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Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic
marine invertebrates. This key ecological function is modulated by larval development dynamics,
biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on
larval stages have yet to address this important interaction between development and swimming under
environmentally-relevant flow conditions. Our videomotion analysis revealed that pH covering present and
future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin
Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being
significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was
accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics.
Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment
and the plasticity in larval responses to environmental change.

M any marine benthic organisms have limited mobility as adults and rely on a planktonic larval phase for
dispersal. Planktonic larvae thus play a significant role in determining population abundance, genetic
diversity, distribution, and their resilience to disturbances1,2. Larval survival, transport, and successful

settlement are affected by environmental variables (e.g., prey and predator concentrations, current direction and
speed) which is in turn modulated by larval swimming behaviors3–5. Larval swimming is bounded by the
physiological and biomechanical limits of the larval form, and modulated through behavioral choices6–8.

Global stressors such as ocean acidification (OA) can affect larval growth and development. These stressors can
lead to changes in organisms’ morphology9 and modify dynamics of development10. Larval ability to carry out
ecological functions are tightly coupled with their development andmorphology. For example, changes in length
and orientation of the ciliated arms of larval urchins affect their abilities to filter particles for food11, swim in still
water12,13, and maintain directed movement (stability) in flow14. This tight coupling suggests that any changes
associated with environmental stressors can have substantial consequences.

To date, very few studies have investigated how observed effects of OA on larval development andmorphology
can impact swimming behavior, and thus, potential consequences for successful dispersal. Non-invasive video
motion analysis has been applied to investigate swimming of larval sand dollars Dendraster excentricus in still
water15. Their results suggested that OA condition did not affect larval swimming speeds. The authors hypothe-
sized that a coordinated change in shape could help maintain swimming performance. Planktonic larvae, how-
ever, are rarely found in completely still water in nature. They rather experience moving water, and thus, it is
important to explore larval swimming performance in flow16,17.

The aim of this paper was to test the effect of OA on the relationship between developmental dynamics, larval
morphology (with an emphasis on overall shape using geometric morphometrics, Fig. 1d), and swimming
behavior (in still and moving water using non-invasive video motion analysis, Fig. 2). We exposed our focal
organism, the larval green urchin Strongylocentrotus droebachiensis, to different rearing pHs (see Suppl. Table 1
for detailed carbonate chemistry) and compared their overall shapes and swimming behaviors in still water and in
shear over time.

pH affected growth but not mortality rate. Relative mortality rate (RMR in day21) was calculated as the
coefficient of the significant linear regression between relative density and time (days post fertilization). All
regressions were statistically significant (p, 0.001) and had r2 values ranged from 0.59 to 0.85 (Suppl. Table 2).
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RMR were 0.03660.0045 day21 for pH 8.0, 0.03960.0043 day21 for
pH 7.6, and 0.02760.0097 day21 for pH 7.2. Neither pH nor
replicate had a significant effect on larval mortality (p 5 0.21 and
p 5 0.28 respectively, Fig. 3a).
A logarithmic regression between total body length (mm) and

days post-fertilization (hereafter larval age) was used to determine
larval growth rate. The coefficient of regression between body length
and the natural logarithm of larval age denotes the growth rate in a
unit of mm ln (day)21. All regressions were statistically significant (p
, 0.001) and had r2 values ranged from 0.77 to 0.9 (Fig. 3b, Suppl.
Table 3). Growth rates were 0.10560.0035 mm ln(day)21 for
pH 8.0, 0.10360.0017 mm ln(day)21 for pH 7.6, and 0.0796
0.0046 mm ln(day)21 for pH 7.2. pH had a significant effect on larval
growth (p, 0.001) and post-hoc test showed that growth rates were
significantly different between the three pH treatments (p , 0.01).
Replicate also had a significant effect on larval growth rate (p ,
0.001) and a post-hoc test showed that at pH 7.6 growth rate in
one of the replicates (number 3) was significant different from the
other two and at pH 7.2 larval urchins in all three replicates had
different growth rates.

