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Abstract: Plants continually monitor their innate developmental status and external environment and
make adjustments to balance growth, differentiation and stress responses using a complex and highly
interconnected regulatory network composed of various signaling molecules and regulatory proteins.
Phytohormones are an essential group of signaling molecules that work through a variety of different
pathways conferring plasticity to adapt to the everchanging developmental and environmental cues.
Of these, jasmonic acid (JA), a lipid-derived molecule, plays an essential function in controlling
many different plant developmental and stress responses. In the past decades, significant progress
has been made in our understanding of the molecular mechanisms that underlie JA metabolism,
perception, signal transduction and its crosstalk with other phytohormone signaling pathways. In
this review, we discuss the JA signaling pathways starting from its biosynthesis to JA-responsive
gene expression, highlighting recent advances made in defining the key transcription factors and
transcriptional regulatory proteins involved. We also discuss the nature and degree of crosstalk
between JA and other phytohormone signaling pathways, highlighting recent breakthroughs that
broaden our knowledge of the molecular bases underlying JA-regulated processes during plant
development and biotic stress responses.
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1. Introduction

During growth and development, plants are constantly battling against a challenging
environment. These adverse or unfavorable environmental conditions are often categorized
as: (i) abiotic stresses, such as ultraviolet (UV) radiation, flood, drought, heat, cold, heavy
metal toxicity and nutrient deficiency, and (ii) biotic stresses, such as pathogen infection
and animal herbivory [1]. Within plant cells, various signal transduction pathways work
collaboratively to convey and integrate stress stimuli, and ultimately orchestrate processes
of plant growth, development and defense responses [2–4]. Phytohormones are among
the most important signaling molecules that are involved in the signaling network that
regulates these processes [5–12].

Jasmonic acid (JA) and its metabolic derivatives, such as jasmonic acid isoleucine
(JA-Ile) and methyl jasmonate (MeJA), collectively known as jasmonates (JAs), are a class
of lipid-derived, natural and widely distributed phytohormones in higher plants. JAs
have been studied for decades as key signaling compounds involved in many aspects of
plant development and stress responses [9,13–18]. Upon stress stimuli, such as wounding,
herbivory or necrotrophic pathogen infection, plant cells trigger a rapid increase of JAs,
which lead to the activation of defense responses and reproduction, as well as the inhibition
of growth for plant fitness [19–23]. Moreover, through the crosstalk network, JAs often work
in concert with other phytohormones, such as abscisic acid (ABA), auxin, cytokinin (CK),
ethylene (ET), gibberellic acid (GA) and salicylic acid (SA), to balance between growth-
and defense-related processes, thereby conferring plants acclimation to the changing
environments [10,11,24].
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Studies in recent decades have remarkably expanded our knowledge on the molecular
basis underlying JA biosynthesis, transportation, signal transduction and the crosstalk
with other signaling pathways. The history of JA research ever since the first isolation
of MeJA in 1962 has been well documented [25]. The importance of JA in many devel-
opmental processes, including seedling development, lateral root formation, senescence,
flower development, sex determination, and the circadian clock has also been elaborately
discussed in several excellent reviews [11,14,17,24,26,27]. In addition, extensive efforts
have been made in elucidating the roles JA plays in regulating plant responses to biotic
and abiotic stress conditions, as well as the importance of the crosstalk between JA and
other phytohormones in these regulations [9,10,16,18,23,28–30].

In this review, we focus on recent updates on JA biosynthesis and signal transduction
mainly in Arabidopsis, the crosstalk complexity between JA and other phytohormone
signaling during plant development and stress responses, as well as the roles of the
involved transcription factors (TFs) and other regulatory proteins.

2. JA Biosynthesis

Thanks to modern technologies and dedicated researchers in biochemistry, cell biology
and genetics, the molecular mechanisms underlying JA biosynthesis and signal transduc-
tion have been progressively uncovered in both monocotyledon and dicotyledon plants,
especially in Arabidopsis [9,14,16,18,22]. Here, we briefly discuss the JA biosynthetic
pathway and key enzymes with several highlighted updates.

2.1. JA Biosynthesis

To date, three JA biosynthetic pathways have been identified in Arabidopsis: (1) the oc-
tadecane pathway starting from α-linolenic acid (α-LeA, 18:3), (2) the hexadecane pathway
starting from hexadecatrienoic acid (16:3), and (3) the 12-oxo-phytodienoic acid (OPDA)
reductase 3 (OPR3)-independent pathway (Figure 1). All three pathways require multi-
ple enzymatic reactions that take place sequentially in the chloroplast, peroxisome and
finally cytosol.

The first two pathways start with the release of the polyunsaturated fatty acids α-LeA
(18:3) and hexadecatrienoic acid (16:3) hydrolyzed from the membrane of chloroplast or
plastid depending on the cell type. Through a sequential series of reactions catalyzed by 13-
lipoxygenase (13-LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC), both
the 18:3 and 16:3 are converted to OPDA and dinor-12-oxo-phytodienoic acid (dnOPDA).
Then, OPDA is transported from chloroplast into peroxisome, where it gets reduced by
OPR3 and subsequently shortened by three rounds of β-oxidation, finally yielding JA
[(+)-7-iso-JA] (Figure 1). dnOPDA is believed to follow the same pathway as OPDA to
produce JA with one less round of β-oxidation [31]. Upon release into the cytosol, JA is then
metabolized into a variety of structures through different reactions, such as conjugation
with amino acids, hydroxylation, carboxylation and methylation, leading to a collection of
JA derivatives with different biological activities [16,22,32]. Among them, the conjugation
of JA to the amino acid isoleucine by jasmonoyl-isoleucine synthetase (JAR1) forms the
most bioactive form of the hormone, i.e., (+)-7-iso-JA-Ile (JA-Ile) [33]. When transferred
into the cell nucleus, the bioactive JA-Ile, through a “relief of repression” model, activates
several key TFs, such as MYC2, for downstream JA-responsive gene expression [34–37].

The OPR3-independent pathway was recently identified by studying a total loss-of-
function OPR3 mutant, opr3-3 [38]. In the absence of OPR3 activity, OPDA can directly enter
the β-oxidation pathway to form dnOPDA, which then gets converted into 4,5-didehydro-
JA (4,5-ddh-JA) through two more rounds of β-oxidation. Lastly, 4,5-ddh-JA is reduced
to JA by OPR2 in the cytosol (Figure 1). Nevertheless, the majority of JA biosynthesis still
occurs through OPR3 [38].
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Figure 1. Simplified JA (jasmonic acid) biosynthetic and metabolic pathways and intracellular flux 
in Arabidopsis. The blue arrows represent the octadecane pathway, the green arrows represent the 
parallel hexadecane pathway, and the yellow arrows represent the OPR3-independent pathway. 
Biologically inactive JA derivatives are shown in red. Biosynthetic and metabolic enzymes, as well 
as transporters are boxed. 13-LOX, 13-lipoxygenase; AOS, allene oxide synthase; AOC, allene ox-
ide cyclase; OPR, OPDA reductase; ACS, acyl-CoA synthetases; JAR1, JA-amido synthetase; IAR3 
and ILL6, two JA amidohydrolases; JMT, JA methyl transferase; MJE, MeJA esterase; JAO, JA oxi-
dase; JOX, jasmonate induced oxidase; CYP94B3, JA-Ile-12-hydroxylase; CYP94C1, 12-OH-JA-Ile 
carboxylase; JASSY, OPDA transporter; CTS, ABC transporter COMATOSE; JAT, jasmonate trans-
porter. dnOPDA, dinor-oxo-phytodienoic acid; tnOPDA, tetranor-OPDA; OPC-8, 8-[3-oxo-2-{pent-
2-enyl}cyclopentyl]octanoic acid; OPC-6, 6-[3-oxo-2-{pent-2-enyl}cyclopentyl]hexanoic acid; OPC-
4, 4-[3-oxo-2-{pent-2-enyl}cyclopentyl]butanoic acid; 4,5-ddh-JA, 4,5-didehydro-jasmonate; JA-Ile, 
(+)-7-iso-Jasmonoyl-L-isoleucine. 

