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Purpose: To develop a deep learning (DL) algorithm for predicting anterior chamber

depth (ACD) from smartphone-acquired anterior segment photographs.

Methods: For algorithm development, we included 4,157 eyes from 2,084 Chinese

primary school students (aged 11–15 years) from Mojiang Myopia Progression Study

(MMPS). All participants had with ACD measurement measured with Lenstar (LS 900)

and anterior segment photographs acquired from a smartphone (iPhone Xs), which was

mounted on slit lamp and under diffuses lighting. The anterior segment photographs were

randomly selected by person into training (80%, no. of eyes = 3,326) and testing (20%,

no. of eyes = 831) dataset. We excluded participants with intraocular surgery history

or pronounced corneal haze. A convolutional neural network was developed to predict

ACD based on these anterior segment photographs. To determine the accuracy of our

algorithm, we measured the mean absolute error (MAE) and coefficient of determination

(R2) were evaluated. Bland Altman plot was used to illustrate the agreement between

DL-predicted and measured ACD values.

Results: In the test set of 831 eyes, the mean measured ACD was 3.06 ± 0.25mm,

and the mean DL-predicted ACD was 3.10 ± 0.20mm. The MAE was 0.16 ± 0.13mm,

and R2 was 0.40 between the predicted and measured ACD. The overall mean

difference was −0.04 ± 0.20mm, with 95% limits of agreement ranging between

−0.43 and 0.34mm. The generated saliency maps showed that the algorithm mainly

utilized central corneal region (i.e., the site where ACD is clinically measured typically)

in making its prediction, providing further plausibility to the algorithm’s prediction.
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Conclusions: We developed a DL algorithm to estimate ACD based on smartphone-

acquired anterior segment photographs. Upon further validation, our algorithm may be

further refined for use as a ACD screening tool in rural localities where means of assessing

ocular biometry is not readily available. This is particularly important in China where the

risk of primary angle closure disease is high and often undetected.
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INTRODUCTION

Primary angle-closure glaucoma (PACG) is a significant cause of
vision loss in Asia. It was estimated that the number of people
aged 40–80 years with PACG worldwide was 23.36 million in
2020, of which Asia accounted for 76.8% of cases (1). Bilateral
blindness affected 5.3 million people with PACG in 2020, the
majority of whom were from Asian regions (2). Thus, screening
for people with high risks of PACG is important to provide timely
interventions, particularly in Asian countries (3).

Anterior chamber depth (ACD), the distance from corneal
endothelium to the anterior crystalline lens capsule, is an
important biometric dimension to assess the risk of angle closure
development. A population-based study reported that ACD was
a significant risk factor for angle closure amongst Mongolia
and Chinese (4). Another population-based longitudinal study
in China demonstrated that shallow ACD was independently
associated with angle closure development over a 6-year period
(5). Anterior chamber depth alone may provide a simple and
effective way to distinguish eyes with angle closure from those
with open angles (6), and has been suggested as a quick screening
tool for detecting primary angle closure disease (PACD) (7, 8).

Currently, the methods used for ACD measurement include
A-Scan ultrasound, slit-lamp biomicroscopy, non-contact partial
coherence interferometry [e.g., IOLMaster (Carl Zeiss AG,
Oberkochen, Germany), Lenstar (Lenstar LS 900 R©, Haag-
Streit AG, Switzerland), Pentacam (Oculus System, Wetzlar,
Germany)], and anterior segment optical coherence tomography
(AS-OCT) (6, 9). However, the need for technical expertise,
along with the cost and lack of portability, limit their usage in
community screening (8, 9). The advent of artificial intelligence
has made tremendous breakthroughs in ophthalmic imaging
and shown great capabilities in disease diagnosis and screening
(10). In recent times, Chen et al. developed a machine learning
algorithm to predict ACD from images captured by a smartphone
mounted with a portable slit lamp (n = 66) (11). In brief, the
portable slit lamp was placed in front of the eye parallel to
the cornea. The slit beam focused on the mid-peripheral iris
surface, not too center nor too peripheral. Multiple images were
captured in ∼1mm steps from nasal to temporal. Although
their algorithm-predicted ACD showed moderate correlation
with the measured ACD measurements, the need for manual
maneuvering across the cornea with a 1mm slit was subjective
and time-consuming.

The availability of portable smartphones with cameras has
become a tool for ophthalmologists in clinics (11–13). Using
smartphones to take anterior segment photographs provide good

reproducibility (12), and could provide clinicians with a simple
and quick way to obtain anterior segment photographs for
evaluation in rural or less-resourced areas.

In the present study, we aimed to develop and validate a
DL algorithm for quantitative prediction of ACD from anterior
segment photographs that were captured by a smartphone. This
approach may provide clinicians with a mean to obtain ACD
measurements in settings where biometers and advanced imaging
tools are not readily available.