Acidification induced overall shape change. Based on the canonical
variate analysis, larval urchins reared under the three pHs differed
significantly in overall shapes (Fig. 4, p , 0.0001, Suppl. Table 4).
Canonical variate 1 (CV1) and CV2 accounted for 65.4% and 20.7%
of the total variance in the population. CV1 mainly varied with the
ratio of body size and arm length; individuals with a lower CV1
scores had shorter total arm length but relatively longer arms per
unit length of the body at a given size. CV2 varied with the arm
lengths (overall height) and the separation distances between arms;
individuals with a lower CV2 scores had shorter arms that are less
spread out in the horizontal direction (Suppl. Table 4, Fig. 5). In
general, larval urchins in the low pH treatments had a more
negative CV2 score at a given CV1 score.
Our previous analysis showed that larval urchins had different

growth rates when reared under different pH, therefore, we com-
pared growth patterns of the three pH treatments by regressing the
CV1 andCV2 scores against Procrutes centroid sizes. Regressions for

CV1 were significant and had r2 value over 0.62 (Suppl. Table 6).
Such allometric relationships did not hold for CV2 and the variance
explained by the regression were low (r2 . 0.05). In other words,
larvae that were larger in size did not necessary have longer overall
height, arm lengths, or shorter separation distances between arms
(CV2) (Suppl. Table 6).

Larval swimming in shear is not affected by pH.Netmovement and
swimming metrics of larvae were computed after flow subtraction.
For upward swimming larvae, average vertical swimming velocities
differed between larval age and flow conditions (p , 0.0001, Suppl.
Table 7, Fig. 5). At a given age, upward swimming larvae exposed to
shear condition had higher vertical velocities. Maximum upward
swimming speed was observed 10 days post fertilization and
subsequently decreased with age. pH alone did not have a
significant effect on vertical velocities (p 5 0.67). There were also
no significant interactions between pH and flow (p 5 0.10) Net
horizontal velocity was not affected by the three factors studied i.e.,
flow, age, and pH (p $ 0.12, Suppl. Table 7, Fig. 5).
For downward swimming larvae, average vertical and horizontal

velocities differed between larval age and flow (p , 0.001, Suppl.
Table 7, Fig. 6). Vertical velocities became less negative as larvae
aged.Horizontal velocities were higher in shear than in still condition
for larval urchins at a given age, i.e., there is more horizontal move-
ment towards downwardmoving flow when exposed to shear. Larval
urchins in all three pH treatments had higher horizontal velocities at
7 and 10 days post-fertilization. However, pH alone did not have a
significant effect on vertical velocities (p5 0.24). There were also no
significant interactions between pH and flow (p 5 0.26, Suppl.
Table 6, Fig. 6).
At a same day of age, larval urchins from the different pH treat-

ments had different total body lengths. Such delay in growth could
have potential implications for larval swimming (Fig. 3b). However,
statistical comparison on the effect of flow and pH with size as a
covariate could not be performed because there was very little over-
lap in total body length between the pH treatments when the video
observations were performed. Larvae reared in pH 7.3 did not catch
up in size over the 14 days of observations (Suppl. Fig. 2).

Discussion and conclusion
Swimming of planktonic larvae has significant consequences for
population dynamics and is tightly coupled with larval physiology
and biomechanics7. When reared under decreased pH conditions,
larval green urchins had reduced growth rates, changed overall
shapes but were able to maintain their age-specific swimming
performances.

