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Abstract

Environmental parameters, including built and sociodemographic environments, 
can impact diabetes control (DC). Epidemiological studies have associated specific 
environmental factors with DC; however, the impact of multidimensional environmental 
status has not been assessed. The Environmental Quality Index (EQI), a comprehensive 
quantitative metric capturing five environmental domains, was considered as an exposure. 
Age-adjusted rates of DC prevalence for each county in the United States were used as 
an outcome. DC was defined as the proportion of adults aged 20+ years with a previous 
diabetes diagnosis who currently do not have high fasting blood glucose (≥126 mg/dL) 
or elevated HbA1c (≥6.5). We conducted county-level analyses of DC prevalence rates 
for the years 2004–2012 in association with EQI for 2006–2010 and domain-specific 
indices using random intercept multilevel linear regression models clustered by state and 
controlled for county-level rates of obesity and physical inactivity. Analyses were stratified 
by rural–urban strata, and results are reported as prevalence rate differences (PRD) with 
95% CIs comparing highest quintile/worst environmental quality to lowest quintile/best 
environmental quality. The association of DC with cumulative environmental quality was 
negative after control for all counties (PRD −0.32, 95% CI: −0.38, −0.27); suggesting that 
rates of DC worsen as environmental quality declines. While overall environmental quality 
exerts effects on DC that vary across the rural–urban spectrum, poor sociodemographic, 
and built environmental factors are associated with decreased DC nationally. These 
data suggest improvements in environmental quality mediated by larger-scale policy 
and practice interventions may improve glycemic control and reduce the morbidity and 
mortality arising from hyperglycemia.

Introduction

Diabetes mellitus (DM) is a devastating metabolic disease 
that contributes significantly to individual and societal 
morbidity and mortality. In 2018, 34.2 million people, 
approximately 10.5% of the United States (US) population, 
were estimated to have diabetes, and it was the seventh 
leading cause of death (1). In 2017, the total cost of 
diagnosed diabetes alone in the US was estimated to be 

$327 billion (2). This tremendous impact of DM arises 
from its potent contribution to micro- and macrovascular 
disease, including retinopathy, nephropathy, and 
neuropathy as well as atherosclerotic cardiovascular 
disease (ASCVD) and heart failure. Importantly, clinical 
trials over the last 30 years have clearly demonstrated that 
improved glycemic control among those with both type 1  
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and type 2 diabetes improves microvascular outcomes 
(3, 4). Moreover, recent clinical trials employing newer 
pharmacological approaches show improvements in 
macrovascular outcomes as well (5, 6). Thus, in addition 
to efforts to reduce the prevalence of diabetes, the toll of 
diabetes can be alleviated by improvements in glycemic 
control. However, despite advances in clinical care, a 
significant fraction of those with diabetes do not achieve 
glycemic control (7).

While clinical diabetes management focuses on 
lifestyle interventions and pharmacotherapy (8), emerging 
evidence linking environmental factors with diabetes 
pathogenesis raises important questions with regard to 
the capacity of environments to modulate diabetes risk 
and disease-associated outcomes. Over the last 2 decades, 
a variety of cell-based, animal, and epidemiological 
studies have linked various environmental toxicants with 
diabetes risk (9, 10). Furthermore, these exposures may 
partially explain the disproportionate burden of diabetes 
in ethnic and racial minorities as well as among those with 
low incomes (11). Evidence now also implicates multiple 
components of the built and social environments with 
diabetes risk (12). What is not well understood is how 
diverse environmental factors work in concert to mediate 
diabetes risk, and even less is known about how cumulative 
environmental factors influence diabetes control (DC). 
While clinical management of DM involves comprehensive 
management strategies directed at glycemic, blood 
pressure, and lipid targets among others (8), herein 
we focus on the specific influence of environments on 
glycemic control, namely the ability of those with diabetes 
to achieve glycemic targets known to reduce the risk of 
diabetes-associated complications.