2.2. Transporters of JAs and Its Precursors 
2.2.1. JASSY 

The biosynthesis of JA involves the translocation of the JA-precursor, OPDA, from 
the chloroplast into the peroxisome. For a long time, the component(s) responsible for the 
export of OPDA from the chloroplast remained elusive. However, recently, a Bet v1-like 
family protein, termed JASSY, was identified as the exporter of OPDA from the 
chloroplast [39]. JASSY is localized to the outer chloroplast envelope where it binds to 
OPDA and functions as a membrane channel. JASSY loss-of-function mutations in 
Arabidopsis result in a deficiency in JA accumulation, leading to impairments in pathogen 
resistance and cold tolerance [39] (Figure 1). Further clarification is needed on whether 
the chloroplast-derived dnOPDA is also exported by the same means. 

Figure 1. Simplified JA (jasmonic acid) biosynthetic and metabolic pathways and intracellular flux
in Arabidopsis. The blue arrows represent the octadecane pathway, the green arrows represent
the parallel hexadecane pathway, and the yellow arrows represent the OPR3-independent pathway.
Biologically inactive JA derivatives are shown in red. Biosynthetic and metabolic enzymes, as
well as transporters are boxed. 13-LOX, 13-lipoxygenase; AOS, allene oxide synthase; AOC, allene
oxide cyclase; OPR, OPDA reductase; ACS, acyl-CoA synthetases; JAR1, JA-amido synthetase;
IAR3 and ILL6, two JA amidohydrolases; JMT, JA methyl transferase; MJE, MeJA esterase; JAO,
JA oxidase; JOX, jasmonate induced oxidase; CYP94B3, JA-Ile-12-hydroxylase; CYP94C1, 12-OH-
JA-Ile carboxylase; JASSY, OPDA transporter; CTS, ABC transporter COMATOSE; JAT, jasmonate
transporter. dnOPDA, dinor-oxo-phytodienoic acid; tnOPDA, tetranor-OPDA; OPC-8, 8-[3-oxo-2-
{pent-2-enyl}cyclopentyl]octanoic acid; OPC-6, 6-[3-oxo-2-{pent-2-enyl}cyclopentyl]hexanoic acid;
OPC-4, 4-[3-oxo-2-{pent-2-enyl}cyclopentyl]butanoic acid; 4,5-ddh-JA, 4,5-didehydro-jasmonate;
JA-Ile, (+)-7-iso-Jasmonoyl-L-isoleucine.

2.2. Transporters of JAs and Its Precursors
2.2.1. JASSY

The biosynthesis of JA involves the translocation of the JA-precursor, OPDA, from
the chloroplast into the peroxisome. For a long time, the component(s) responsible for
the export of OPDA from the chloroplast remained elusive. However, recently, a Bet
v1-like family protein, termed JASSY, was identified as the exporter of OPDA from the
chloroplast [39]. JASSY is localized to the outer chloroplast envelope where it binds
to OPDA and functions as a membrane channel. JASSY loss-of-function mutations in
Arabidopsis result in a deficiency in JA accumulation, leading to impairments in pathogen
resistance and cold tolerance [39] (Figure 1). Further clarification is needed on whether the
chloroplast-derived dnOPDA is also exported by the same means.
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2.2.2. Comatose (CTS)

In Arabidopsis, the peroxisomal localized D-type ATP-binding cassette (ABC) trans-
porter CTS (also known as AtABCD1, peroxisomal ABC transporter 1 (AtPXA1), and
peroxisomal defective 3 (PED3)) was found to be involved in the peroxisomal import of JA
precursors [40]. In addition, the existence of a parallel pathway for passive transport of
free OPDA was proposed because both basal level and wound-induced JA synthesis were
reduced but not abolished in the abcd1 mutant Arabidopsis [40]. The identity of the CTS
substrates between fatty acids (e.g., OPDA) and fatty acyl-CoA esters (e.g., OPDA-CoA)
remained disputable until two groups provided direct evidence that CTS is a transporter of
fatty acyl-CoAs and possesses an intrinsic ATP-dependent thioesterase activity, which is
essential for the further break down of fatty acids in peroxisome [41,42]. This indicates that
OPDA is most likely imported to peroxisome by CTS as a CoA ester (Figure 1). Neverthe-
less, the cytosolic acyl-CoA synthetase that accounts for the production of OPDA-CoA still
remains to be identified. It is also unclear that whether dnOPDA-CoA is formed in cytosol
and transported into peroxisome as a substrate of CTS.

Of note, the fatty acid β-oxidations, which take place exclusively in the peroxisome of
plants, contribute to the biosynthesis of not only JA but several other major phytohormones,
such as indole-3-acetic acid (IAA) and SA. To our knowledge, CTS/AtABCD1/AtPXA1 is
the sole peroxisomal transporter to have been identified that is responsible for the import
of, presumably esterified, precursors of JA (OPDA), IAA (indole-3-butyric acid (IBA))
and SA (cinnamic acid (CA)), suggesting a core function of CTS for peroxisome-mediated
biosynthesis of phytohormones [43–45].

2.2.3. Jasmonate Transporters (JATs)

Recent studies have found that several members of the G-subfamily of ABC trans-
porters (ABCGs) also function as JA transporters that mediate both intracellular and
long-distance JA movement [43,46–49].

A member of the G-subfamily of ABC transporters, AtJAT1/AtABCG16, has recently
been identified and characterized as a dual function transporter of JA and JA-Ile in Ara-
bidopsis [47] (Figure 1). AtJA1 is localized at the nuclear envelope and plasma membrane,
and respectively mediates the influx of JA-Ile from the cytosol into the nucleus and the
cellular efflux of JA to the apoplast. The Arabidopsis loss-of-function mutant abcg16/jat1
exhibits phenotypes that are consistent with compromised JA signaling [47]. Whether
basal diffusion of JA/JA-Ile across the plasma membrane and nuclear envelope takes
place awaits further clarification. Nonetheless, AtJAT1 has been shown to be essential in
modulating JA-Ile concentration in the nucleus where JA signal perception takes place [47].

