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Abstract  
Glaucoma, the leading cause globally of irreversible blindness, is a neurodegenerative disease 
characterized by progressive retinal ganglion cell death. To date, no drug has been shown to 
prevent the retinal ganglion cell loss associated with glaucoma. Multiple mechanisms lead to 
ganglion cell death in glaucoma, suggesting that a neuroprotectant that has a single mode of action, 
like memantine, would have a limited positive effect at slowing down ganglion cell death. Conversely, 
simultaneously targeting several factors may be the best therapeutic approach to improve outcomes. 
Multifunctional drugs are fast gaining acceptance as a strategy for the treatment of complex 
disorders of the central nervous system, such as Parkinson’s disease, Alzheimer’s disease and 
other progressive neurodegenerative diseases. In this paper, we review the current literature on 
multifunctional drugs and propose a rationale for the use of multifunctional drugs in glaucomatous 
optic neuropathy. 
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INTRODUCTION 
    
Glaucoma is currently recognized as a 
multifactorial neurodegenerative disorder 
with complex pathogenesis, affecting 60 
million people worldwide in its most common 
forms[1-3]. Elevated intraocular pressure (IOP) 
is a major risk factor for glaucoma; however, 
traditional strategies of lowering intraocular 
pressure have been shown to be unable to 
prevent progressive vision loss in some 
glaucoma patients, so the focus of glaucoma 
research has shifted toward 
neuroprotection[2, 4]. Neuroprotection for 
glaucoma can be considered an additional 
therapeutic strategy, independent of and 
complementary to IOP-lowering treatment, 
directly targeting retinal ganglion cells 
(RGCs) and neurons of the higher visual 
centers[5-6]. 
One such strategy is pharmacological 
neuroprotection, in which a drug is 
administered to interact with neuronal or 
glial elements within the retina/optic nerve 
head and thereby facilitate the survival of 
RGCs[4]. Two recent parallel clinical trials of 
oral memantine, an N-methyl-D-aspartate 
(NMDA) antagonist, in patients with chronic 
progressive open angle glaucoma, were 
unsuccessful[7-8]. The results of 
industry-supported trials have not yet been 
published, but the sponsor of these trials 

has provided press releases[8]. Currently, no 
drug with claimed neuroprotective activity 
has been identified or approved for the 
treatment of glaucoma. Multiple 
mechanisms lead to ganglion cell death in 
glaucoma, suggesting that a 
neuroprotectant that has a single mode of 
action, like memantine, would have a limited 
positive effect at slowing down ganglion cell 
death. Conversely, simultaneously targeting 
several factors may be the most likely 
therapeutic approach to improve outcome. 
In recent years, there has been a rapidly 
expanding interest in multifunctional drugs 
as an approach to the treatment of central 
nervous system neurodegenerative 
disorders with complex pathological 
mechanisms[9-12]. Increasing evidence 
shows that numerous similarities exist 
between glaucomatous neurodegeneration 
and other central nervous system 
neurodegenerative diseases[13-16]. 
Excitotoxicity triggered by elevated 
glutamate, excess concentrations of amyloid 
β peptide and excessive oxidant damage by 
reactive oxygen species have been 
implicated in the development of 
neurodegenerative process of glaucoma, as 
they have in Alzheimer’s disease[16-18]. 
Additionally, there is a growing trend toward 
using existing neuroprotective strategies in 
central nervous system neurodegenerative 
diseases for the treatment of glaucoma[2].
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RATIONALE FOR DEVELOPING 
MULTIFUNCTIONAL DRUGS FOR 
NEUROPROTECTION 
 