To address these knowledge gaps, the goal of the 
present study was to understand the association between 
a comprehensive set of environmental factors and rates 
of DC. While some studies have identified potential 
environmental factors that contribute to DC, to the 
best of our knowledge, none provides a comprehensive 
assessment of various environmental domains. The 
Environmental Quality Index (EQI) was designed to 
provide a more comprehensive estimate of environmental 
quality in order to improve our understanding of how the 
environment affects health (13, 14). The EQI consists of data 
representative of five distinct environmental domains: air, 
water, land, built, and sociodemographic. Together, these 
variables are combined to form an overall composite score 
assigned to each individual county allowing for county-
level comparisons. Previous work has demonstrated 
that diabetes prevalence is strongly associated with 

sociodemographic environments nationally, while overall 
environmental quality, built environment, and land use 
demonstrated marked differences in associations across 
the urban–rural continuum which suggests varying drivers 
across rural–urban strata (15).

The present study expands upon this work to examine 
the potential role that environmental factors play in the 
marked geographic disparities in DC in the US as well as 
across the rural–urban spectrum. We examined county-
level rates of DC for the years 2004–2012 in association 
with the EQI for the years 2006–2010. We also considered 
associations with domain-specific indices to assess which 
domains, if any, drive associations with DC. Evidence 
that environments modulate DC may promote the 
development of environmental policy interventions to 
augment individual-level action to reduce the burden  
of diabetes.

Methods

Study population

Population-based county-level estimates for the prevalence 
of DC were obtained from the Institute for Health Metrics 
and Evaluation (IHME) for the years 2004–2012 (16). DC 
prevalence rate was defined as the proportion of people 
within a county who had previously been diagnosed with 
diabetes (fasting plasma glucose ≥ 126 mg/dL, hemoglobin 
A1c (HbA1c) of ≥6.5%, or diabetes diagnosis) but do not 
currently have high fasting plasma glucose or HbA1c for the 
period 2004–2012. DC estimates were directly derived from 
the modeled data as DC = 1 – uncontrolled DM/diagnosed 
DM, where uncontrolled DM was defined as diagnosed 
DM and with high FPG (≥126 mg/dL) and/or A1c (≥6.5%) 
(Dwyer-Lindgren, personal communication). A complete 
description of the imputation methods used is provided in 
Dwyer-Lindgren et al. (16). Briefly, DC prevalence estimates 
were calculated using a two-stage approach. The first stage 
used National Health and Nutrition Examination Survey 
(NHANES) data to predict high fasting plasma glucose 
(FPG) levels (≥126 mg/dL) and/or HbA1C levels (≥6.5% 
(48 mmol/mol)) based on self-reported demographic and 
behavioral characteristics (16). This model was then applied 
to Behavioral Risk Factor Surveillance System (BRFSS) data 
to impute high FPG and/or HbA1C status for each BRFSS 
respondent (16). The second stage used the imputed BRFSS 
data to fit a series of small area models, which were used 
to predict the county-level prevalence of diabetes-related 
outcomes, including DC (16).
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Exposure data: the Environmental Quality 
Index (EQI)