More recently, two plasma membrane localized transporters, AtJAT3/AtABCG6 and
AtJAT4/AtABCG20, have been identified as potential JA importers that mediate long
distance cell–cell translocation of wound-induced JA along the phloem [49] (Figure 1). It
has also been demonstrated that AtJAT3 and AtJAT4 work synergistically in core phloem
cells with GLUTAMATE RECEPTOR-LIKE3.3 (GLR3.3), an ion channel family member
that stimulates distal JA production by transmitting wound-induced calcium (Ca2+) fluxes,
presumably also through cell–cell transportation. It is hypothesized that AtJAT3- and
AtJAT4-mediated loading of locally produced JA drives de novo JA synthesis successively
during cell–cell transportation along the phloem passage [49–52]. Since cell–cell transporta-
tion of JA involves both influx and efflux across plasma membranes, it is likely that other
JATs, such as the JA exporters AtJAT1 [47] and another potential JA exporter, AtJAT5 [48],
are involved. These findings support the idea that JA may act as one component of the
mobile molecular signatures in stress- or wound-induced systemic responses [53].

It has been proposed that the peroxisome-localized AtJAT2/AtABCG1 may mediate
the peroxisomal export of JA while AtJAT5 mediates the cellular export of JA [48] (Figure 1).
As definitive evidence supporting this hypothesis is still lacking, further characterization of
JATs is needed to broaden our knowledge on the molecular basis of transporter-mediated
distribution and signaling of JA.
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Other candidate JA transporters have also been implicated in various studies, in-
cluding several members of the NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER
FAMILY (NPFs) such as NPF2.10/GLUCOSINOLATE TRANSPORTER 1 (GTR1) and
NPF4.1/ABA-IMPORTING TRANSPORTER 3 (AIT3) [54–56]. However, their functions
as JA transporters in planta await further experimental validation [46,48]. Taken together,
the exploration of JA biosynthesis, metabolic enzymes and transporters greatly assist our
understanding on how plant cells modulate the homeostasis between active and inactive
JA components from cytoplasm to nucleus and keep the highly dynamic JA signaling
orchestrated in individual cells and throughout the whole plant.

3. JA Signaling
3.1. JA Perception and Signal Transduction

The generally accepted “relief of repression” model for JA perception is built upon
decades of research beginning with the identification of the core co-receptor complex for JA-
Ile, that is composed of the F-box protein CORONATINE INSENSITIVE 1 (COI1) containing
SKP1-CULLIN1-F-box-type (SCF) E3 ubiquitin ligase complex SCFCOI1, JASMONATE ZIM
DOMAIN (JAZ) proteins and inositol pentakisphosphate (InsP5) [34–36,57–60].

Under normal conditions, where little or no nuclear JA-Ile is present, certain TFs, such
as MYC2 (a basic helix-loop-helix (bHLH) family TF and key activator of JA responses),
are repressed by a series of JASMONATE ZIM DOMAIN (JAZ) proteins through direct
interaction. MYC2 binds to the G-box motif at the promoter regions of the JA-responsive
genes and activates their expression [61] (Figure 2). Most JAZ family members have
been shown to interact with MYC2. When binding to MYC2, the JAZ protein recruits
the TOPLESS (TPL) and TPL-related (TPR) co-repressors directly or through the adaptor
protein NOVEL INTERACTOR OF JAZ (NINJA) to repress the transcriptional activity
of MYC2 (Figure 2). The transcriptional repression function of the TPL co-repressors
involves the further recruitment of the chromatin modifying HISTONE DEACETYLASE
(HDA) complex that “switches off” the targeted region by chromatin condensation [62–64].
Members of HDAs such as HDA6 and HDA19 have been shown to participate in JA
responses [65,66].

When certain developmental or environmental cues cause a cellular burst of JA, the
active derivative JA-Ile is transferred into the nucleus by JAT1 and promotes the formation
of the SCFCOI1-JAZ co-receptor complex, resulting in the ubiquitination of JAZ and its
subsequent degradation via the 26S proteasome [13,33–37]. The degradation of JAZ protein
thus releases the inhibitory effect on the TFs such as MYC2 (Figure 2), which initiates
JA signaling cascades by transcriptional activation of numerous downstream TF genes,
such as ETHYLENE RESPONSE FACTOR1 (ERF1) and OCTADECANOID-RESPONSIVE
ARABIDOPSIS59 (ORA59), and defense-related responsive genes, such as VEGETATIVE
STORAGE PROTEIN2 (VSP2).
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Figure 2. Simplified model of JA signaling in Arabidopsis. When nuclear bioactive JA levels are low,
the master transcription factors, such as MYC2, are repressed through the interaction with JAZ proteins
that recruit other co-repressors, such as NINJA, TPL and HDA, to form a repressor complex at the
promoter regions of JA-responsive genes. In addition, MED25 also physically interacts with MYC2
while bound with COI1, the F-box subunit of the SCFCOI1 E3 ubiquitin ligase complex. In the case of the
JA biosynthesis gene AOS, its transcription is repressed by the JJW complex composed of JAV1, JAZ8
and WRKY51. In both cases, the expression of JA-responsive genes is restrained. It is unclear whether
the JJW complex also recruits co-repressors, such as TPL and HDA. When a certain developmental or
environmental cue triggers the import of bioactive JA (e.g., JA-Ile) into the cell nucleus presumably
through the action of JAT1, elevated levels of JA-Ile cause the formation of COI1-JA-JAZ co-receptor
complex. The interaction between COI1 and JAZ leads to the dissociation of JAZ and MYC2, as well
as the dissociation of COI1 and MED25. As a result, JAZ is degraded via the 26S proteasome and the
enhanced interaction between MED25 and MYC2 ultimately leads to MED25-mediated transcriptional
activation of the target genes. In the case of JJW-regulated AOS, stress-induced fast Ca2+ influx leads to
the CaM-mediated phosphorylation of JAV1. JAV1 phosphorylation causes the disintegration of the JJW
complex and AOS transcriptional activation. Phosphorylated JAV1 is subjected to E3 ubiquitin ligase-
mediated ubiquitination and 26S proteasomal degradation, although the F-box protein responsible for the
specific recognition of JAV1 remains to be identified. JAZ, JASMONATE ZIM DOMAIN; NINJA, NOVEL
INTERACTOR OF JAZ; TPL, TOPLESS; HDA, HISTONE DEACETYLASE; MED25, MEDIATOR25;
COI1, CORONATINE INSENSITIVE1; ASK1, ARABIDOPSIS SKP1-RELATED1; CUL1, CULLIN1; SCF,
SKP1-CULLIN1-F-box; HAC1, HISTONE ACETYLTRANSFERASE1; LUH, LEUNIG_HOMOLOG;
JAV1, JASMONATE ASSOCIATED VQ DOMAIN PROTEIN1; AOS, ALLENE OXIDE SYNTHASE;
CaM, Calmodulin. RBX1 is a RING finger protein that recruits the E2 ubiquitin-conjugating enzyme to
the C-terminus of CUL1.
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Among the 13 Arabidopsis JAZ proteins identified, five (i.e., JAZ5, JAZ6, JAZ7,
JAZ8 and JAZ13) contain the ETHYLENE RESPONSIVE FACTOR-associated amphiphilic
repression (EAR) motif responsible for the direct interaction of the protein with TPL co-
repressors. Therefore, these JAZs can directly recruit TPLs in the absence of NINJA [67,68].
In addition, a few non-canonical JAZs (such as JAZ8 and JAZ13), which harbor a di-
vergent JA-associated (Jas) domain exhibiting little interaction with COI1, can interact
with MYC2 while directly recruiting TPLs through their EAR motifs. Therefore, they are
considered as adapters linking TPL to other non-EAR-containing JAZ proteins through
heterodimerization [16,67–69]. Recently, JAZ8 was shown to form a co-repressor com-
plex with JASMONATE-ASSOCIATED VQ DOMAIN PROTEIN1 (JAV1) and WRKY 51
to bind and repress JA biosynthesis genes, highlighting the role of these non-canonical,
EAR motif-containing JAZs [70]. Additionally, a protein named EAR-motif-Containing
Adaptor Protein (ECAP) has been reported as a novel adaptor protein that directly interacts
with JAZ6 and JAZ8 for the recruitment of the TOPLESS-RELATED2 (TPR2) co-repressor
to repress JA responses. Genetic evidence shows that ECAP plays an important part in
many JA-regulated processes, including anthocyanin accumulation, JA biosynthesis and
defense-related gene activation [71]. Intriguingly, both JAZ6 and JAZ8 harbor an EAR motif
which is thought to be adequate for TPL and TPR recruitment. The emerging function
of ECAP suggests a novel counterpart of NINJA and a more sophisticated mechanism of
gene repression.