METHODS

Study Population
The Mojiang Myopia Progression Study (MMPS) is a
longitudinal school-based study that evaluates the onset and
progression of myopia in school-aged children in rural China.
Details of the methodology have been described previously
(14–17). In brief, this study was conducted in Mojiang, a small
country in Yunnan Province in the Southwestern part of China.
A total of 2,432 elementary students (response rate 90.2%) and
2,346 middle school students (response rate 93.5%) were enrolled
in theMMPS. The baseline examinations were conducted in 2016
and the MMPS participants were followed annually. The data
used for the present study were from 2,195 elementary students
participated in the 5-year follow up visit in 2020 (response
rate 99.1%).

All study procedures were performed in accordance with
the tenets of the Declaration of Helsinki. Ethics approval
was obtained from the institutional review board of Kunming
Medical University. Written informed consent was obtained
from at least one parent or legal guardian of each participant.

Anterior Chamber Depth and Ocular
Biometry Measurements
Anterior chamber depth (ACD), from corneal endothelium
to lens surface, was obtained using the Lenstar LS 900
(Lenstar LS 900 R©, Haag-Streit AG, Switzerland), a non-invasive,
non-contact optical low-coherence reflectometry biometer.
Other ocular biometry measurements including central corneal
thickness (CCT), lens thickness (LT), axial length (AL),
keratometry readings of flattest and steepest meridian (K1 and
K2) were also recorded simultaneously. Refractive error was
measured before and after cycloplegia using an autorefractor
(RM-8000, Topcon Co., Tokyo, Japan). Supplementary Figure 1

shows the diagram of the human eye and the details of ocular
biometry measurements.
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FIGURE 1 | Smartphone mounted on slit lamp in use. Anterior segment

photographs were captured on study eyes using a smartphone (iPhone Xs,

Apple Inc, CA, USA) attached to a slit lamp. The smartphone was fixed on the

eyepiece with an adapter (Celestron 81035, Celestron Acquisition LLC, CA,

USA), making the camara lens in line with the eyepiece. We used the default

mode of iPhone camara with a minimal magnification (1 X) to take

photographs. A Bluetooth trigger for a one-tap image capture was fixed on the

joystick making the procedure of taking photographs quickly and stably.

Diffuse illumination of slit-lamp was used at 45-degree angle, with

magnification set at 16X.

Anterior Segment Photographs Acquisition
Anterior segment photographs were captured on study eyes
before cycloplegia using a smartphone (iPhone Xs, Apple Inc,
CA, USA) attached to a slit lamp (Figure 1). The smartphone was
fixed on the eyepiece with an adapter (Celestron 81035, Celestron
Acquisition LLC, CA, USA), making the camara lens in line with
the eyepiece. In this study, we captured the anterior segment
photographs with the light source from the slit lamp always to the
left of the pupil. We used the default mode of iPhone camara with
a minimal magnification (1 X) to take photographs. A Bluetooth
trigger for a one-tap image capture was fixed on the joystick
making the procedure of taking photographs quickly and stably.
Diffuse illumination of slit-lamp was used at 45-degree angle,
with magnification set at 16 X.

Inclusion and Exclusion Criteria
The MMPS participants who had both anterior segment
photographs and ACD measurements were included in this
study. Participants who had pronounced opacities of the central
cornea, and/or history of intraocular surgery were excluded.

Development of the Deep Learning
Algorithm
Neural Network Architecture
Residual Network 34 (ResNet-34) architecture was adopted
in this project (18). Several modifications were introduced to
ResNet-34 to finetune the model for ACD prediction. Firstly, the

fully connected layer was replaced by a linear layer with an output
channel of one for the regression task. No activation function was
added after the linear layer. Then, the first convolutional layer
was changed to one which takes in 4-channel images. Finally, the
adopted ResNet-34 ended with one fully connected layer.

Data Preprocessing and Augmentation
Preprocessing of images was done to clean image data for
model input (19). It decreases model training time and increases
the model’s inference speed. This process will not significantly
affect the model’s performance. OpenCV was used for image
pre-processing in the present study. The first step for image
pre-processing was cropping images to regions of interest
(ROI). The original color photographs were first converted into
grayscale ones and binarized using simple thresholding. Then the
bounding rectangle of foreground was identified and used as ROI
for the original color photographs. The images were resized to
(200,200,3) after cropping, and the brightness was increased by
20%. Histogram equalization was then used to balance the RGB
values of an image to enhance the contrast of images, followed
by a change of color space from 3-channel to 4-channel. The last
step was image normalization which scales the pixel values to zero
means and unit variances. Consequently, the final input to the
neural network is of size (200, 200, 4).

Image augmentation is a process to create new training
examples out of the existing training data (20). This helps to
adjust the current training data to generalize to other situations
which allows the model to learn from a wider array of situations.
To mitigate overfitting, data augmentation was used during
training stage. Specifically, random rotation from −35 to 35
degrees, randomly horizontal flip with a probability of 0.5 and
vertical flip with a probability of 0.1 were used.