The EQI was used as a metric of cumulative environmental 
exposures at the county level representing the period 
2006–2010. We considered the 2006–2010 EQI to 
assess contemporaneous effects of environmental 
exposures. The EQI includes variables representing each 
of five environmental domains, air, water, land, built 
environment, and sociodemographic. The datasets 
included and the construction of the 2006–2010 EQI 
were similar to that of the 2000–2005. Datasets used and 
construction of the 2000–2005 are described elsewhere (13, 
14). Briefly, for the 2006–2010, domain-specific indices (air 
index, water index, land index, built environment index, 
and sociodemographic index) were created by retaining the 
first component of a principal components analysis (PCA) 
that included all of the domain-specific variables. A list of 
variables and those used in the 2006–2010 EQI is provided 
(Supplementary Table 1, see section on supplementary 
materials given at the end of this article). The EQI was 
then created by retaining the first component of a PCA 
that combined the domain-specific indices. Recognizing 
environments differ across the rural–urban continuum, 
the EQI and domain-specific indices construction were 
stratified by rural–urban continuum codes (RUCC) (14). 
We utilized four categories for which RUCC1 represents 
metropolitan urbanized; RUCC2 non-metro urbanized; 
RUCC3 less urbanized; RUCC4 thinly populated, which 
have been used in previous health analyses (15). Finally, 
we have six non-stratified indices (one overall EQI and five 
domain-specific indices) and six corresponding indices for 
each of the four RUCC strata. This allows for the assessment 
of cumulative environmental exposure, domain-specific 
drivers, and rural–urban variations. For the domain-
specific analysis, we valance corrected (i.e. corrected 
directionality) the domain-specific indices to ensure that 
the directionality of the variables was consistent with 
higher values suggesting poorer quality (more pollution).

Covariates

County-level data on obesity and leisure-time physical 
inactivity for the years 2004–2012, annually, were 
downloaded from the Centers for Disease Control and 
Prevention to use as covariates in analyses. These values 
are estimated from the Behavioral Risk Factor Surveillance 
System (BRFSS) data using Bayesian methods to statistically 
model estimates utilizing data from surrounding 
counties to strengthen estimates for individual counties.  

Additionally, for domain-specific analyses, the other  
domains were included in the statistical models as covariates.

Statistical analyses

We used a random intercept mixed-effect linear model, 
clustered by state, to estimate the fixed effects of EQI 
quintiles and environmental domain-specific quintiles on 
DC prevalence annually. We clustered by the state in order to 
account for policies in funding for and care of diabetes which 
may vary at the state level. We conducted analyses using 
quintiles, which allow for more meaningful interpretation 
between areas of good (1st quintile), moderate (3rd quintile), 
and poor (5th quintile) environmental quality.

The regression equation for the random intercept 
mixed-effect linear model is:

Y i j k b b xXi j i i ij( ), , ,= + + +b b0 1 0 1

where Y(i,j,k) is the outcome (diabetes control) for the 
ith state, jth county in the kth year; Χi,j is the exposure 
measurement (overall EQI or specific domain) for the ith 
state and jth county; xi,j,k are the covariates, county-level 
obesity and leisure-time physical inactivity, for the ith 
state, jth county, and the kth year; β0 is the overall intercept; 
β1 is the overall slope; b0i,j is the state and county intercept; 
b1i,j is the state and county slope.

Results are reported as prevalence rate differences 
(PRD) with 95% CIs comparing the highest quintile/
worst environmental quality to the lowest quintile/
best environmental quality exposure metrics. PRDs are 
representative of the entire period of interest, 2004–2012. 
Due to the availability of DC data and covariate data, not 
all counties were captured (nine counties missing data); 
however, the majority, 3134 of 3142 (99.7%), were utilized 
in the analysis. DC prevalence data and covariate data for 
nine individual years (2004–2012) were used; therefore, 
the final regression model utilized data for 28,206 counties 
(3134 counties × 9 years). All analyses were stratified by 
four rural-urban continuum codes to assess associations 
by rurality/urbanicity. Analyses were conducted using SAS 
(SAS Institute, Cary, NC; v9.4) statistical software, and 
figures were made using R (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Of the 3134 counties represented in the analysis, 34.7% 
(n = 1088) were metropolitan urbanized (RUCC1),  
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10.3% (n = 323) were non-metropolitan urbanized 
(RUCC2), 33.7% (n = 1056) were less urbanized (RUCC3), 
and 21.3% (n = 667) were thinly populated (RUCC4). This 
mirrors the RUCC distribution of all US counties, which is 
34% RUCC1, 10% RUCC2, 34% RUCC3, and 21% RUCC4. 
The average county-level prevalence rate of DC was 26.41 
per 100,000 population (s.d. 1.29) for all counties.