Over the last decade, another key player in JA signaling, MEDIATOR25 (MED25),
has been added to the picture [72–74]. MED25 is a subunit of the Mediator transcriptional
coactivator complex, an evolutionarily conserved multi-subunit complex that plays an
essential role in the RNA Polymerase II (Pol II)-dependent transcription throughout eu-
karyotes [75–77]. MED25 physically interacts with COI1 and MYC2, bringing COI1 in
close proximity to JAZ, which binds to and represses MYC2 when no or little nuclear
JA-Ile is present. Nuclear JA-Ile acts as “molecular glue” to promote the formation of
the SCFCOI1-JAZ co-receptor complex, leading to the weakened interaction between COI1
and MED25, as well as subsequent JAZ degradation. This conformational change also
strengthens the interaction between MYC2 and MED25 due to the release of the competi-
tive/interfering effect by JAZ. MED25 then recruits the rest of the Mediator complex and
RNA Pol II, as well as other coactivators, such as HISTONE ACETYLTRANSFERASE1
(HAC1) and LEUNIG_HOMOLOG (LUH), to the promoter region of MYC2 target genes
for transcriptional activation [74,78–80] (Figure 2).

Recently, a WRKY TF and VQ domain protein involved mechanism of herbivory- and
wound-induced JA biosynthesis has been reported [70]. The WRKY TFs, a large TF family in
plants, have been shown to be crucial in a broad range of developmental and physiological
processes, as well as various stress responses [81,82]. The WRKY51 TF forms a heterotrimer
complex with JAZ8 and JAV1, a VQ domain protein family member previously identified
to specifically modulate JA-regulated plant defense [83]. At resting stage, the JAV1-JAZ8-
WRKY51 (JJW) complex represses the expression of JA biosynthesis genes, such as AOS,
through binding to the W-box motifs in their promoter regions (Figure 2). The herbivory-
caused injury rapidly induces cytosolic Ca2+ influx, leading to the calmodulin (CaM)-
dependent phosphorylation of JAV1 and its subsequent degradation. The disintegration of
the JJW complex results in the activation of JA biosynthesis gene expression [70] (Figure 2).
Intriguingly, the phosphorylation and degradation of JAV1 triggered by Ca2+/CaM is
independent of JA-Ile elicitation [70], which seems in contrast to earlier data suggesting
that JA triggers the degradation of JAV1 in a COI1-dependent manner [83]. Resolving these
conflicting findings clearly needs further exploration. It also remains to be determined
whether the JJW-directed mechanism is acting in parallel to the canonical JAZ-regulated
mechanisms (e.g., JAZ-MYC) and whether inputs from different upstream signals (Ca2+ vs.
JA-Ile) can be simultaneously perceived by the promoters of JA biosynthesis genes (e.g.,
AOS) that are also directly regulated by MYC2 [84]. Finally, whether MED25 is involved in
the JJW regulation needs additional confirmation. Regardless, this finding is undoubtedly
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a milestone that adds another layer of transcriptional regulation to wound-induced JA
biosynthesis, highlighting both the regulatory mechanism of JA biosynthesis and the
function of the non-canonical JAZ proteins like JAZ8. As discussed before, JAZ8 is believed
to be resistant to COI1-mediated degradation due to its divergent Jas domain. Therefore, no
JAZ8 degradation has been reported by Yan et al. [70]. JAZ8 now has exhibited interaction
with not only MYC2 but also WRKY51, it is highly likely that JAZ8 also recruits TPL and
HDA co-repressors to the JJW complex since the repression of the JJW complex largely
depends on the EAR motif of JAZ8.

Other evidence also suggests that WRKY33 and WRKY57 interact with two VQ
proteins SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 while potentially being
able to interact with JAZ4 and JAZ8, although further study is needed to elucidate the
details of the molecular context [85,86].

3.2. JA-Regulated Transcription Factors

In addition to MYC2 serving as the main transcriptional regulator of JA-induced gene
activation, other members of the MYC TF family as well as members of other TF families
have also been shown to be directly involved in controlling JA-regulated gene expression
(Figure 3). MYC3 and MYC4 are also targets of JAZ repressors (e.g., JAZ3 and JAZ5) and
act additively with MYC2 to activate JA response in the vegetative tissue, especially the
JA-dependent defense response against wounding and herbivory [87,88]. MYC2, MYC3,
MYC4 and MYC5 interact with at least two R2R3-MYB TFs, MYB21 and MYB24, to form
a MYC-MYB transcription complex (Figure 3). Both MYC and MYB are repressed by
JAZ suppressor and are activated by JA to cooperatively regulate stamen development in
Arabidopsis [89–92]. In rice, data have also shown that the JA-responsive R2R3-type MYB
TFs, JAMYB and its homolog, are transcription activators directly regulated by JA [93].
JAMYB binds to the AG-motif-like motif in the promoter region of Argonaute18 (AGO18)
gene, which encodes a core RNA silencing component that promotes AGO1-mediated
antiviral RNAi [94]. The transactivation activity of JAMYB is normally repressed by JAZ6.
The JA accumulation elicited by rice stripe virus coat protein triggers the ubiquitination
and proteasomal degradation of JAZ6, relieving the repression of JAMYB to activate the
expression of AGO18. Elevated accumulation of AGO18 ultimately leads to enhanced
antiviral defense in rice [93,94]. It is reasonable to hypothesize that certain rice MYC
homologs also interact with JAMYB.