The incidence of neurodegenerative diseases has 
increased steadily worldwide owing to the extended life 
expectancy brought about by better health care. These 
neurodegenerative diseases include Alzheimer’s disease, 
Parkinson’s disease, amyotrophic lateral sclerosis, 
multiple sclerosis, Huntington’s disease, and multiple 
system atrophy, as well as diseases originating from an 
acute initial insult such as traumatic brain injury and 
stroke. Glaucoma is a neurodegenerative disease, and 
the incidence of neurodegenerative diseases tends to 
increase with aging, as is also observed in glaucoma[19]. 
A considerable body of evidence shows that the 
pathogenesis of these diseases is extremely complex 
and heterogeneous, resulting in significant comorbidity 
and that they are therefore unlikely to be mitigated by 
any drug acting on a single pathway or target[20-21]. 
The one-target one-drug paradigm has been the 
dominating drug discovery approach since the early 
1990s. This paradigm attempts to identify a single 
chemical entity that binds to a single target[22-23]. Drug 
discovery in neurodegenerative diseases has followed 
the same trend. For instance, memantine, an NMDA 
receptor (NMDAR) channel antagonist, was developed 
for the treatment of moderate-to-severe Alzheimer’s 
disease in 2003[24]. However, owing to disappointing 
clinical results, the effectiveness of this paradigm has 
been questioned. Recent large-scale genomics studies 
have confirmed significant redundancy in proteinaceous 
drug targets, suggesting that drugs directed toward 
single pathophysiological mechanisms may have more 
limitations than multifunctional drugs[11, 25]. 
Multifunctional drugs are those agents with more than 

one therapeutic mechanism[26]. When an undesired 
pharmacologic action occurs at therapeutic doses, this is 
not a multifunctional drug, but a “dirty drug”. More 
recently, a new paradigm that addresses disease 
etiological complexity using a multi-target-directed ligand 
approach has gained increasing acceptance. Novel 
compounds are specifically designed to target the 
multiple mechanisms underlying the etiology of a specific 
disease, and these have shown superior efficacy and 
safety profiles. These agents offer the promise of 
preventing, arresting, or slowing decline through disease 
modification. Thus, the major drug discovery paradigm is 
shifting from a one-drug–one-target strategy to a 
one-drug-multiple-targets strategy (Figure 1).  
In 2006, rasagiline (N-propagrgyl-1R-aminoindan) was 
approved as the first once-daily oral treatment for 
Parkinson’s disease by the U.S. Food and Drug 
Administration[10]. It was also the first Parkinson’s 
disease treatment to receive the label 
“disease-modifying”[27]. The development of rasagiline 
provides an excellent example to support the validity of 
the multi-target-designed ligand approach to searches 
for effective medicines combating neurodegenerative 
diseases. 
 
POTENTIAL MULTIPLE TARGETS FOR 
NEUROPROTECTION IN GLAUCOMA 
 
Glaucoma is a leading cause of irreversible world vision 
loss and is characterized by progressive RGC death. 
Although the exact mechanism underlying glaucoma 
remains uncertain, much progress has been made in 
identifying potential pharmacological targets. The 
development of animal models of chronic glaucoma has 
enhanced our understanding of many of the pathological 
processes occurring in glaucoma and, in doing so, has 
suggested logical targets for pharmacological intervention.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  The drug discovery strategy for complex pathologies such as those found in neurodegenerative disease has 
undergone a paradigm shift from the design of one-molecule-one-target agent to the design of multifunctional drugs. 
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Glutamate is a major excitatory neurotransmitter in the 
central nervous system, including the retina. 
Glutamate-mediated excitotoxicity, primarily through 
NMDARs, may be an important cause of RGC death in 
glaucoma[2, 4, 28]. Pharmacological inhibition of NMDARs 
has been advocated to be an important strategy for 
neuroprotection in glaucoma. Memantine, an NMDA 
antagonist, has undergone phase 3 clinical trials for 
glaucoma progression, but the drug did not show 
significant efficacy in preserving visual function[6, 8]. 
It has been suggested that excessive nitric oxide is 
involved in the optic neuropathy associated with 
glaucoma, and that it is most likely made by reactive 
astrocytes and microglia in the optic nerve heads[29-31]. 
Nitric oxide is generated by the action of nitric oxide 
synthase (NOS), which has three different forms, namely, 
neuronal NOS (nNOS), endothelial and inducible. In a rat 
model of chronic glaucoma, nNOS expression was 
significantly increased and a non-specific NOS inhibitor 
reduced RGC loss[32]. Another investigation showed that 
inducible nitric oxide synthase did not mediate optic 
neuropathy and retinopathy in the DBA/2J glaucoma 
model[33]. Thus, it has been suggested that 
pharmacological inhibition of nNOS represents a novel 
strategy for the treatment of glaucoma[32]. 
It is commonly believed that intracellular calcium is a 
major mediator of neuronal cell death in ischemia, in 
which high levels of released glutamate can produce 
overstimulation of ionotropic glutamate receptors, 
leading to neuronal cell death triggered by a large influx 
of Ca2+ into cells mainly via NMDARs and secondary 
opening of voltage-dependent Ca2+ channels[34-35]. 
Furthermore, L-type voltage-dependent Ca2+ channels 
also appear to play a major role in controlling the release 
of glutamate in the retina[36]. Therefore, it has been 
hypothesized that Ca2+ channel antagonists would be 
effective neuroprotectants in glaucoma.  
It has been hypothesized that oxidative stress plays a 
role in RGC death in glaucoma by damaging the 
trabecular meshwork, the optic nerve head, and the 
retina[2, 37]. The term “oxidative stress”, refers to a cell’s 
state characterized by excessive production of reactive 
oxygen species and/or a reduction in the antioxidant 
defenses responsible for their metabolism. Reactive 
oxygen species are not only involved in direct cytotoxic 
consequences leading to RGC death, but may also play 
roles in the cell death signaling pathway by acting as 
second messengers and/or modulating protein function 
by redox modifications of downstream effectors through 
enzymatic oxidation of specific amino acid residues[38]. 
The use of antioxidant therapy may offer unique 
opportunities for neuroprotective interventions aimed at 
the effective treatment of glaucoma. 
Amyloid β peptide is constitutively produced by 
proteolysis of β-amyloid precursor protein and is 
intricately involved in the neuropathology of Alzheimer’s 
disease. Amyloid β peptide has recently been reported to 
be implicated in the development of RGC apoptosis in 

