morgans apart, and c = 1/2t when as­
suming linear growth [7]. To estimate NT(t), the number of 
previous generations was selected and the appropriate range 
of c was calculated. The binning process was designed to ensure 
sufficient SNP pairs within each bin and to obtain a repre­
sentative r2 mean when estimating the ancestral Ne. This 
process was performed for SNPs pooled across autosomes. 
The bin information used to estimate ancestral Ne is pre­
sented in Supplementary Table S3.

RESULTS 

Genotype data
Among the 52,257 autosomal SNPs genotyped in this analysis, 
38,254 (73.20%) remained after quality control. After filtering 
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and imputation, the number of SNPs per autosome ranged 
from 1,054 to 4,398, and this value was closely related to the 
chromosome length and the total number of SNPs, as shown 
in Figure 1. The remaining minor allele frequency of SNP ex­
hibited a uniform distribution, with an average of 0.285±0.127 
(SD). The mean distance between SNP pairs from this analysis 
was 3,159±2,433 kb (range: 0.000009 to 26,139 kb) (Supple­
mentary Figure S4).

LD estimation
We show the relationship between physical distance and r2 for 
two loci on the same chromosome in Supplementary Figure 
2. The two mean r2 types for each of the distance bins were 
plotted against the medians of the distance bin range (Mb), 
as shown in Figure 2. In this study, the mean LD (r2) among 
the total 3.698 million SNP pairs in the Korean Landrace pop­
ulation was 0.135±0.204. For 36,025 SNP pairs, the distance 
was less than 50 kb; of these, 52.61% had an r2>0.3 and 61.87% 
had an r2>0.2. The average LD values for SNPs at distances of 
50 kb on different autosomal chromosomes ranged from 0.379 
to 0.500, and the average LD (r2) for those at distances of 5 Mb 
ranged from 0.099 to 0.219 (Supplementary Table S4). To iden­
tify degree of LD of each chromosomes, we observed some 
inter-chromosomal variations in the extent of LD. For two 
SNPs separated by <5 Mb, we observed the greatest and least 
mean LD (r2) on chromosomes 1, 13, and 14 and on chromo­
somes 10 and 12, respectively. These results agree with those 
of Uimari’s study [14], as well as results from the Korean York­
shire population (data not shown).
  Figure 2 shows the average LD across all autosomal chro­

mosomes. The most rapid decline was observed in the first 
10 bins (distances between SNPs of 0 to 0.1 Mb), and the mean 
r2 decreased by approximately 40% (Figure 2a). The most rapid 
decrease was observed over the first 10 bins, with a decrease 
in the mean r2 of approximately 53% (Figure 2b), either. The 
mean r2 decreased much more slowly as the distance increased 
and remained constant at distances of ≥3 Mb. According to 
the r2 calculations, 8,085 of the 3.698 million SNP pairs were 
in complete LD.

Construction model of LD with distance
In the non-linear regression model of declining LD with in­
creasing distance, both parameters a and b in Equation (3) 
were significantly different from zero. The mean estimate and 
95% confidence interval by meta-analysis across autosome 
(parameters combining) for a was 2.83 [2.71; 2.96] and for b 
was 92.27 [79.46; 105.07], respectively. Next, we applied the 
estimated parameters a and b per chromosome using Equation 
(2) (Figure 3). Parameter b exhibited wider inter-chromosomal 
variability, compared with parameter a. Specific relationships 
were not observed between each estimated parameter (a, b) 
and chromosome length (cM). We have addressed this rela­
tionship and our interpretation of parameter b in this non-
linear regression model as an estimated Ne in the discussion. 
After estimating parameters a and b, we provided evidence to 
demonstrate the appropriateness of our Ne estimation method. 
We estimated the predicted r2 per SNP pair distance using our 
estimated parameters a and b in Equation (2), and compared 
the predicted r2 values with those observed in other studies 
[24,25]. We observed that the r2 values predicted using the 

Figure 1. Number of single nucleotide polymorphisms (SNPs) per chromosome after quality control and imputation. 
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non-linear regression equation were similar to the mean ob­
served r2 (Figure 4), suggesting that our parameters estimated 
using Equation (2) could explain the current situation and 
history of the Korean Landrace population.

