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Abstract

Background: One of key issues in the post-genomic era is to assign functions to uncharacterized
proteins. Since proteins seldom act alone; rather, they must interact with other biomolecular units
to execute their functions. Thus, the functions of unknown proteins may be discovered through
studying their interactions with proteins having known functions. Although many approaches have
been developed for this purpose, one of main limitations in most of these methods is that the
dependence among functional terms has not been taken into account.

Results: We developed a new network-based protein function prediction method which
combines the likelihood scores of local classifiers with a relaxation labelling technique. The
framework can incorporate the inter-relationship among functional labels into the function
prediction procedure and allow us to efficiently discover relevant non-local dependence. We
evaluated the performance of the new method with one other representative network-based
function prediction method using E. coli protein functional association networks.

Conclusion: Our results showed that the new method has better prediction performance than
the previous method. The better predictive power of our method gives new insights about the
importance of the dependence between functional terms in protein functional prediction.

Background
Currently the sequencing of many genomes has brought
to light the discovery of thousands of possible open
reading frames which are all potentially transcribed and
translated into gene products. For many proteins, little is
known beyond their sequences, and for the typical
proteome, between one-third and one-half of its proteins

remains uncharacterized. For example, yet despite being
the most highly studied model bacterium, a recent
comprehensive community annotation effort for the
fully sequenced reference K-12 laboratory strains indi-
cated that only half (~54%) of the protein-coding gene
products of E. coli currently have experimental evidence
indicative of a biological role [1]. The remaining genes
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have either only generic, homology-derived functional
attributes (e.g. ‘predicted DNA-binding’) or no discern-
able physiological significance. Moreover, as we know
that proteins play role in many biological processes, due
to the complexity of biological systems, so many
functions of these proteins may have undiscovered yet.
As a result, a major challenge in modern biology is to
develop methods for determining protein function at the
genomic scale [2].

It is widely known that proteins seldom act alone; rather,
they must interact with other biomolecular units to
execute their function. Protein-protein interactions oper-
ate at almost every level of cellular functions [3]. Thus,
implications about function can often be made via
protein-protein interaction studies. These inferences are
based on the premise that the function of unknown
proteins may be discovered through studying their
interaction with a known protein target having a
known function. It has been postulated that a far better
way to systematically uncover gene function and the
higher-level organization of proteins into biological
pathways is by the examination of these interaction
networks via proteomic, genomic and bioinformatic
approaches, which is essential to discovering the
biological context of protein functions and the mole-
cular mechanisms of underlying biological processes
[2,3].

Basically, there are two types of automatic function
prediction paradigms by analyzing the entire set of
functional associations recorded between gene products
in the context of a network. The first one is to use the set
of associations in the network to propagate the
functional labels from well characterized protein nodes
to those with limited or no annotations. Many func-
tional prediction studies following this paradigm are
often focused first on sub-grouping or clustering the
interaction networks into functional modules based on
the pattern or distribution of protein nodes and
interaction links which can be highly suggestive of
shared functions. These modules may be distinct or
overlapping. Any unannotated gene products in a given
module can be subsequently assigned the most common
functional annotation(s) associated with its interacting
partners or neighbors [2]. This ‘unsupervised’ approach
often works well if there is extensive coherent annotation
available and relatively few uncharacterized proteins per
cluster, but there can be difficulty if a module contains
many proteins without annotations or with diverse,
seemingly unrelated functions. Most of the methods for
identifying modules operate on the underlying assump-
tion that proteins within modules are more tightly
connected than proteins in different modules; Broadly
speaking, the clustering methods we consider are either

specific to the network domain, or are based on standard
distance- or similarity-based clustering techniques; in the
latter case, the key issue is typically in deciding on a
suitable measure of distance or similarity between two
proteins in an interaction network. These methods differ
in the extent to whether they use only local neighbor-
hood information when clustering whereas others use
more global features of the network.

Alternate computational methods have been devised to
automatically assign functional labels, such as gene
ontology (GO) terms [4], to the uncharacterized proteins
present in an interaction network in a ‘supervised’
manner according to the annotations of the broader
neighborhood of interacting gene products. Differentiat-
ing from the module-based methods cited above, these
newer approaches often exploit both the global and local
properties of network graphs [5,6]. The trade off is that
additional error or uncertainty may be introduced by
assuming functional similarity among more loosely
connected gene products that are more than one step
apart in an interaction network.