glaucoma[17, 39-40], and induces RGC apoptosis in vivo in a 
dose- and time-dependent manner[41]. It is likely that 
drugs targeting different components of the amyloid β 
peptide pathway would provide a therapeutic avenue for 
glaucoma management. 
The neurotrophin deprivation hypothesis suggests that 
the obstruction of retrograde transport at the lamina 
cribrosa causes the deprivation of neurotrophic support 
to RGCs in glaucoma[6, 42]. The neurotrophin family 
includes nerve growth factor, brain-derived neurotrophic 
factor, neurotrophin-3 and neurotrophin-4/5[4]. 
Brain-derived neurotrophic factor enhances survival of 
RGCs in a model of excitotoxic injury[43]. Nerve growth 
factor was identified as being neuroprotective in the 
Morrison’s glaucoma model by reducing RGC apoptosis 
through topical application[44-45]. Neurotrophic factor 
delivery may be a key approach in the development of 
potential neuroprotective glaucoma treatments. 
The field of gene therapy for neuroprotection is rapidly 
expanding. Gene therapy involves delivery of a gene to 
targeted cells to cure or slow the progression of diseases. 
It has become a highly accessible approach for 
glaucoma because the trabecular meshwork, ciliary body, 
ciliary epithelium, Müller cells and RGCs are all 
appropriate target structures for gene therapy[46-47].  
In addition, heat shock proteins[48] and caspase-3[49] are 
involved in the mechanisms believed to initiate the 
apoptotic cascade in glaucoma, thereby providing 
potential targets to rescue RGCs. 
 