The association of diabetes control, a positive 
outcome, with cumulative environmental quality is 
negative after controlling for obesity and leisure-time 
physical inactivity for all counties (PRD −0.32, 95% CI: 
−0.38, −0.27) (Fig. 1), suggesting rates of DC decrease 
with worse environmental quality. Associations varied 
across environment-specific domains. The air domain 
was associated with an increased prevalence of DC (PRD 
0.15, 95% CI: 0.10, 0.20) (Fig. 1). The associations with 
the water and land domains were inverse. The strongest 

associations were seen with the sociodemographic 
domain (PRD −1.79, 95% CI: −1.85, −1.73) (Fig. 1). The 
built domain also demonstrated inverse associations with 
the prevalence of DC. A summary of results for all counties 
by domain is shown in Table 1.

Associations also varied across the rural–urban strata 
(summarized in Table 1). In the metropolitan urbanized 
counties (RUCC1), the association with cumulative 
environmental quality was strongly inverse (Fig. 2, panel 
A). Therefore, it suggests rates of DC decrease with worse 
environmental quality. The results for the air, water, and 
land domains were close to null in RUCC1. The built and 
sociodemographic domains demonstrated strong inverse 
associations with DC prevalence.

In the non-metropolitan urbanized counties (RUCC2), 
the association with cumulative environmental quality 
is strongly inverse (PRD −1.20, 95% CI: −1.40, −1.00)  

Figure 1
Diabetes control prevalence rate differences, in reference to quintile 1, with 95% CIs for all counties by quintiles of environmental quality index for the 
years 2006–2010 and domain-specific indices, controlling for obesity prevalence and leisure-time physical inactivity prevalence and all other domains for 
the domain-specific analyses.
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(Fig. 2, panel B). The air domain demonstrated associations 
with increased prevalence of DC. The water and land 
domains showed marginal associations with DC. The 
sociodemographic domain demonstrated an inverse 
association with DC.

In the less urbanized counties (RUCC3), cumulative 
environmental quality controlling for obesity and leisure-
time physical inactivity was associated with decreased 
prevalence of DC (PRD −1.04, 95% CI: −1.14, −0.94)  
(Fig. 2, panel C). When considering environmental 
domains, the air domain demonstrated associations 
with increased prevalence of DC. The water domain 
showed marginal associations with DC. The land domain 
demonstrated marginal inverse associations with DC. 
The built and sociodemographic domains demonstrated 
inverse associations with DC.

Lastly, in the thinly populated counties (RUCC4), 
cumulative environmental quality controlling for obesity 
and leisure-time physical inactivity was associated with 
decreased the prevalence of DC (PRD −0.92, 95% CI: −1.06, 
−0.78) (Fig. 2, panel D). When considering environmental 
domains, the air, land, and water domains demonstrated 
marginal associations with prevalence of DC. The built and 
sociodemographic domains showed inverse associations 
with the EQI. Results for all quintiles, all domains, and all 
RUCC with coefficients and 95% CIs for all variables in the 
model are shown in Supplementary Table 2.

Discussion

Existing evidence suggests that built and sociodemographic 
environments can impact the control of diabetes, but the 
effect of cumulative environmental exposures has not been 
considered. To address this gap in research, we utilized 
a comprehensive measure of environmental quality 
derived from publicly available data sets that quantify 
environmental exposures for the period 2006–2010. We 
found that decreases in cumulative environmental quality 
were associated with decreases in the prevalence of DC. 
Using the 2006–2010 EQI, we found that the prevalence 
of DC decreased as environmental quality decreased with 
a prevalence rate difference of −0.32; suggesting that if a 
county were to improve from the quintile with the poorest 
environmental quality to that with the best environmental 
quality, the prevalence of diabetes control will improve by 
0.32 per 100,000 population. This association remained 
for all rural/urban strata, demonstrating that poor 
environmental exposures were associated with reduced 
rates of DC. These data suggest that environmental quality 
influences DC, and policies that improve environmental 
quality may improve glycemic control and lower the 
morbidity associated with diabetes.