INDUCER OF CBF EXPRESSION1 (ICE1) and ICE2 are two MYC-like bHLH tran-
scriptional activators playing critical roles in modulating cold stress responses [1,95]. Both
are repressed by JAZ repressors (e.g., JAZ1 and JAZ4) through physical interaction [96,97]
(Figure 3). Cold stress-induced endogenous JA production triggers the turnover of JAZ
repressors and the activation of ICE1 and ICE2, which further activate the C-REPEAT
BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional cascade for
cold stress tolerance [96,97].

Several members in the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) TF
family, such as ETHYLENE INSENSITIVE3 (EIN3), EIN3-LIKE 1 (EIL1), ERF1 and ORA59
comprise the classical ERF branch of JA signaling, which is marked by the activation of the
downstream defense gene PLANT DEFENSIN1.2 (PDF1.2) [98]. Transcription of ERF1 and
ORA59 is directly controlled by EIN3 and its homolog EIL1, which are identified as direct
targets of JAZ proteins and activated by JA (Figure 3). EIN3 and EIL1 have been shown to
play important roles in mediating JA-induced processes, such as root development and
defense responses to necrotrophic fungi [66]. EIN3 and EIL1 are two well-recognized TFs
essential for the activation of ethylene (ET) responses [99] and thus are likely to be key
components necessary for integrating JA and ET signaling.
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The MYC TFs, several R2R3-MYB family members (including MYB21 and MYB24), and other TFs (e.g., ICE1, EIN3, EIL1,
and FIL) are direct targets of JAZ repressors. These TFs are activated by JA-mediated JAZ degradation and positively
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and defense against necrotrophs. ICE1, INDUCER OF CBF EXPRESSION1; EIN3, ETHYLENE INSENSITIVE3; EIL1,
EIN3-LIKE1; FIL, FILAMENTOUS FLOWER; EBS, EIN3 binding site; FBE, FIL DNA binding element.

WRKY57, a WRKY TF involved in both JA-induced leaf senescence and necrotrophic
pathogen response in Arabidopsis, is repressed by JAZ4 and JAZ8 through physical in-
teraction [85,86]. WRKY57 directly binds to the promoters of SENESCENCE4 (SEN4) and
SENESCENCE-ASSOCIATED GENE12 (SAG12), as well as another two JAZ repressor genes
(JAZ1 and JAZ5) to regulate their expression (Figure 3). Intriguingly, genetic evidence
shows that the loss-of-function of WRKY57 enhances JA-mediated leaf senescence and
resistance against Botrytis cinerea (B. cinerea) infection, suggesting it a negative regulator of
JA signaling [85,86].

A YABBY (YAB) TF family member FILAMENTOUS FLOWER (FIL)/YAB1 has been
found as a direct target of JAZ3 (Figure 3). Via JA-triggered degradation of JAZ3, FIL/YAB1
promotes anthocyanin biosynthesis through, at least in part, direct transcriptional activation
of MYB75 [100], a key component of the WD-repeat/bHLH/MYB transcription complex
that is also repressed by several JAZ repressors [101,102].

Whether these JAZ-regulated TFs also share other components of the regulatory
mechanism (e.g., MED25, TPL, HAD, and HAC), and if they act synergistically or indepen-
dently in response to different types of stimuli upstream of JA, are certainly questions for
future research.

3.3. Negative Feedbacks and Termination of JA Signal

Since JA is a stress signal that generally leads to growth inhibition, proper desensiti-
zation and termination of the JA signal is undoubtedly as important as its activation for
overall plant growth and fitness. In fact, the JA signal is elaborately controlled at multiple
levels to ensure that each response only lasts for an appropriate period at an appropriate
amplitude [30,80,103].
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Cytosolic JA-Ile dynamics are shaped by at least two JA-inducible catabolic pathways
in Arabidopsis. The first pathway is the direct oxidation of JA-Ile by members of the
cytochrome P450 subfamily 94 (CYP94) enzymes, CYP94B1, CYP94B3 and CYP94C1, which
turn JA-Ile into bio-inactive 12OH-JA-Ile and 12COOH-JA-Ile [104,105] (Figure 1). The
second pathway is the deconjugation of JA-Ile mediated by two amidohydrolases, IAR3
and ILL6, which hydrolyze both JA-Ile and 12OH-JA-Ile [106] (Figure 1). Both pathways
have been shown to contribute additively for the turnover of JA-Ile but act differently for
JA responses and tolerance to related stress conditions [103,107]. In crop plants (e.g., rice
and corn), JA catabolism has also been proven to be crucial to both the development, such
as sexual determination [108,109], and stress tolerances, such as salt and cold [110,111].

JA-Ile stimulates rapid activation of JAZ gene expression while most JAZ genes in Ara-
bidopsis can produce truncated JAZ splice variants that can still bind to the MYC proteins
but have little capability of forming complexes with JA-Ile and COI1 for proteasomal degra-
dation. Overexpression of certain JAZ splice variants, such as JAZ10, result in dominant
repression of JA responses [112,113]. Crystal structure reveals that the JAZ10 splice variant
tightly binds to MYC3 and blocks the interaction between MYC3 and MED25, which is
crucial for the transcriptional activation of MYC3 target genes [114]. These findings indicate
that the alternative splicing of JAZ genes serve as a general feedback mechanism to desen-
sitize JA signaling. Intriguingly, JA also induces the recruitment of two splicing factors,
PRE-mRNA-PROCESSING PROTEIN 39a (PRP39a) and PRP40a to JAZ loci by MED25.
PRP39a and PRP40a, in turn, facilitate the full splicing of JAZ transcripts to produce the
full-length JAZ proteins, thus preventing the excessive desensitization of JA responses
caused by the overaccumulation of JAZ splice variants [115]. These data suggest that the
JA-induced negative feedback mechanism by the alternative splicing of JAZ genes is under
exquisite modulation.

Several bHLH family subgroup IIId members (e.g., the JASMONATE-ASSOCIATED
MYC2-LIKE proteins (JAMs) in Arabidopsis and the MYC2-TARGETED BHLHs (MTBs) in
tomato) have been identified as negative regulators of JA responses [116–119]. In Arabidop-
sis, JAM1/bHLH17, JAM2/bHLH13 and JAM3/bHLH3 interact with JAZs and function as
transcriptional repressors by competing with MYCs for G-box binding [116–118]. Likewise,
the tomato MTB1, MTB2 and MTB3 are activated by MYC2 but act in turn to negatively
regulate JA responses by competing with MYC2 for the target promoter binding site (i.e.,
the G-box motif), impeding the formation of the MYC2-MED25 complex [119]. In addition
to the activation of JAMs or MTBs, JA also stabilizes BTB/POZ-MATH3 (BPM3), one of the
BPM proteins that function as adaptors of Cullin3-based E3 ubiquitin ligases [120]. Several
BPMs are found to directly target MYC2, MYC3 and MYC4 for polyubiquitination and
degradation. Thus, the stabilities of JA-activated MYCs are negatively controlled by BPMs,
especially BPM3, whose stability is greatly enhanced by JA [120].

Taken together, these groundbreaking discoveries suggest that plant cells orchestrate
a complex and autoregulatory negative feedback circuit to desensitize and terminate JA
signals at multiple layers.