Supervised computational methods for automatically
assigning functional terms to previously uncharacterized
genes based on the categorical properties of their
annotated interaction partners have been widely devel-
oped [5-10]. Schwikowski et al [7] developed majority
counting method to predict for a given protein up to
three functions that are prevailing among its neighbors.
Nabieva et al. [9] proposed the functional flowmethod
which simulates a network flow of annotations from
annotated proteins to target ones. They formulated the
annotation problem as a global optimization problem,
where a unique function is assigned to an unknown
protein so as to minimize the cost of edges connecting
proteins with different assignments. Chua et al. [5]
defined the functional similarity between a pair of
proteins by taking both the direct and indirect neighbors
of the protein pair into account. They showed that level 2
and 3 neighbors have an above average likelihood of
sharing functional similarity. A weighted averaging
method based on functional similarity weight between
the proteins is defined to predict the function using level
1 and level 2 neighbors. It has been shown to outper-
form some of the existing methods that use interconnec-
tion network information in the three main categories of
GO. Lee et al. [6] developed a new kernel logistic
regression (KLR) method for protein function prediction
based on diffusion kernels. In the KLR method, the
authors incorporated the correlation among biological
functions into their model by identifying a set of
functions that are highly correlated with the function
of interest using the c2 test. The prediction accuracy is
comparable to another protein function classifier based
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on the support vector machines with a diffusion kernel.
Hu et al. [10] proposed a network-based protein
function prediction method that assigns functions to
unannotated proteins in a functional association net-
work. The algorithm includes two steps: the first step is
to compute function affinity (or function profiles) of
uncharacterized proteins to the functional categories we
are interested using the functional information from
their level 1 (direct) neighbors and level 2 (indirect)
neighbors; the second step is to evaluate the correlated
functional profiles based on a penalized logistic regres-
sion model and uses a stepwise variable selection
procedure to select optimized function profiles in the
final model to estimate probability of uncharacterized
proteins assigned to the interested functions. Their
experiments showed that their method makes improve-
ments of prediction accuracy compared to existing
techniques.

These methods can be roughly categorized as either
simple, local, guilt-by-association techniques or global,
network optimization procedures. While both
approaches often achieve similar performance [11],
there are potential deficiencies in the procedures. For
example, since functional terms are often interrelated (e.
g. the GO hierarchies), the correlation structure of the
respective functional categories can potentially be
exploited. Hence, to deduce the biological role(s) of a
particular protein, one should take into account the full
spectrum and relatedness of available annotations of the
interaction partners when evaluating a particular func-
tional category.

In this study, we proposed a relaxation labelling method
for network-based protein function prediction. We
explored to incorporate the inter-relationship among
functional labels into the function predictions. The
relaxation labelling is employed to iteratively update
each node’s likelihood for a given function by taking its
non-local dependencies into account. The advantages of
the method are demonstrated by a recently generated
Ecoli protein functional association network [10].

Methods
Relaxation labelling method for
protein function prediction
In a functional association network, let us assume that O
is the set {o1, ..., on} of n proteins to be labelled. L is the
set {l1, ..., lm} of m possible functional labels (GO terms)
for the proteins. Let Pi(lk) be the probability that the
label lk is the correct label for protein oi and each
probability satisfies 0 ≤ Pi(lk) ≤ 1 where Pi(lk) = 0 implies
that label lk is impossible for protein oi and Pi(lk) = 1
implies that this labelling is certain.

The relaxation labeling process includes three
steps [12]:
1) Initialize the probability Pi(lk)

(0) of protein oi for
function lk . This can be done by assigning an initial and
perhaps arbitrary probability for each label and protein.
In this study, we used the weighted voting approach as
proposed by McDemott et al. [8]. We considered all
labelled proteins in the direct neighbors of a given
protein oi and calculated the probability Pi(lk)

(0) of
protein oi for function lk given by:

P l

aij j lk
j N
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j N

i k
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where aij is the association score between protein oi
and oj. N is the set of proteins neighbouring oi. We
introduce a discrete value function θ(oj, lk), which
takes value 1 if protein oj has function lk and 0
otherwise. If protein oi has no neighbours with
function lk, we estimate Pi(lk)

(0) based on the
function’s prior in GO gold standard we constructed.
2) Update the probability Pi(lk) of protein oi for
function lk . This is done by considering the
probabilities of labels for neighbouring proteins.
Let us assume that we have changed all probabilities
up to some step, T, and we now seek an updated
probability for the next step T + 1. We can estimate
the change in confidence of Pi (lk) by:
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where Cij (lk, ll) is the correlation between protein
functional labels defined as the conditional prob-
ability that protein oi has a label lk given that protein
oj has a label ll, i.e. Cij (lk, ll) = P(lk|ll). We estimate
Cij(lk, ll) based on semantic similarity between
functional terms in GO (discussed below). N is the
set of proteins neighboring oi, and ωij is a factor that
weights the labellings of these neighbours, defined in

such a way that ωij
j N

=
∈
∑ 1 . The new probability for

label Pi(lk) in generation T + 1 can be computed from
the values from generation T using
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3) The process of step 2) is repeated until the
labelling method converges or stabilises. This occurs
when there is little or no change between successive
sets of probability values.
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Construct functional association networks
We used an integrated functional association network
which merged the physical interaction network and
predicted genome context association network [10]. The
resulting combined probabilistic network consisted of
80,370 high-confidence (probability >= 75%) putative
pairwise interactions encompassing virtually the entire
proteome of E. coli, including 4144 proteins.