Associations varied by environmental domain 
as well as with the strongest associations seen in the 
sociodemographic domain for all rural/urban strata. 
Within the sociodemographic domain of the EQI, there 
are 12 different variables derived from 4 data sources, the 
United States Census, Federal Bureau of Investigation 
(FBI) Uniform Crime Report (UCR), Leip’s Atlas of the 
United Sstates Presidential Elections, and United States 
Department of Agriculture (17, 18, 19, 20). These variables 
include the percentages of renter occupied spaces, vacant 
units, percent of vacant housing units, median household 
value, median household income, persons living under the 
poverty level, unemployed persons, number of occupants 
per room, percentage of individuals with Bachelor’s degree 
or higher as well as income inequality, percent of the 
county voting Democrat, percent of county employed in a 
creative class, and rates of violent crime. In comparing the 
factors within the sociodemographic domain to rates of 
diabetes control, there is a decrease in DC with worsening 
sociodemographic domain qualities overall and for 
RUCC1, RUCC3, and RUCC4 specifically. These findings 
across the nation align with previously published studies 
examining specific sociodemographic components and 
composite metrics.

In attempting to dissect the sociodemographic domain 
variables, one factor that has been relatively well studied is 

Table 1 Summary of results for overall EQI and all domains 
for 2006–2010 indices.

Poor

2006–2010 EQI
is associated  

with ___ rates for DC for …

Overall environmental 
quality (EQI)

↓ All counties
↓ RUCC1, RUCC2, 

RUCC3, RUCC4
Air ↓ All counties

— RUCC1
↑ RUCC2, RUCC3, 

RUCC4
Water ↓ All counties

↓ RUCC1, RUCC2, 
RUCC3, RUCC4

Land ↓ All counties
↓ RUCC1
— RUCC2, RUCC3, 

RUCC4
Sociodemographic ↓ All counties

↓ RUCC1, RUCC2, 
RUCC3, RUCC4

Built 
 

↓ All counties
↓ RUCC1, RUCC2, 

RUCC3, RUCC4
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Figure 2
Diabetes control prevalence rate differences, in reference to quintile 1, with 95% CIs for metropolitan urbanized counties (RUCC1) (panel A), non-
metropolitan urbanized counties (RUCC2) (panel B), less urbanized counties (RUCC3) (panel C), thinly populated counties (RUCC4) (panel D) by quintiles of 
environmental quality index for 2006–2010 and domain-specific indices, controlling for obesity prevalence and leisure-time physical inactivity prevalence 
and all other domains for the domain-specific analyses.
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the relationship between food security and DC (21, 22, 23, 
24). The United States Department of Agriculture (USDA) 
defines food insecurity as a lack of consistent access to 
enough food for an active, healthy lifestyle (21). Food 
insecurity is associated with diabetes rates as well as with 
poorer glycemic control (22). Behaviors associated with 
food insecurity include changes in eating habits, such as 
replacing healthier, more expensive foods with lower-cost, 
high-calorie options. Many food-insecure households 
also go through cycles of food scarcity and adequate food 
supplies leading to overconsumption during times of 
adequacy and underconsumption during times of scarcity 
(23). These cyclical patterns place patients at increased 
risk for adverse clinical outcomes including episodes of 
hyperglycemia and hypoglycemia and complications 
that negatively impact DC. In contrast, participants in 
the Supplemental Nutrition Assistance Program (SNAP), a 
federal program that is administered at the state level, for 
low-income families that provide funds that can be used 
toward healthier food purchases, had better DC compared 
to food-insecure counterparts that did not participate in 
SNAP (24). In addition to effects on food consumption, 
food-insecure individuals are also significantly more likely 
to scrimp on medications (25). Medication scrimping 
behaviors include delaying filling prescriptions, inability 
to afford medications, skipping medication doses, or 
taking less medication than recommended.