4. Crosstalk Complexity of JA with Other Phytohormones

Data accumulated over years of research have revealed that several signaling path-
ways, including JA, auxin and GA, share a highly conserved mechanistic framework for
gene regulation. The SCFF-box E3 ligase complex-mediated turnover of the repressive
proteins to activate the master TFs appears to be a universal mechanism among several
phytohormones [121]. For instance, parallel to JA signaling, in which JAZ repressors are
degraded through SCFCOI1 receptor recognition to release the repression on MYC TFs, the
auxin-induced activation of auxin-responsive genes is achieved through the degradation
of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors that interact with AUXIN RE-
SPONSE FACTOR (ARF) transcription activators. The degradation of Aux/IAA repressors
is mediated by the SCFTRANSPORT INHIBITOR RESPONSE1 (TIR1) receptor complex [122,123]. In
addition, the DELLA proteins, master negative regulators of GA signaling, are subject to
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SCFSLEEPY1 (SLY1)-mediated degradation in response to GA [124]. Ultimately, the combi-
national alteration of the regulatory proteins at the promoter region leads to the change
of the target gene status (inactive or active) at the chromatin level. Modern evidence has
linked many enzymes involved in epigenetic modifications (e.g., HDAs and HACs) to
phytohormone-mediated gene regulations [63,64,125].

Although participating in many developmental processes, JA is generally recognized
as a stress hormone in response to various biotic and abiotic stresses. Within plants, nu-
merous signal transduction pathways intertwine and interact in a complicated but highly
arranged manner in response to stress(es) [126]. Although only the tip of the iceberg has
been discovered so far to understand how many and how these pathways influence one
another from the initial onset to the mobilization of target regulon and finally the cease of
signals at a given stress or various combinations of stresses, numerous molecules such as
receptors, kinases, TFs and other small regulatory proteins have been identified and char-
acterized to mediate the JA signaling pathway and its crosstalk with other phytohormone
signaling pathways [10,18,23,127]. It is believed that these TFs, such as bHLH, MYB, ERF
and WRKY TFs, and regulatory co-factors, such as JAZ, DELLA and AUX/IAA proteins,
hold the keys to the intricate crosstalk among different signaling pathways.

4.1. JAZ vs. DELLA

The antagonism between two phytohormones often involves the enhanced repres-
sion of one hormone caused by another. Examples of this antagonism can be seen in the
crosstalk between JA and GA, two major phytohormones responsible for defense responses
and growth processes, respectively. The crosstalk between the JA and GA pathways oc-
curs partially through the interaction between their key repressors, the JAZ and DELLA
proteins [128,129]. Similar to JAZ repressors, Arabidopsis DELLA proteins, such as GIB-
BERELLIC ACID INSENSITIVE (GAI), REPRESSOR OF GA (RGA), RGA-like1 (RGL1),
RGL2 and RGL3, act as negative regulators of their target TFs (e.g., phytochrome interact-
ing factors (PIFs)) through direct interaction to suppress related GA responses [130]. It was
first discovered that DELLA proteins can compete with MYC2 for binding to JAZ1 and thus
relieve MYC2 in a certain degree for JA signal activation (Figure 4). An elevated GA level
triggers the degradation of DELLAs, freeing up JAZ1 for enhanced repression of MYC2
to attenuate JA signaling [131]. Reciprocally, JA increases the stability of DELLA proteins
(e.g., RGA), presumably through JAZ degradation, thereby improving the repression of
GA-related TFs, such as PIF3 [132]. A recent study in rice also demonstrated that the
interaction between OsJAZ9 protein and the DELLA protein SLENDER RICE 1 (SLR1)
mediates the antagonism between JA and GA [133].

Interestingly, synergy between JA and GA has also been observed in some defense
response. The WD-repeat/bHLH/MYB TF complexes are key controllers of anthocyanin
biosynthesis and trichome formation, that contribute significantly to insect resistance in
plants [134,135]. The bHLH components (i.e., Glabra3 (GL3), Enhancer of Glabra3 (EGL3)
and Transparent Testa8 (TT8)) and the R2R3 MYB components (i.e., MYB75 and Glabra1
(GL1)) have been identified as targets of both JAZ and DELLA repressors [101,102,136,137].
Both DELLAs and JAZs interact with the WD-repeat/bHLH/MYB complex to repress
its transcriptional activity. JA and GA respectively induce the degradation of JAZs and
DELLAs, which additively activate the WD-repeat/bHLH/MYB complex for trichome
formation. Further evidence for JA and GA synergy comes from the involvement of
DELLAs in previously discovered MYC-MYB regulation by JA that modulates late stamen
development [89–91]. Huang et al. [138] demonstrated that DELLAs directly interact with
MYB21 and MYB24, the MYB components of the MYC-MYB complex, and that JAZs and
DELLAs act coordinately to inhibit MYB function that is needed for filament elongation
(Figure 4).
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additively activate JA- and GA-mediated processes, such as trichome formation and filament elon-
gation. PIFs, phytochrome interacting factors. 
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Figure 4. Simplified schematic of crosstalk between JA and GA signaling pathways. Both the
antagonism and synergy between JA and GA signaling pathways are mainly mediated by the crosstalk
between JAZ and DELLA proteins. Through binding competition, JAZ and DELLA reciprocally affect
each other’s ability or availability to repress their respective target TFs (i.e., MYC2 for JA signaling;
PIF3 for GA signaling). Both DELLAs and JAZs also interact with the bHLH and MYB components
in the WD-repeat/bHLH/MYB and MYC-MYB complexes to repress their transcriptional activity. JA
and GA, respectively, induce the degradation of JAZs and DELLAs, which additively activate JA-
and GA-mediated processes, such as trichome formation and filament elongation. PIFs, phytochrome
interacting factors.

4.2. JA vs. Auxin

The interplay between JA and auxin signaling is also essential for plant development.
It has been reported that JA induces lateral root formation by promoting auxin biosyn-
thesis [139]. Further studies revealed that the wound-induced JA activates ERF109 by
removing the JAZ repression. ERF109 binds to the GCC-box element in the promoters
of ANTHRANILATE SYNTHASE α1 (ASA1) and YUCCA2 (YUC2), two genes encoding
key enzymes in auxin biosynthesis, and promote their expression for auxin production
required for lateral root formation [27,139,140] (Figure 5).

In contrast to its canonical role in activation, JA-activated MYC2 directly represses the
expression of PLETHORA1 (PLT1) and PLT2, two AP2-domain TF genes that are essential
for auxin-induced root stem cell niche patterning [141]. Therefore, the MYC2-mediated
repression of PLT1 and PLT2 contributes, at least partly, to the inhibition of primary root
growth by JA [141] (Figure 5).

