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Abstract

Background: Population-wide genotypic and phenotypic data is frequently used to predict the disease risk or

genetic/phenotypic values, or to localize genetic variations responsible for complex traits. GPOPSIM is a simulation
tool for pedigree, phenotypes, and genomic data, with a variety of population and genome structures and trait
genetic architectures. It provides flexible parameter settings for a wide discipline of users, especially can simulate
multiple genetically correlated traits with desired genetic parameters and underlying genetic architectures.

Results: The model implemented in GPOPSIM is presented, and the code has been made freely available to the
community. Data simulated by GPOPSIM is a good mimic to the real data in terms of genome structure and trait
underlying genetic architecture.

Conclusions: GPOPSIM would be a useful tool for the methodological and theoretical studies in the population

and quantitative genetics and breeding.
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Background

Single nuclear polymorphism (SNP) markers are widely
implemented in the investigation of human genetics and
animal/plant breeding, due to its high abundance and
extensive coverage across the whole-genome. They were
usually used to predict the disease risk in human [1,2], to
localize genetic variations responsible for complex traits
through genome wide association study (GWAS) [3], and
to predict the genetic values of economically important
traits in plant and animal breeding [4,5]. The techniques
and methodologies related to this discipline are moving
fast, and these new methods need to be evaluated before
implemented to real data. The most efficient way for such
kind evaluation is computer simulation.

Data simulation has been employed in genetic analysis
for decades. Recently, many novel findings in genomic
prediction using simulated whole-genome data were re-
ported [6,7]. The most commonly used model for whole-
genome genotypic data simulation is the mutation-drift
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equilibrium (MDE) model [8]. However, the rules applied
in the MDE model vary in different studies, which made
results from different studies incomparable. Meanwhile,
only independent traits could be simulated by most pro-
grams, and function of simulating multiple correlated
traits are seldom to be developed.

We present GPOPSIM: a simulation tool for popula-
tion genetic data based on MDE. The mechanism to cre-
ate polymorphic markers, population structure, and trait
phenotypes were detailedly proposed. Moreover, simulat-
ing multiple genetically correlated traits were explored
as well. In order to demonstrate the performance of our
program, a series of implementation were carried out in
this study.

Implementation
In this section, we describe the implementation of the
method from [9] in the presented software GPOPSIM.
The software can be compiled and executed in multiple
platforms, and driven by a parameter file. The parameter
setting is illustrated in Table 1 and more details could be
found in the project home page (https://github.com/
SCAU-AnimalGenetics/GPOPSIM).

The simulation of whole-genome genotypes is based on
the MDE model [8]. It starts from an initial population,
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Table 1 Parameter setting

Category Parameters

Overall population stages, number of sub populations
in the current population stages, chromosome
number, chromosome length

Marker marker number per chromosome, marker

distribution, mutation rate for marker& QTL

QTL QTL effect distribution, QTL number,
QTL ratio for multiple trait simulation

Trait trait number, trait type, heritability,
correlations between traits

Population setting population size, number of sires selected,
number of dams selected, number
of generations, selection rule, matting rule,

mutation rule

through many generations of historical population, ends
to the current population. In this process, the polymorph-
ism of markers is increased by mutation, but decreased by
genetic drift, and reaches equilibrium status throughout a
number of historical population, which was named
mutation-drift equilibrium [10]. The whole-genome data
generated in the current population can be used for data
analysis. Figure 1 illustrates the workflow and acting par-
ameter categories in each population stage.

Population structure

The populations simulated by GPOPSIM include one
historical population and one or more current popula-
tion(s). The population structures can be very flexible in
different population stages by assigning parameters such
as different population sizes, number of selected breed-
ing male and female, the selection rules and other pa-
rameters for each population stage (Table 1, Figure 1).
The population/pedigree structure of the simulated data
is decided by the parameter settings of the current popu-
lations. The parameter settings for the historical popula-
tion mainly affect the genome structure of the current
population.
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Figure 1 Workflow and parameter setting in GPOPSIM.
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Genome structure

The genome structure could be clearly defined with the
overall parameters and mutation rules applied in each
current population. Generally, the number of chromo-
some and the lengths of different chromosomes are arbi-
trarily assigned [4,11,12], e.g. 1 Morgan for each of five
chromosomes. The number of markers on each chromo-
some could vary, and each segment between two adja-
cent markers was considered to harbor a potential QTL.
In GPOPSIM, the position of markers and potential
QTLs were simply assumed a mixture of uniform and
exponential distribution to mimic the real SNP data in
currently available SNP chips [9], such as the Illumina
BovineSNP50 BeadChip [13].

The polymorphic markers and the linkage disequilib-
rium (LD) among them are mainly created in the histor-
ical population. The expected marker heterozygosity
(H,) is H, = (4N,u)(4N,u + 1)~ [10], where N, is the ef-
fective population size and u is the mutation rate. And
the expected LD is r* ~ 1/(a + kN,c) [8], where « is an in-
dicator of mutation, ¢ is the genetic distance between
markers.