PROPOSED MULTIFUNCTIONAL DRUGS FOR 
NEUROPROTECTION IN GLAUCOMA 
 
Owing to the complex etiology of glaucoma, an 
innovative approach to neuroprotection or neurorescue 
may entail the use of multifunctional pharmaceuticals 
that target an array of pathological pathways, each of 
which is believed to contribute to the cascade that 
ultimately leads to neuronal cell death. 
Epigallocatechin gallate, a catechin-base flavonoid 
derived from green tea, possesses diverse 
pharmacological properties all of which contribute to its 
neuroprotective properties[50]. Besides being a powerful 
antioxidant[51], it also attenuates glutamate-induced 
cytotoxicity by decreasing calcium influx[52]. Moreover, it 
blocks the activation of nuclear factor-kappa B, thus 
preventing NOS-2 induction and consequent cytotoxic 
damage[53]. Epigallocatechin gallate has a protective 
effect on injured neurons in neurodegenerative disease, 
such as Alzheimer’s disease and Parkinson’s disease[54]. 
It protects RGCs from oxidative stress and 
ischemia/reperfusion, and its protective effect against 
retinal ischemia reperfusion damage is independent of 
any action upon IOP[50]. 
Bis(7)-tacrine is a promising anti-Alzheimer’s dimer 
derived from tacrine (Figure 2A). It was originally 
designed as a highly potent, selective, and low cost 
bifunctional acetylcholinesterase inhibitor utilizing 
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computer modeling of ligand docking with target 
proteins[55]. This unique compound possesses multiple 
physiological activities working through a multitude of 
mechanisms including concurrent inhibition of 
NMDARs[56-57], nNOS[58], L-type voltage-dependent 
calcium channels[59], acetylcholinesterase, and the 
amyloid precursor protein/β-amyloid cascade[60]. Our 
results confirmed that bis(7)-tacrine has 
neuroprotective effects against glutamate-induced RGC 
damage in vitro and in vivo, possibly through the drug’s 
anti-NMDAR effects[61-62]. In glaucoma, RGCs are 
exquisitely sensitive to the effects of both glutamate and 
amyloid precursor protein, which produces a 
dose-dependent cell-loss both in vivo and in vitro

[41, 63]. 
We postulate that bis(7)-tacrine protects RGCs via 
concurrent blockade of NMDARs, voltage-dependent 

Ca2+ channels and nNOS in glaucomatous 
neurodegeneration (Figure 2B). Further studies are 
required to test this hypothesis. 
 
CONCLUSION 
 
Currently, decreasing IOP is the only established medical 
treatment for glaucoma with elevated IOP, which was 
previously implicated as a possible primary insult in the 
disease[2]. Ocular or systemic administration of 
IOP-lowering drugs is usually the first step in glaucoma 
management[64]. For patients with established 
open-angle glaucoma (defined by the presence of optic 
nerve damage), reduction of IOP is effective and always 
recommended, irrespective of whether IOP is 
abnormal[65].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Proposed mechanism of action of bis(7)-tacrine in glaucoma neuroprotection through concurrent blockage of 
N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs) and neuronal nitric oxide synthase 
(nNOS).  
(A) Chemical structure of tacrine and bis(7)-tacrine.  
(B) Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of NMDAR, VDCCs and nNOS. When retinal ganglion 
cells are exposed to glutamate and amyloid precursor protein at toxic concentrations, excessive calcium influx mediates the 
subsequent biochemical events leading to neurotoxicity.  
Bis(7)-tacrine concurrently blocks NMDARs, VDCCs and nNOS, thereby synergistically providing substantial neuroprotection. 
NO: Nitric oxide. 

B 
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Lowering of IOP is accomplished by daily eye drops, 
laser treatment to the trabecular meshwork, or surgical 
treatment[1]. Pharmacological reduction of IOP is 
achieved by topical β-adrenoceptor blockers, topical 
prostaglandin analogues, topical α2-adrenoceptor 
agonists, topical cholinergic agonists and topical or 
systemic carbonic anhydrase inhibitors[3]. However, it is 
clear that IOP-lowering, although significantly reducing 
neuronal loss, does not prevent the progression of 
disease, because the loss of RGCs may continue, even 
after the IOP has been reduced[66]. Moreover, IOP 
lowering is not always effective and is sometimes difficult 
to achieve. Thus, the concept of neuroprotection of 
stressed RGCs has gained momentum. However, 
neuroprotective strategies alone are unlikely to succeed 
if the initial insult persists. It is therefore believed that 
treatment modalities that directly target both primary and 
secondary degeneration of the RGCs are required. Until 
now, there has been no neuroprotective agent indicated 
for the treatment of glaucoma. In the future, combination 
treatments targeting both IOP and neuronal injury will 
offer the best potential for halting the progression of RGC 
loss[3].  
New compounds that act on multiple therapeutic targets 
will be highlighted. Multifunctional drugs have multiple 
actions that theoretically blunt a number of potential 
secondary insults. Future preclinical experiments in 
animal models of glaucoma will improve our 
understanding of the molecular mechanisms of action of 
multifunctional drugs and will reveal the potential for 
these drugs in clinical settings. It is probable that 
administration of multifunctional drugs will form an 
adjunct to IOP-lowering drugs in the treatment of this 
debilitating disease. 
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