The Arabidopsis WRKY57 also exhibits bifunctional attributes as a negative regulator
of both leaf senescence and necrotrophic pathogen defense [85,86]. During JA-induced leaf
senescence, JA triggers the degradation of WRKY57 to activate the expression of SEN4
and SAG12, two senescence-associated genes normally repressed directly by WRKY57.
Consistent with the antagonism between JA and auxin, auxin increases the protein level
of WRKY57. Furthermore, both JAZ (JAZ4 and JAZ8) and Aux/IAA (IAA29) proteins
competitively interact with WRKY57, suggesting that WRKY57 serves as a point of con-
verging for JA and auxin signaling in leaf senescence [85]. Subsequently, it was discovered
that WRKY57, instead of repressing gene expression, activates the expression of two JA
repressor genes, JAZ1 and JAZ5, to negatively regulate plant defense against necrotrophic
pathogen B. cinerea [86]. Interestingly, JAZ1 and JAZ5 are direct targets of both WRKY33 and
WRKY57. WRKY33, acting opposite to WRKY57, positively regulates plant necrotrophic
resistance by transcriptional repression of JAZ1 and JAZ5 [86,142,143] (Figure 5).
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the cascadic activation of ethylene-responsive genes, such as PDF1.2 [99,148]. Zhu et al. 
[66] demonstrated that JAZs repress the function of EIN3 and EIL1 through physical 
interaction. Such repression is relieved by JA-induced turnover of JAZ repressors, leading 
to the enhanced expression of ET-responsive genes mediated by EIN3 and EIL1 (Figure 
6).  

Recent studies have shown that MYC TFs can inhibit ERF TFs within the JA signaling 
pathway to antagonize ET signaling. MYC2 and EIN3, the two master TFs of JA and ET 
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EIN3/EIL1 interfere or coordinate with each other for the expression of their respective 
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Figure 5. Simplified schematic of crosstalk between JA and auxin signaling pathways. JA activates
ERF109 which further activates the expression of ASA1 and YUC2 for auxin production that is
required lateral root formation. JA-activated MYC2 directly represses the expression of PLT1 and
PLT2 to inhibit primary root growth. As a negative regulator of JA-mediated leaf senescence and
necrotrophic pathogen defense, the WRKY57 TF represses the expression of SEN4 and SAG12 while
activating the expression of JAZ1 and JAZ5. Members of both JAZ (JAZ4 and JAZ8) and Aux/IAA
(IAA29) families competitively interact with WRKY57. The protein level of WRKY57 is negatively
regulated by JA but positively regulated by auxin. ASA1, ANTHRANILATE SYNTHASE α1; YUC2,
YUCCA2; PLT, PLETHORA; SEN4, SENESCENCE4; SAG12, SENESCENCE-ASSOCIATED GENE12;
Aux/IAA, AUXIN/INDOLE-3-ACETIC ACID.

4.3. JA vs. ET

ET is another major phytohormone hallmarked as a regulator of plant development
and defense against necrotrophic fungi. A large number of studies have shown that JA
and ET act synergistically in plant defense responses through the activation of several
AP2/ERF TFs, such as ERF1, ERF2, ERF14 and ORA59, which then transactivate a set
of defense-related genes, including PDF1.2, BASIC CHITINASE (ChiB) and AGMATINE
COUMARYL TRANSFERASE (ACT) [144–147]. The molecular evidence directly linking
JA and ET signaling pathways came from the characterization of two Arabidopsis ET-
stabilized TFs, EIN3 and EIL1 [66]. EIN3 and EIL1 act upstream of ERFs, including ERF1
and ORA59, and are considered as key transcriptional regulators of ET responses through
the cascadic activation of ethylene-responsive genes, such as PDF1.2 [99,148]. Zhu et al. [66]
demonstrated that JAZs repress the function of EIN3 and EIL1 through physical interaction.
Such repression is relieved by JA-induced turnover of JAZ repressors, leading to the
enhanced expression of ET-responsive genes mediated by EIN3 and EIL1 (Figure 6).

Recent studies have shown that MYC TFs can inhibit ERF TFs within the JA signaling
pathway to antagonize ET signaling. MYC2 and EIN3, the two master TFs of JA and ET
signaling pathways, were also found to physically interact with each other and mutually
inhibit each other’s transcriptional activity to coordinate plant development and defense
responses [149–151] (Figure 6). Nevertheless, the exact molecular basis on how MYC2 and
EIN3/EIL1 interfere or coordinate with each other for the expression of their respective
regulon under various developmental and stress scenarios remains to be clarified.
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Figure 6. Simplified schematic of crosstalk between JA and ET signaling pathways. JA activates 
MYC2 to initiate wound and herbivory responses through the transactivation of defense genes, 
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to initiate wound and herbivory responses through the transactivation of defense genes, such as VSP2.
JA-mediated JAZ degradation also de-represses EIN3 and EIL1, the two master TFs of ET signaling,
for the expression of other ERF TFs, such as ERF1 and ORA59, targets of which include pathogen
defense genes, such as PDF1.2. Additionally, MYC2 and EIN3 physically interact with each other and
mutually inhibit each other’s transcriptional activities to balance between development and different
defense responses. VSP2, VEGETATIVE STORAGE PROTEIN2; PDF1.2, PLANT DEFENSIN1.2; ERF1,
ETHYLENE RESPONSE FACTOR1; ORA59, OCTADECANOID-RESPONSIVE ARABIDOPSIS59;
EIN, ETHYLENE INSENSITIVE; EIL1, EIN3-LIKE1; CTR1, CONSTITUTIVE TRIPLE RESPONSE1.

4.4. JA-ABA

The phytohormone ABA is well documented in its ability to mediate developmental
processes and abiotic stress tolerance, particularly drought and salinity stress [152,153].
ABA binds to members of the PYRABACTIN RESISTANCE/REGULATORY COMPO-
NENT OF ABSCISIC ACID RECEPTOR (PYL/RCAR) ABA receptor family to initiate
signal transduction. Upon ABA binding, these receptors form a stable complex with
type 2C protein phosphatases (PP2Cs), leading to the release of SNF1-related kinases 2
(SnRK2s) that are normally bound and suppressed by PP2Cs. Subsequently, the activated
SnRK2s activate their downstream TFs, such as the ABSCISIC ACID-INSENSITIVE5 (ABI5)
and the ABA-RESPONSIVE ELEMENT BINDING PROTEIN/ABRE-BINDING FACTOR
(AREB/ABF) basic-domain leucine zipper (bZIP) TFs, by phosphorylation to mediate ABA
signaling [153,154].