Construct GO gold standard
The most widely adopted gold standard system is the
Gene Ontology (GO) database [4], which uses a clearly
defined, and computationally friendly, vocabulary for
representing the cellular, biochemical and physiological
roles of gene products in a systematic manner. From the
perspective of functional computation, GO provides a
standardized way to assess whether a set of genes have
similar functions, which has led to its increasing
popularity for the many function prediction procedures
used in model organism settings [13]. GO terms are
organized in a tree-like structure, starting from most
general (e.g. biological process) at the root to the most
specific at the leaves (e.g. regulation of DNA recombina-
tion) distributed across three major semantic domains -
molecular function, biological process, and cellular
location. Since terms may have more than one parent,
they are technically structured as a network called a
directed acyclic graph. For instance, “B cell apoptosis”
represents a sub-type of both the term “apoptosis” and
“B cell homeostasis”. Hence, the functional classes are
not necessarily independent of one another, and the
dependencies are explicitly defined.

While expert curators manually assign terms based on
published experimental evidence, most terms are electro-
nically inferred based on sequence similarity to other
well-studied gene products or other criteria. Each term is
assigned an evidence code stating how the annotation is
supported [14], which allows one to assess the reliability
of an annotation. If the annotation is based on experi-
mental evidence traceable to an author or publication, it
is presumably more reliable than if it was simply inferred
through sequence similarity. The GO has over ten such
evidence codes, which are not part of the core ontology.

We created the gold standard for the function predictions
based on Gene Ontology [4]. In order to have a suitable
number of proteins for cross-validation, we only
consider those functional categories with the minimum
of 30 associated labeled proteins. Since a functional term
is too general if it has too many labeled proteins, we also
fixe the maximum number of labeled proteins in a
function term to be 400. For biological process (BP)
terms in the GO hierarchy related to E. Coli proteins

[15], we removed the terms that had neither IPI (inferred
from protein-protein interaction) nor IGC (inferred from
genomic context) evidence codes. We also removed any
proteins with NCBI product descriptions as “hypotheti-
cal”, “predicted” or “putative”. The final GO gold
standard used in this study included 1444 of the 4144
proteins in the functional interaction network. Since E.
Coli proteins have not been well-annotated using GO,
there are only 32 GO BP terms which meet the mentioned
filtering requirements and are shown in Table 1. A more
complete description of the GO gold standard selection
can be found in our previous study [10].

Measure semantic similarity of functional terms in GO
Different methods have been developed to determine the
similarity of two GO terms based on their distances to
the closest common ancestor term and/or the annotation
statistics of their common ancestor terms [16-18]. There
are some drawbacks in these GO semantic similarity
measurement methods. For example, Resnik method
only considers the information content of a functional
term derived from the corpus statistics while the location
of a GO term in GO graph is usually ignored. Wang et al.
[19] recently proposed a novel method to encode a GO
term’s semantics (biological meanings) into a numeric
value by aggregating the semantic contributions of their
ancestor terms (including this specific term) in the GO
graph. They designed an algorithm to measure the
semantic similarity of GO terms as follows:

Assume that there are two GO terms: li and lk, which are
represented as two directed acyclic graphs (DAGs):
DAG l Q El i l li i i

= ( , , ) and DAG l Q El k l lk k k
= ( , , ) , respec-

tively, where Q Ql li k
( ) is the set of GO terms in

DAG DAGl li k
( ) , including term li (lk) and all of its

ancestor terms in the GO graph, and E El li k
( ) is the set of

edges (semantic relations) connecting the GO terms in
DAG DAGl li k

( ) . The semantic similarity between GO
terms li and lk is defined as

C l l
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where 0 <re < 1 measures the contribution of edge e Œ
Eli linking term q with its child term q’. SV(lk) and
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Table 1: The 32 GO BP terms used in this study