Estimation of the ancestral Ne
Supplementary Figure 1 and 5 present the estimated Ne at t 
generations ago. Based on the genomic data, the current ef­
fective Korean Landrace population size is approximately 92.27 

[79.46; 105.07] individuals. Supplementary Figure S1 shows 
a continuous but slow reduction in the Ne of Korean Land­
race populations from 186.61 to 92.27 over the previous 100 
generations. Additionally, we observed a more rapid effective 
decrease in population size from the previous 20 to 10 genera­
tions ago than during other time intervals. We also observed 
that the Ne of the Korean Yorkshire population decreased over 
time by 99.6% during the past 10,000 generations (22,974.59 
individuals) (Figure 5).

Figure 2. Average LD vs the median of the distance bin range (Mb). (a) Distances ranged from 0 to 0.5 Mb (bin distance range: 0.01 Mb). r2 values were averaged using 
bins of 0.01 Mb and pooled over autosomes. (b) Distances ranged from 0 to 5 Mb (bin distance range: 0.1 Mb). r2 values were averaged using bins of 0.1 Mb and pooled 
over autosomes.
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DISCUSSION 

In this study, we used whole genome SNP data to investigate 
the extent of LD, as well as the current and previous Ne of the 
Korean Landrace population. Here, the observed LD (r2) ex­
tended for long distances when the adjacent 100 SNPs of each 
SNP in the genome were used. Although a previous study used 
both mass pedigree and small genomic data [20], we used 
large-scale genomic data from GGP farms to characterize LD 
and estimate Ne with the aim of obtaining an unbiased picture 
of LD in the Korean Landrace population. Because domesti­
cated pig breeds such as Landrace were strongly and artificially 
selected for a long period of time, the observed LD is higher 
at short distances and more extensive than that observed in 
human populations. The pattern of LD decline in the Korean 
Landrace population was consistent with those reported by 

previous studies of domesticated pig breeds [20,28] and other 
domesticated animals [24,25].
  We estimated the Ne of Korean Landrace population using 
a formula published by Sved [5], in which a non-linear re­
gression model was used to describe the relationship between 
genetic distance and LD. However, this method of estimating 
Ne is associated with difficulties when addressing values within 
the limits of the parameter space (i.e., if r2 = 0.0, estimated Ne 
is infinite and if r2 = 1.0, estimated Ne is zero). Uimari [22] 
noted this limitation of the method devised by Sved [5]. In 
this study, we calculated r2 between one SNP with its adjacent 
100 SNPs to reduce bias of r2 estimation. If we used r2 between 
one SNP with its adjacent few SNPs in this estimation, we 
could not take enough information about relationship between 
r2 and distance because two SNPs interval could be short or 
long. So we used adjacent 100 SNPs per SNPs in r2 eatima­

Figure 3. Parameter estimates from equation (3) vs chromosome length (cM) according to the porcine linkage map r2 [26]. (a) Estimates of parameter a in equation (3) vs 
chromosome length (cM). (b) Estimates of parameter b in equation (3) vs chromosome length (cM).

Figure 4. Predicted r2 vs observed r2 vs the mean distance between markers (cM, log scale), using the r2 in equation (3).
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tion and this was why the results could yielded accurate Ne. 
Another concern associated with the relationship between the 
estimated LD and the distance between SNPs involves the ac­
curacy of the porcine reference genome (Build 9) used in this 
study. In future studies, updates to the porcine reference ge­
nome will refine the order and distances between SNPs on 
the commercial Illumina PorcineSNP60 version2 BeadChip. 
However, we considered that bias resulting from incorrect 
ordering of or distances between SNPs would be diluted by 
the large number of SNP pairs used in this study; therefore, 
slight overestimation and/or underestimation of LD would 
not be an issue. Moreover, the relationships between genetic 
and physical distances are known to vary across chromosomes 
and chromosomal regions. Therefore, we inferred the cM/Mb 
ratio per chromosome using position data from a physical map 
of the porcine reference genome and a genetic map generated 
using the USDA pedigree (derived from a population com­
posed of ¼ Duroc, ¼ Large White, ¼ maternal Landrace, and 
¼ high growth Landrace) in a previous study [26]. We further 
used genetic distances based on physical distances to estimate 
Ne. Accordingly, we were able to estimate Ne more reliably 
from these detailed estimates of genetic distances between 
SNPs, compared with other studies [24, 25]. Finally, another 
study reported that a limited sample size could bias the esti­
mates of r2 and recommended correcting these estimates for 
a sample size n (r2 − 1/2n) before using the Sved [5] equation. 
However, given our large sample size, we did not need to cor­
rect the r2 estimates or use corrected r2 values. When estimating 
the Korean Landrace population Ne, we used an alternative 
version of the Sved [5] equation derived by Tenesa [26], which 
incorporated a new parameter a (equal to 2) to account for 