In general, ABA and JA act synergistically in processes such as seed germination inhi-
bition and herbivory defense, and antagonistically in several developmental processes [10].
Early molecular studies provided evidence linking core ABA signaling to JA signaling by
the identification of the JA-induced ABA receptor PYL4 [155]. Two ABA receptor mutants,
pyl4 and pyl5, exhibit JA-hypersensitive shoot growth and reduced anthocyanin accumula-
tion in response to JA [155]. In addition, a direct interaction between MYC2 and another
ABA receptor PYL6 was reported and it was discovered that PYL6 negatively regulates
MYC2 activity in an ABA-dependent manner [156] (Figure 7). These data suggest that
JA signaling is dependent on ABA. The recent discovery of chloroplast-localized PLAS-
TID LIPASE2 (PLIP2) and PLIP3, two ABA-induced phospholipase A that are involved
in the biosynthesis of JA and related oxylipins, provides a probable mechanistic link be-
tween ABA-dependent JA accumulation and their synergistic abiotic stress responses [157].
More recently, the identification of the “OSMOTIC STRESS/ABA-ACTIVATED PROTEIN
KINASE10 (SAPK10)-bZIP72-AOC” pathway in rice has provided another clue to the
ABA-promoted JA biosynthesis that results in the synergistical inhibition of seed germi-
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nation [158]. SAPK10, a rice SnRK2 member that is involved in the activation of ABA
signaling, is able to activate and stabilize the bZIP TF, bZIP72, through direct phospho-
rylation. bZIP72 then activates AOC expression by binding to the G-box element in AOC
promoter, thus elevating the endogenous level of JA [158].
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Figure 7. Simplified schematic of crosstalk between JA and ABA signaling pathways. The interaction
between JAZ and ABI3 and ABI5 plays an important part in JA and ABA synergy. JA-mediated
JAZ degradation releases ABI3 and ABI5, the positive TFs of ABA signaling. ABA also induces JA
biosynthesis, which is thought to be mediated by the ABA-activated AREB/ABF TF members based
on a recent study in rice. Antagonistically, the ABA receptor PYL6 interacts with MYC2 and negatively
regulates its activity in an ABA-dependent manner. KEG acts as a negative regulator of both JA and
ABA signaling by stabilizing JAZ12 and triggering ABI5 degradation. The transcriptional activity of
ABI5 is also repressed through physical interaction with ICE1. ICE1, as a negative regulator of ABA
signaling, is repressed by DELLA proteins of the GA signaling pathway. ABI5, ICE1, and DELLA
proteins are also targets of JAZ proteins. PYL/RCAR, PYRABACTIN RESISTANCE/REGULATORY
COMPONENT OF ABSCISIC ACID RECEPTOR; PP2C, type 2C protein phosphatase; SnRK2, SNF1-
related kinases2; ABI5, ABSCISIC ACID-INSENSITIVE5; AREB/ABF, ABA-RESPONSIVE ELEMENT
BINDING PROTEIN/ABRE-BINDING FACTOR; KEG, KEEP ON GOING.

The RING-type ubiquitin E3 ligase KEEP ON GOING (KEG) functions as a negative
regulator of ABA signaling by directly binding to ABI5, leading to its ubiquitination and
degradation. KEG has also been shown to interact with JAZ12 and enhances its stability by
interfering with its JA-triggered degradation [159]. Therefore, KEG, as a negative regulator
of both JA and ABA signaling, appears to play a specific role in the crosstalk between JA
and ABA. Interestingly, a subset of JAZ repressors, including JAZ3, interact with ABI5
and suppress its transcriptional activity. ABA-induced biosynthesis of JA can release ABI5
to activate the expression of ABA-responsive genes through JAZ degradation [160]. A
more recent study proved that the interaction between JAZ and ABI3 and ABI5 serves as
an essential molecular basis underlying the JA-induced activation of ABA signaling [161]
(Figure 7). Evidence shows that exogenous JA triggers COI1-mediated JAZ degradation to
release ABI3 and ABI5, positive TFs of ABA signaling, leading to the enhanced inhibition
of seed germination [161].

It is well known that GA promotes seed germination by counteracting ABA action.
This has been elucidated at the molecular level by experimental demonstrations that
connect DELLA repressors to ABI5 [162]. For example, DELLA proteins physically interact
with and repress the regulatory effect of ICE1. ICE1 is a negative regulator of ABA
signaling that impairs the transcriptional activity of ABI5 through physical interaction and
directly repressing the expression of several ABA responsive genes [162]. By triggering
the degradation of DELLAs, GA suppresses ABI5-mediated ABA signaling via stabilized
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ICE1. Most interestingly, DELLAs [131,133], ICE1 [96] and ABI5 [160,161] are all targets
of JAZ proteins (Figure 7). Therefore, ABI5 appears to be the convergence point where
ABA signaling is fine-tuned through the interaction of regulators coming from multiple
signaling pathways (such as JA and cold).

Additionally, the bHLH TF ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FAC-
TOR (AIB)/JAM1, previously reported as an ABA-induced positive regulator of ABA
signaling [163], was demonstrated as a negative regulator in JA signaling, indicating that
JAM1 underlies the antagonism between in JA and ABA signaling [164]. The AP2/ERF
TF ORA47 was shown to regulate the expression of multiple biosynthetic and/or signal-
ing genes for both JA (e.g., DAD1, AOC1 and MYC2) and ABA (e.g., ABI2, NINE-CIS-
EPOXYCAROTENOID DIOXYGENASE3 (NCED3) and NCED9) through binding to their
promoters. Overexpression of ORA47 significantly increased ABA and JA accumulation
in plants under stress conditions [165]. By closely examining the data on repeated dehy-
dration stress in plants, Avramova [166] suggests that the crosstalk between JA and ABA
signaling pathways is driven by a memorable, highly dynamic and self-reprogrammable
regulatory mechanism, which supports the general observation that ABA and JA function
both synergistically and antagonistically depending on the combination of innate growing
stage, developmental status and stress(es).

In addition to the crosstalk mentioned above, JA signaling also actively interacts
with other hormone signaling pathways, such as cytokinin, brassinosteroid (BR) and
SA [11,129,167–169]. JA has also been reported to be involved in a wide range of abiotic
stress responses, including salt, drought, heavy metal, high and low temperature, light
stress and ozone stress [23,127]. Furthermore, mounting evidence suggests that JA and its
precursors, such as OPDA, participate in systemic signaling in plants, through which local
stress can be perceived throughout the entire plant to induce systemic defense response or
systemic acquired acclimation (SAA) [47,49,53,170–173].

5. Future Perspectives

We have just now begun to uncover the functionality and significance of JA signaling
that is indispensable for plant development and stress tolerance. It remains to be deter-
mined whether different environmental cues trigger different compositions of systemic
signals and whether different forms of JA and its precursors are differentially transmitted as
different environmental signals. Why there are a plethora of JA derivatives is still unknown,
as is whether these different forms of JA have other functions yet to be discovered. It also is
unknown how bioactive JA is purged from the cell nucleus when the level of signal needs
to be dampened or JA signaling is no longer needed.

Plants have evolved sophisticated and efficient perception, signaling and regulatory
networks to survive different stress conditions at the cost of reduced growth and yield.
Therefore, fully understanding the integrated molecular mechanisms, including the hor-
mone signaling crosstalk, at the genome-scale will greatly help increase plant resilience
towards the changing global climate and further assist in the improvement of horticultural
and agricultural productivity. Although the history of plant research has greatly increased
our knowledge on how plants achieve their ultimate fitness through the implementation
and coordination of different signaling pathways at a given developmental stage and in
response to various abiotic and biotic stress conditions, it still remains a challenge to eluci-
date the dynamic interactions among various signaling pathways that occur during the life
cycle of a plant under static environments and in the changing environments encountered
in nature. This partially explains why only a small fraction of academic research discoveries
are translated to and adopted as field applications. Nevertheless, science-based agricultural
improvements continue to provide important advancements that benefit humankind today.
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