Genetic and phenotypic values

Based on the genome structure generated in the histor-
ical population, the trait and QTL parameters, GPOP-
SIM simulates genetic and phenotypic values for each
individual in the current population. The true QTLs are
randomly sampled from all candidate QTLs. The true
genetic effects of each true QTL are sampled from nor-
mal [1] or gamma distribution [4]. By setting different
QTL number and effect distribution, a wide range of
genetic architecture from simple disease traits to com-
plex traits can be simulated easily. For each trait, the
true genetic merit of one individual is defined as the cu-
mulative effect across all true QTLs. For quantitative
traits, the phenotypic value is generated by adding the
true genetic merit with a random residual error, while
the 0/1 phenotype is generated by setting an incidence
for threshold traits.

The principles applied to single-trait data simulation
can be easily extended to two or multiple genetically
correlated traits simulation. For two traits simulation,
more flexible parameters and rules can be applied. All
true QTLs affecting both traits are divided into three
groups: (1) Groupl is a group of true QTLs simultaneously
affecting both traits, in which their effects are sampled
from a multivariate normal distribution or a gamma distri-
bution [14], (2) the true QTLs in Group2 and Group3
affect only one of the two traits, respectively, for which the
effect of each causative locus in Group2 and Group3 is
sampled from a normal or gamma distribution. The gen-
etic correlation between two traits ranged from -0.88 to
0.88, which can basically cover the genetic correlated traits.



Zhang et al. BVIC Genetics (2015) 16:10

Random residual errors are sampled from a multivariate
normal distribution. Similarly, the phenotypic value and
genetic merit of one individual on both traits are generated
as the single trait module does. Considering the sampling
error of simulation, the expected genetic correlation (rg) of
two traits is evaluated and provided by GPOPSIM accord-
ing to the formula [15]

Tap = 2217,'(1*171')%#3:‘/(\/221’1(1*171')"‘31,’ * ¢Zzpi(17pi)“§i>
(1)

where p; is the frequency of one of two alleles for the
locus i; ay; is the effect of the locus i for Trait A; ag; is
the effect of the locus i for Trait B. For multiple traits
simulation, all true QTLs are assumed to affect all traits
simultaneously for simplicity and their effects are sam-
pled from a multivariate normal distribution with the re-
striction of assigned genetic correlations [16].

Input and output files

Only one input file, also being the parameter file is
needed to run GPOPSIM (Table 1). Generally, GPOP-
SIM generates four types of output files: (1) a data file
including pedigree information, the individuals and their
parents identities, and the simulated true genetic value
and phenotypic value for each trait and each individual;
(2) marker genotype file providing the marker genotypes
in phased format; (3) QTL genotype file providing the
true QTL genotypes; and (4) several separate parameter
files include a marker map file, a true QTL map file
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including their simulated true QTL effects, and a genetic
parameters file. All these files are in text format with the
file extension of “.txt. And the first three types of files
are generated for each generation with a filename in-
cluding the number of generation.

Source code and software availability

Based on the methods described above and in [9], we de-
veloped a whole-genome data simulation software GPOP-
SIM in Fortran 90 and tested on Microsoft Windows
(version XP/7/8), and Linux (Red Hat Enterprise, Ubuntu,
Fedora). It can simulate population with various popula-
tion structure, genomic data, one or more independent/
correlated continuous trait(s). The volume of simulated
dataset depends on the running environment of the user’s
PC or server.

A series of simulations were carried out to investigate
the quality of the simulated data using GPOPSIM, and
the Haploview software [17] was used for data quality
control and linkage disequilibrium analysis. The variance
components and genetic correlations were estimated by
DMU [18].

Results and discussion
We describe the quality of data simulated by GPOPSIM
first, and followed by a general discussion of the imple-
mentation of GPOPSIM.

Besides the features predefined by users, e.g. marker
density, minor allele frequency (MAF) and LD can typic-
ally reflect the characteristic of the simulated genotypic
data. Usually, MAF in the current population generated
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Ne = 100, mutation rate u=2.5x 107>, number of markers = 10,000.

Figure 2 Distribution of the minor allele frequency (MAF) of genotypes simulated by GPOPSIM. Parameter setting for this simulation is
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Figure 3 Pattern of linkage disequilibrium (LD) of the genotypes simulated by GPOPSIM. Parameter setting for this simulation is Ne =100,
mutation rate u = 2.5 x 10>, number of markers = 10,000. The pairwise LD among the first 1000 markers were shown in this figure.

by GPOPSIM nearly follows an uniform distribution
with a long tail near MAF =0, which is also called “L”
shape distribution of MAF, or “U” shape distribution on
the entire frequency spectrum. Figure 2 shows the distri-
bution of MAF in the scenario with N,=100 and u=
2.5x 1072, nearly 50% loci's MAF were lower than 0.3, and
the average MAF was 0.28, which is similar to the average
MATF in Holstein detected with Illumina Bovine50SNP
BeadChip [13,19]. The average MAF and heterozygosity
could be altered by increasing or decreasing the value of
mutation rate « in the historical population [9].