Larvae reared under decreased pH grew slower and in a different
shape.Within the observed pH range (8.0–7.2), reduction in pH had
no significant effect on larval survivorship over 14 days (Fig. 3a).
This observation supports previous observation on the same
species which identified pH 7.0 as the physiological tipping
point18. The rate and pattern of growth were significantly impacted
by pH (Fig. 3b). Reduced growth rate could prolong pelagic larval
duration and reduce the number of settlers due to the high mortality
in the plankton10,19,20. These slower growing individuals might also
settle at smaller sizes21 or less discriminately to the chemical cues22

which could have negative implications on juvenile survival in the
wild.
In addition to differences in rate of growth, overall shapes of the

acidified larval urchins also differed from those of the control (Fig. 4).
Previous studies on pH impact on larval morphology focus on linear
measurement and have shown contrasting results: in some observa-
tions, including that on larval green urchins, ratio between body
length and arm length/stomach length were affected by pH18,23,24

but not in others25,26. In the latter cases, the pH effect became
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Figure 1 | Micrographs of larval Strongylocentrotus droebachiensis
(10 days post fertilization) reared at three nominal pH levels (a).
Geometricmorphometric techniques were used to analyze shape change in

these larvae through identification of landmarks (b), followed by

computation and comparison of Procrutes coordinates on transformation

grids (c).
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non-significant when correcting for the reduced growth rate by
including body length as a covariate in the analysis. In our data set,
CV1 scores correlated significantly with Procrustes centroid sizes
such that the relative ratio between larval body and arms varied in
an allometric manner. However, the lack of correlation between
Procrutes centroid size and CV2 scores suggest that the change in
length of arms and separation distances between them do not allo-
metrically increase with overall size (Suppl. Table 6). The differences
between different aspects of shape change (CV scores) relative to
overall size may help reconcile the difference in previous reports.
Observed shape changes under decreased pHmay have significant

biomechanical implications for larval movement. Larvae with the

lower CV1 and 2 scores appeared to have an overall more ‘‘squat’’
morphology. This decrease in arm extension without the corres-
ponding change in body length (decrease in CV1 score) would
increase the distance between larval centers of buoyancy and gravity,
and hence, the torque exerted when tilted in moving water would be
decreased, thereby conferring stability7,27. In addition, the reduction
in separation distance between arms (decrease in CV score) present a
narrower width exposed to the shear gradient, which would result in
less difference in water velocity across the larval body, less tilting of
the larva8,13. Future modeling effort on fluid interactions of larvae
should considered this kind of coordinated morphological variation
in ‘‘armed larvae’’.
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Decreased pH did not impact larval swimming. Contrary to the
hypothesis that the change in shape would affect swimming, larval
urchins raised under decreased pH had different age-specific
morphology but maintained the same swimming performance in
both still and moving water (Fig. 5, 6).
While pH had no significant effect on age-specific larval swim-

ming velocities, this performance metric significantly varied with
larval age. For example, older larvae had higher horizontal velocities

and may be more likely entrained in downward moving waters by
crossing flow lines. This could translate into differential transport
through ontogeny28. It is remarkable that this age-specific pattern
wasmaintained within our tested pH range despite significant differ-
ences in growth rates. This could be a consequence of the observed
shape change allowing the smaller larvae raised in decreased pH to
maintain stability. Other non-mutually exclusive mechanisms could
also allow larval urchins to maintain their swimming performances
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Figure 4 | Larval urchins reared at different pHs had significantly different overall shape after accounting for size difference using landmark analysis.
The transformation grids render the space between the landmarks with thin plate splines to aid visualization. On these grids each lollipop shows the

original starting point of a landmarkwith a filled circle and the shift of landmark to the target shape is indicated by a line. Each dot represents the canonical
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despite changes in overall shape. First, larvae raised in decreased pH
are smaller in size (this study) and could potentially be less calcified29.
These morphological differences could in turn reduce the neutral
weight of an individual, and hence, a relatively smaller lifting force
is required to propel the larva13,30. Second, change in pH is reported to
affect ciliary activities of the ciliate Paramecium caudatum, and a
decrease in pH reduced the amount of ciliary reversals and sensitivity
to KCl stimulation31. In sea urchins, ciliary bands play a key role in
swimming and swimming speeds could bemaintained through redu-
cing number of reversal, such that more of the work done by the cilia
would be directed to forward propulsion. Pluteus of other sea urchins
(Hemicentrotus pulcherrimus and Anthocidaris crassispina) are able
to swim at the same speed regardless of compass direction, implying
a compensation for variation in gravitational pull32. Both this and our
observation that plutei maintain their age-specific swimming abil-
ities despite slower growth suggest that propulsive activities of larval
urchins are under strong selective pressure, actively modulated, and
highly plastic.