Another potential sociodemographic contributor to 
worse glycemic control is educational attainment and 
consequential health literacy. In one study exploring the 
impact of health literacy for patients with hypertension 
and diabetes in two urban public hospitals, patients 
with greater health literacy were more likely to recognize 
symptoms of hypoglycemia, know how to treat it, and 
possess greater disease knowledge; there was no relationship 
between literacy and the number of diabetes classes 
attended (26). There was a trend toward worse glucose 
control among those with lower literacy; however, the 
relationship did not reach statistical significance (26). In 
addition, education discrimination more broadly has been 
associated with poorer glycemic control and potentially 
worse health outcomes (27). Indeed, patients who reported  
perceived education discrimination had HbA1c levels that 
were 0.5% higher.

In addition to relationships observed in the 
sociodemographic domain, lower rates of DC were also 
associated with worse land and built environments. The 
associations with the land were unexpected as there is little 
previous research into the impacts of exposures considered 
in the land domain and DC. However, there is evidence 

that neighborhood factors, the built environment, 
are associated with DC. Two studies have explored 
the relationship between composite neighborhood 
characteristics and cardiometabolic risk factors. The 
first study employed the Neighborhood Deprivation 
Index (NDI), which is composed of eight census-derived 
variables, including some of the same variables used 
to develop the EQI (12). In an analysis of 19 northern 
California counties, after adjusting for individual factors 
including income and education, the NDI was associated 
with poorer glycemic control as assessed by HbA1c (12). In 
a similar study conducted among older women, there was 
a trend toward improved HbA1c as neighborhood quality 
improved, although the results did not reach statistical 
significance (28).

The air domain and the water domain demonstrated 
marginal associations with the prevalence of DC. The 
variables included in the water domain have not been 
previously associated with DC. However, we were expecting 
a stronger association between the air domain and DC. 
Previous studies have suggested that current exposure to 
air pollution may affect one’s ability to exercise outside 
or to access healthy foods, thereby affecting blood sugars 
(29, 30). This marginal effect between the air domain and 
DC is likely due to the use of county-level data. The county 
is a large heterogenous area, and the localized impacts of 
poor air quality are likely to be diluted over the spatial area  
of a county. 

The EQI is a metric of cumulative environmental 
exposures that was developed utilizing publicly available 
data. However, environmental data are typically collected 
for administrative and regulatory purposes and, therefore, 
may not provide the spatial and/or temporal coverage to 
properly assess health outcomes (31). Many variables in 
the built and sociodemographic domain are associated 
with DC, and while we did see strong associations with the 
sociodemographic domain, the associations with the built 
environment were not as strong. This may be due to the 
resolution of the data in the built domain. Additionally, 
environmental data better represent urban areas compared 
to suburban and rural areas. Several of the factors included 
in the exposure metric as well as the outcome of county-
level rates of DC demonstrate spatial relationships. We did 
not account for any spatial associations in our analyses. 
These factors may demonstrate clustering effects that 
should be considered and accounted for in future analyses. 
Moreover, such analyses will be further augmented by finer 
spatial resolution for both exposure and outcome metrics.

The application of broad ecological exposure metrics 
like the EQI provides new insights into the impact 
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of cumulative environmental exposures on DC. The 
EQI considers hundreds of environmental exposures 
simultaneously across multiple environmental domains, 
including the sociodemographic environment, which 
is often neglected when considering environmental 
exposures. In addition, we were able to leverage 
publicly available exposure and outcome data to assess 
relationships between environmental quality and DC on a 
national level. These data provide intriguing insights that 
should prompt targeted investigations examining how 
socioeconomic and other environmental drivers can affect 
glycemic control among those with diabetes and how 
these factors vary across the urban–rural continuum to 
better tailor place-based intervention strategies to specific 
communities in order to lessen the devastating toll of 
diabetes on individuals and society at large.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-21-0132.
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