Linkage disequilibrium is another indicator for the
quality of simulated genotypic data. Figure 3 illustrates
the LD pattern of simulated data in the same scenario as
in Figure 2, the average LD between adjacent markers is
0.24. High LD can be observed in both long range and
short range (Figure 3), additionally, haplotype blocks can
be found as well, these fit the real data very well [19].

We assessed the two-trait phenotypic data simulated by
GPOPSIM by comparing the assigned and estimated gen-
etic parameters on condition that partial common QTLs
affect both traits. We set two genetically correlated traits
(denoted as Trait A and Trait B) with heritability of 0.1
and 0.3, the genetic correlation between trait A and B was

assigned 0, 0.2, 0.5 and 0.8, and the environmental correl-
ation was set 0. From the results of 20 replicates of simula-
tion (10,000 individuals in each replicate) (Table 2), we
can see that the heritability estimated by DMU are very
close to the assigned values in different levels of genetic
correlations and the estimation vary in a very small range
among replicates. Likewise, the estimations of genetic cor-
relation from DMU are acceptable and close to those
assigned, in addition, these estimations are also nearly
same as those expected genetic correlations, which are cal-
culated from equation 1. This indicates that GPOPSIM
can be an ideal tool for simulating multiple traits with/
without genetic correlation. The bias with the preset gen-
etic correlations is acceptable. Besides, the estimates of
variance components at all levels of genetic correlation fit
the assigned values very well (Table 2).

GPOPSIM is distributed both as Fortran 90 source code
and as executable procedure on Windows and Linux plat-
form (https://github.com/SCAU-AnimalGenetics/ GPOP-
SIM or Additional file 1). It is free of charge for all
purpose users and no license is required. The computing
time and RAM demanding on PC, with 3.0 GHz CPU, 2
GB RAM is 4.4 minutes and 8 Mb, respectively, for simu-
lating 10000 markers, 1000 historical generations with

Table 2 The assigned and estimated heritability (h?), genetic correlation (rg) and residual correlation (r.) for two trait

phenotypes simulated by GPOPSIM

h? r,

9 re
Estimated A Estimated B Assigned Expected Estimated Estimated
0.101(0.011) 0.289(0.022) 0.0 0.000(0.000) —0.004(0.092) 0.003(0.016)
0.100(0.009) 0.302(0.025) 0.2 0.180(0.046) 0.159(0.103) -0.002(0.010)
0.100(0.012) 0.299(0.022) 05 0.506(0.045) 0.493(0.079) 0.004(0.011)
0.104(0.012) 0.290(0.024) 0.8 0.805(0.042) 0.805(0.078) 0.000(0.015)

The assigned heritability is 0.1 and 0.3 for trait A and B, respectively; the assigned residual correlation is 0; the mean (S.D.) of estimated genetic parameters were

obtained from DMU and calculated from 20 replicate of simulations.
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Ne = 100. The time demanding increased nearly linearly
with the effective population size N, number of markers
N,,, and number of generations Nj.

GPOPSIM is designed for, but not limited to, data simu-
lation in genetic or breeding researches that needs gen-
omic and phenotypic data from a population, such as
genome wide association study, whole genome prediction,
population genomics studies, and genomic selection
breeding program. Though GPOPSIM has been success-
fully implemented in our previous studies [11,20,21], there
is still rooms for further extension, such as sequences
data simulation.

Conclusions

We presented GPOPSIM, a simulation tool for pedigree,
phenotypes, and genomic data, with a variety of popula-
tion and genome structures and trait genetic architectures.
It enables users to simulate (1) various genome structures
via mutation drift equilibrium model with user defined
historical population parameters; (2) pedigree from one or
more current population(s) with flexible user assigned
population structure parameters; (3) phenotypes on single
or multiple traits with/without desired genetic correlation
and genetic architectures. GPOPSIM is designed for, but
not limited to, data simulation in genetic or breeding re-
searches that needs genomic and phenotypic data from a
population, such as genome wide association study, whole
genome prediction, population genomics studies, and gen-
omic selection breeding program. The software can run
on multiple platforms and the code has been made freely
available to the community. We speculated that this soft-
ware could promote the methodological and theoretical
studies in the discipline of population and quantitative
genetics and breeding.

Availability and requirements

Project name: GPOPSIM

Project home page: https://github.com/SCAU-Animal-
Genetics/GPOPSIM

Operating system(s): Compiled for Windows and Linux
Programming language: Fortran 90

Other requirements: None

License: None

Any restrictions to use by non-academics: None

Additional file

Additional file 1: A compressed file includes the GPOPSIM resource
code (GPOPSIM.f90) and the parameter file for GPOPSIM (para.txt).

Abbreviations

GPOPSIM: Genome-wide population simulation; SNP: Single nuclear
polymorphism; GWAS: Genome wide association study; GS: Genomic
selection; MDE: Mutation-drift equilibrium; MAF: Minor allele frequency;
LD: Linkage disequilibrium.
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