mutations. Using this formula [26], the initial value of para­
meter a was 2 when parameters were estimated using the 
non-linear regression model of R. As a result, the estimated 
parameter a per chromosome ranged from 2.45 to 3.35 (Figure 
3), and the estimated parameter b per chromosome ranged 
from 39.12 to 139.77. Regarding heterogeneity in the variance 
of the observed r2 per chromosome that declined as the dis­
tances between SNPs increased (Supplementary Figure S2), 
this might have affected our estimation of parameter b in 
Equation (2). In one study, a significant negative relationship 
was observed between the chromosome length and parameter 
b estimates from the non-linear model [24], whereas other 
studies of domestic livestock species reported a positive rela­
tionship [29] and still others did not investigate either type of 
relationship [25]. We therefore considered that the relationship 
between the chromosomal length and the estimated param­
eter b differed for each population, as did the evolution histories 
of each species and breed. In this study, all marker pairs were 
calculated only in each bin so that r2 would not be affected by 
the chromosome length. These results were consistent with 
the Yorkshire LD characterization results reported by Uimari 
[22] and the Korean Yorkshire Ne study (in review) [14]. 
Furthermore, we did not observe a relationship between the 
chromosome length and the estimated b values.
  Our estimated b value represents an estimated Ne with an 
assumed constant present population size because we used 
genetic data of a Korean Landrace population that comprised 
candidate replacement breeder pigs from each major GGP or 
GP farms during the period of 2015 through 2016. When 
calculating Ne, parameter b in Equation (2) represents a con­
ceptual average Ne over the period inferred from the range of 

Figure 5. Average estimated Ne versus previous generations, truncated at 100,000 generations using r2. The estimated Ne and previous generations are plotted on a log 
scale.
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SNP pair distances per chromosome [30]; we regarded the 
combined parameter b from a meta-analysis as the current 
Ne of the Korean Landrace population. Therefore, we inferred 
that the current Ne (±SD) of the Korean Landrace population 
is approximately 92.27 [79.46; 105.07]. This Ne was less than 
the effective Korean Yorkshire population size (122.87, [106.90; 
138.84]) (in review). Because Landrace and Yorkshire are both 
major maternal breeds in the Korean pig industry, this differ­
ence in Ne values was interesting. In Korea, genetic diversity 
within each breed population is affected by two main factors: 
the breeding pig selection system used at GGP farms and the 
addition of breeding pigs imported from other countries. First, 
we thought that the genetic diversity in the Landrace popula­
tion might have been less than that in the Yorkshire population 
because a higher number of Yorkshire individuals had been 
included in pig trait tests at GGP or GP farms (Supplemen­
tary Figure S5). Second, relative to the Yorkshire population, 
fewer Landrace individuals were imported during the past 
20 years (Supplementary Figure S6). The Ne of the Korean 
Landrace population might have been less than that of the 
Yorkshire population because of the importance of imported 
individuals with regard to increased genetic diversity.
  As shown in Supplementary Table S3, LD over short dis­
tances reflects the Ne of many generations ago, whereas LD 
over long distances reflects the recent population history [6,7]. 
Supplementary Figures S1 and S6 show that the historical Ne 
assumed a linear population in accordance with Hayes [7]. 
The most interesting aspect of Supplementary Figure S1 was 
the rapid decrease in Ne from 20 to 10 generations ago. This 
pattern was also observed in estimations of historical Ne in 
the Korean Yorkshire population (in review). We presume that 
an important event must have affected multiple pig popula­
tions, including Landrace and Yorkshire. The most likely event 
was an outbreak of contagious disease, such as foot-and-mouth 
disease (FMD). We note that the Republic of Korea had been 
free of FMD between 1934 and a recent outbreak in 2000. 
Since this outbreak, however, Korea has not remained free 
from FMD, and during outbreaks, huge numbers of living 
domestic animals, including pigs and cattle, were buried to 
prevent the spread of disease. We considered that repeating 
cycles of contagious disease spread and recovery might have 
affected population sizes of the main pig breeds. As shown 
in Supplementary Figure S1, the observed pattern exhibited 
a steady decrease in Ne from 100 generations ago to the cur­
rent population. Furthermore, the Ne of Korean Landrace 
population had decreased by 99.6% from 10,000 generations 
ago to the present in this study as Yorkshire population. Sev­
eral factors could explain this pattern, including bottlenecks 
associated with domestication, selection, and breed admin­
istration. Therefore, it would useful to consider our results in 
the context of the demographic history of the Korean Landrace 
population. The reliability of this method, however, depends 