Ecological implications for plasticity in swimming behaviors.
Larval urchins use their ciliary bands for both food capture and
swimming suggesting potential tradeoff between the two
functions8. Volume of water filtered per unit time and hence food
capture is dependent on total length of the ciliated band and its
leakiness. Changes in larval size, shape, and weight may affect
particle capture33. Also, if ciliary reversal is affected by changes in
pH, particle capture rate would also decrease34. However, previous
incubation experiment showed increased feeding rates in green
urchin plutei raised under decreased pH35. This was interpreted as
a compensatory mechanism following a decrease in digestion
efficiency.

Maintaining age-specific swimming performance under ocean
acidification could also have implications for larval transport.
Earlier modeling and observation on pluteus larvae of sand dollars
suggested that the changes in morphology and swimming through
ontogeny affect selective transport such that older larvae were less
stable (higher horizontal velocity in shear) and are more likely to be
transported downwards28. This prediction also matches vertical dis-
tribution of larval sand dollars in the field; older larvae are found in
deeper waters36. If this is the case, the observed maintenance of age-
specific swimming behavior regardless of developmental stage
implies larvae raised under decreased pH might be transported to
deeper water prematurely, e.g. before being able to settle (compet-
ency). This mismatch between behavior and development could
potentially decouple competent window from approaching of settle-
ment sites.
In conclusion, larval S. droebachiensis demonstrated strong

phenotypic plasticity in the face of decreased pH. The changes in
overall shape did not negatively impact on larval swimming ability in
still and moving water. On the contrary, this shape change to a more
‘‘squat form’’ might have helped provide stability. Maintained per-
formance of swimming under OA condition reinforces the import-
ance of this ecological function to early life stages. While larval
urchins demonstrated capacity to cope with decreased pH in the
lab, it is important for future studies to evaluate the ecological con-
sequences of these functional impacts acting in concert. Together,
these small, sub-lethal changes could negatively impact survivorship
and transport, and ultimately the distribution and abundance of
populations. However, this observation also illustrates the import-
ance to include relevant functional parameters as endpoint and to
avoid over-interpretation of change (e.g. in size) as negative
consequences.

1412108

250

200

150

100

50

1412108

0

-100

-200

-300

-400

1412108 1412108

STILL SHEAR
Upward 
swimming
larvae

Downward 
swimming
larvae

Larval age (days post fertilization)

Ve
rti

ca
l v

el
oc

iti
es

 
(µ

m
 s

-1
)

Ve
rti

ca
l v

el
oc

iti
es

 
(µ

m
 s

-1
)

7.2 7.6 8.0

a) b)

c)

b)

d)
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Methods
Larval rearing and seawater chemistry. Adult sea urchins Strongylocentrotus
droebachiensis were collected from Droebak, Norway. Two males and two females
were spawned and gametes were fertilized with protocol previously described. Larvae
were kept at 10 individuals mL21 at 9uC and fed a constant diet of 150 mg C L21

Rhodomonas sp. (, 6000 cells mL21) starting five days post fertilization when their
mouths opened. Three pH treatments (pHT 8.0, 7.6, and 7.2) were used, with three
replicate jars for each pH level. These pH levels correspond to average surface ocean
today (8.0), predicted average value for 2100 and present-day extreme (7.6), and
extreme prediction for 2100 (7.2)18. pH levels weremaintained through CO2 bubbling
and monitored with pH electrode and alkalinity titration18.

Larval mortality and growth. Duplicate 10 mL subsamples were taken and fixed
from each replicate daily. The number of larvae was counted under a dissecting
microscope and the change in relative density was used to calculate mortality rate
through linear regression against time. Micrographs of twenty individuals were taken
and the total body lengths (Fig. 1) were measured at different times. A logarithmic
regression i.e. change in body length (mm) per the natural log of unit time (days) was
used to compute the growth rate (mm ln(day)21).