GO_id GO Description Number of proteins

GO.0000160 two component signal transduction system phosphorelay 62

GO.0005975 carbohydrate metabolic process 94

GO.0006118 electron transport 143

GO.0006260 DNA replication 43

GO.0006281 DNA repair 59

GO.0006310 DNA recombination 70

GO.0006313 transposition DNA mediated 50

GO.0006350 transcription 205

GO.0006355 regulation of transcription DNA dependent 221

GO.0006412 translation 99

GO.0006508 proteolysis 41

GO.0006811 ion transport 82

GO.0006826 iron ion transport 32

GO.0006865 amino acid transport 49

GO.0006950 response to stress 71

GO.0006974 response to DNA damage stimulus 55

GO.0007047 cell wall organization and biogenesis 43

GO.0007049 cell cycle 48

GO.0007165 signal transduction 35

GO.0008152 metabolic process 320

GO.0008360 regulation of cell shape 35

GO.0008643 carbohydrate transport 75

GO.0008652 amino acid biosynthetic process 93

GO.0009058 biosynthetic process 55

GO.0009103 lipopolysaccharide biosynthetic process 52

GO.0009252 peptidoglycan biosynthetic process 31

phosphoenolpyruvate dependent sugar

GO.0009401 phosphotransferase system 39

GO.0015031 protein transport 43

GO.0016310 phosphorylation 31

GO.0045449 regulation of transcription 39

GO.0046677 response to antibiotic 45

GO.0051301 cell division 46
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S qli
( ) are defined in the same ways as SV(li) and S qli

( ) ,
respectively.

For the 32 GO biological process terms we discussed
above, we used the software G-SESAME to calculate
Wang’s semantic similarity between any pair of GOs [20].

Performance evaluation
Classifier performance is evaluated by five-fold cross-
validation. Briefly speaking, all labelled proteins are
arbitrarily split into five representative sub-groups. Each
sub-group is kept to have approximately equal number
of labelled proteins in each functional GO term. The
computational algorithm is then trained on n-1 of the
groups, followed by testing on the remaining holdout
group. This procedure is repeated 5 times, each time
using a different sub-group of gene products as the test
set. We quantify the performance of each GO term based
on the area-under-the-curve (AUC) in Receiver Operat-
ing Characteristic (ROC) curves drawn by plotting
sensitivity versus specificity at different thresholds.
Each threshold yields one pair of sensitivity and
specificity values and, thus, one point on the curve.
The single statistic (AUC) provides a quantitative
indication of how well a particular functional classifier
performs.

To evaluate the overall prediction performance of our
algorithm, we plot the precision against recall at different
thresholds, which can be calculated as follows: Given a
threshold, if a protein has predicted probability larger
than it in a function category, we assign the function to
the protein, so we compute

precision k m recall k ni

i

i

i

i

i

i

i

= =∑ ∑ ∑ ∑/ , / (6)

where mi is the number of predicted annotations for
protein i, ni is the number of known annotations for
protein i, ki is the number of correctly predicted
annotations for protein i.

Results and discussion
Based on the pairwise semantic similarity among the 32
GO terms calculated using formula (4), we made a heat
map representing this GO term similarity matrix, which
is shown in Figure 1.

As we can see from the plot, some highly correlated GO
terms (e.g. GO.0006260.DNA.replication, GO.0006350.
transcription, GO.0006412.translation) are grouped into
a single block.

To compare the performance of the weighted voting and
relaxation labelling classifiers, we performed five-fold

cross-validation on the built gold standard data. The
comparisons of the AUC scores of the 32 GO terms
generated by the two classifiers are shown in Figure 2.
Overall, the AUC scores for 28 of the 32 GO terms have
been increased based on our new function prediction
method. The advantage of the new method has been
further demonstrated by plotting the recall versus
precision curves generated from the predictions based
on the two classification methods. As shown in Figure 3,
the relaxation labelling based approach has larger recall
and precision than those based on the weighted voting
approach. We also observed that highly correlated GO
terms as shown in Figure 1 have larger prediction
improvement than uncorrelated GO terms based on
our new method.

In this study, we used the GO structure-based method to
quantify the similarity between GO terms and demon-
strated its advantage by incorporating this information
in E. Coli protein function prediction. We are exploring
to compare the performance of this method with
information-content-based approaches to measure GO
similarity in protein function prediction. In the future,
we will apply the new method to protein functional
association networks generated in other species and
compare its performance with other representative
methods in detail.

Conclusion
In this study, we have proposed a new method for
efficiently exploring relevant non-local dependencies of
functional labels in the protein function prediction task.
Our approach is able to take into account the correla-
tions among GO terms. It includes two major steps: first,
initial label assignment is made by a local classifier;
second, the dependencies among GO labels are taken
into accounted and propagated using an iterative
relaxation procedure. The potential trade-off is that
additional error or uncertainty may have occasionally
been introduced by assuming functional similarity
among more loosely connected proteins. We evaluated
the performance of the new method with one other
representative network-based function prediction
method using E. coli protein functional association
networks. Our results showed that the new method has
better prediction performance than the previous method.
The better predictive power of our method gives further
insight about the importance of the dependence between
functional terms in protein functional prediction.
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Figure 1
Heat map shows the semantic similarity among the 32 GO BP terms. The red colour represents the highest
similarity; the green represents the lowest similarity.

Figure 2
Relative performance of weighted voting and relaxation labelling classifiers by AUC . Each circle represents a
specific GO BP term.
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