on both the technical implementation and data from previ­
ous studies [24,25].
  This study aimed to characterize LD and estimate the ef­
fective size of the Korean Landrace population, using genomic 
data from thousands of individuals. In agreement with pre­
vious studies, the observed LD pattern of our own study of 
the Korean Landrace population was similar to the average 
value presented by Du [28] for Landrace, the findings of a 
2001 study of Finnish Landrace pig breeds by Uimari [20,28]. 
However, the overall LD in the Finnish Landrace population 
appeared to be slightly stronger than that in the Korean Land­
race population. We thought that because Korea Landrace 
populations included breeding pigs imported from several 
countries, the genetic diversity of Korean population was larger 
than the single Finnish breed population.
  Although the UN Food and Agriculture Organization (FAO 
[4]) recommends a minimum of 50 breeding animals, Meu­
wissen [31] considered this recommendation to be the lower 
limit for a critical population size, and proposed that the actual 
critical size should be range between 50 and 100. However, 
the current Ne of the Korean Landrace population is 92.27, 
which is not sufficient to maintain genetic diversity. Therefore, 
we suggest that the Korean Landrace population contains 
insufficient genetic variation and has an acceptable rate of 
inbreeding, including compromising genetic gains in com­
mercially important traits. The importance of the Landrace 
breed to the Korean pig industry suggests that this population 
requires a higher level of genetic diversity. Sufficient genetic 
diversity is also needed when applying selection methods that 
maximize selection responses at a fixed inbreeding rate [31] 
or methods that optimize the use of genetic resources from 
the parental generation .
  Currently, the Ne of the Korean Landrace population would 
remain very small or continue to decrease if we were to apply 
an effective new method for estimating breeding values (e.g., 
genomic selection) [17]. Therefore, we must emphasize breed 
management and the avoidance of inbreeding, using measure­
ments of genetic diversity. Although this might affect short-
term genetic gains, it is essential for maintaining the long-term 
genetic variability of the Korean Landrace population. Con­
tinuous monitoring and long-term efforts to maintain genetic 
diversity are also needed to control the pig population and 
avoid an unintended reduction of the Ne. The maintenance 
of a sufficient Ne within a production population is the best 
way to maintain a sustainable pig population. Therefore, ef­
ficient monitoring and management, as described in this report, 
are essential.

CONCLUSION

In this study, we used SNP genotype data to characterize LD 
and infer the current and ancestral Ne values for the Korean 
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Landrace population, using individuals from three major GGP 
farms. In this studied population, LD extended for long dis­
tances and reached baseline levels after thousands of kbs. The 
decay in LD over increasing genetic distances led us to estimate 
a current Ne of 92.27 [79.46; 105.07] and to observe a 99.6% 
decrease in Ne during the past 10,000 generations ago (Ne: 
22974.59 individuals).
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