Geometric morphometrics analysis. Eleven landmarks were identified including tip
of the larval body, tips and bases of posterodorsal arm and preoral arms (Fig. 1). These
landmarks were digitized for 10 randomly selected individuals from each replicate at
four time points 4, 7, 10, and 13 days post fertilization using the imaging software
Fiji37. The coordinates extracted were imported into the software MorphoJ for
General Procrustes Analysis38. To reduce the dimensionality of the data set, a
canonical variate analysis was performed and changes in overall shapewere visualized
with transformation grids.

Video motion analysis. Swimming behaviors were observed at four different time
points (4, 7, 10, and 13 days post fertilization). Larvae were observed under no
induced flow (still) and in moving water with a linear vertical velocity gradient
(shear). Shear is a realistic simplification of turbulence in the natural environment for
small larvae, as argued in previous studies28. The same shear tank from these studies
was used to create shear by enclosing a narrow inner chamber with two flanking outer
chambers held at different temperatures (Suppl. Fig. 1). Observations were made at
the larval rearing pH and the two flow conditions were compared: in still condition

where the temperature of both outer chambers were held at 10uC, and in shear where
the temperature of the outer chambers were 0 and 20uC respectively. The temperature
in themiddle of the inner chamber was therefore held close to the rearing temperature
at 10uC (1/2 1uC) and checked at the beginning of each observation.

Trajectories of larval urchins (200 larvae per trial) and those of algal tracer particles
(,6000 cells mL21) were recorded using a modified HD webcam (Logitech Pro Cam
7200) equipped with a CCTV lens at 7.5 fps under fiber optic lights illumination.
Two, five minutes long video clips were first collected in still water and two additional
clips in shear after a ten minute acclimation time. Video was processed and analyzed
using Avidemux2.4 and Tracker3D15,39. Smoothing splines were applied to each
trajectory to remove frame rate noise and to differentiate the overall direction of travel
(axis) from the helical path (path). Swimming speed was computed based on the path,
net vertical and horizontal velocity based on the axis. Flow subtraction is applied to all
velocities calculation because the observed larval movement is the sum of both the
passive transport by the moving water and the individual swimming behavior40. The
background flow was computed by binning the algal trajectories from 1500 frames
into 133 17 spatial bins, and the flow velocity in each bin was the median of all the
trajectories passing through each bin. The 20uC temperature difference used in the
observation chamber resulted in shear ranging from 20.6 to 0.25 s21. Given the
horizontal velocity generated was negligible, only the vertical component of the larval
speed was corrected. Data were divided into up-swimming and down-swimming
individuals based on overall displacement for statistical analysis, such that up-
swimmers are those with their final positions above their starting position (i.e. a
positive change z-coordinates) and down-swimmers are those with the final positions
below their starting position (i.e. a negative change in z-coordinates). In this current
scheme, the down-swimmers include both individuals that are sinking through ciliary
arrest and those that are actively swimming downward through ciliary reversal.

Statistical Analysis. The statistical analyses were performed using SAS or PASW
software. Statistical assumption of normality and homogeneity of variance were
tested with Shapiro-Wilk test and Levene’s test. For ANCOVAs, additional test of
homogeneity of regression slope and linearity in relation between covariate and
dependent variable were performedwith scattered plot and linear regressions. pH and
replicate effect on carbonate chemistry were tested using an ANOVA. pH and
replicate effect on mortality and survival were tested using an ANCOVA with age as
covariate. pH effect on shape (CV scores) was tested using an ANOVA and the scores
were also linearly regressed against centroid sizes. Effect of pH, flow, and their
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interactions on larval swimming was tested using an ANCOVAwith age as covariate.
Post-hoc Tukey’s tests were performed where appropriate. All significant levels were
set at p , 0.05.
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