Training Details and Evaluation Metrics
The dataset was randomly split into a training set and a test
set with a ratio of 4:1. The batch size used is 16. Random
shuffling was used for the training set. Pytorch (21), an open-
source software library for DL, was used in the training and
evaluation of the models. The model was trained on TITAN XP
powered GPU server. Transfer learning was adopted, the ResNet-
34 was loaded with a pretrained model which was trained on
the ImageNet dataset which consists of 1,000 classes of objects.
The modifications discussed in the architecture part were applied
after loading the pre-trained weights. Adam optimizer with a
learning rate of 4e-4 was used to train the model for 200 epochs
(22). Mean absolute error (MAE) was used as the loss function.

Heat Map Generation
In order to further interpreting how theDL algorithmworked, we
generated heat maps using Gradient-weighted Class Activation
Mapping (Grad-CAM) algorithm (23, 24). Highlighting the
important regions in hotter color, heat maps help visualization
of the regions that the algorithm uses for its prediction. After
normalizing the heat maps for individual images to [0, 1],
we obtained the averaged heat maps across all images for an
aggregated visualization.
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TABLE 1 | Demographic and clinical characteristics of the eyes in this study.

Training samples Testing samples Total

Number of individuals 1,667 417 2,084

Numbers of eyes 3,326 831 4,157

Age (years) 11.6 ± 0.53 11.7 ± 0.67 11.6 ± 0.56

Gender, % Female 46% 46% 46%

Anterior chamber

depth, mm

3.05 ± 0.25 3.06 ± 0.25 3.06 ± 0.26

Central corneal

thickness, mm

536.41 ± 30.91 536.61 ± 33.09 536.44 ± 31.34

Lens thickness, mm 3.45 ± 0.19 3.47 ± 0.19 3.45 ± 0.19

Axial length, mm 23.48 ± 0.93 23.57 ± 1.01 23.49 ± 0.94

Keratometry readings

of flattest meridian

42.79 ± 1.41 42.70 ± 1.46 42.77 ± 1.42

Keratometry readings

of steepest meridian

43.88 ±1.56 43.77 ± 1.59 43.86 ± 1.57

Data presented as mean ± SD.

Statistical Analysis
The Pearson’s correlation coefficient (r) was used to evaluate the
correlation between predicted and measured ACD values. The
MAE and coefficient of determination (R2) were used to evaluate
the accuracy of prediction from the algorithm. Bland-Altman
plot was used to illustrate the agreement between predicted and
measured ACD values.

RESULTS

Of the 4,390 eyes of the MMPS 2,195 participants, we excluded
233 eyes (118 without ACD values, 115 eyes without anterior
segment photographs or with poor image quality), and 4,157
eyes from 2,084 participants with both ACD values and anterior
segment photographs were used to build our DL algorithm. The
anterior segment photographs from these eyes were randomly
distributed into a training set (3,326 photographs) and test set
(831 photographs) based on a 4:1 ratio at individual level. The
demographic and clinical characteristics of the eyes are presented
in Table 1. The mean actual ACD in the training and test set were
3.05± 0.25mm and 3.06± 0.25mm, respectively.

The scatter plot presented in Figure 2 shows there was a good
correlation (r = 0.63, P < 0.001) between ACD predictions from
the DL algorithm and actual Lenstar measurements in the test set
of 831 eyes. Themean difference was−0.04± 0.20mm, andMAE
was 0.16 ± 0.13mm. If we set measurements less than 2.80mm
as shallow ACD (25, 26), the MAE of eyes with shallow ACD was
0.26 ± 0.16mm (n = 134), and the MAE of eyes with ACD ≥

2.80mm was 0.14± 0.11mm (n= 697).
Figure 3 shows the Bland-Altman plot evaluation of the

agreement between predicted and measured ACD in the test
samples (n = 831). The overall mean difference was −0.04 ±

0.20mm, with 95% limits of agreement ranging between −0.43
and 0.34mm. Nevertheless, there was a mild but statistically
significant proportional bias (r = 0.27, P < 0.001), suggesting
that at smaller range of ACD the predictions tend to give higher

FIGURE 2 | Scatterplot illustrating the relationship between deep

learning-predicted and actual anterior chamber depth (ACD) measurements

from Lenstar (n = 831, r = 0.63, P < 0.001).

FIGURE 3 | Bland-Altman plots illustrating agreement between deep

learning-predicted and actual anterior chamber depth (ACD) measurements

from Lenstar (n = 831).

values than measured ACD, while at larger range of ACD, the
predictions trend to give lower values than measured ACD.

Figure 4 shows examples of smartphone-obtained anterior
segment photograph, the corresponding heatmap of the present
neural network and the averaged heatmap crossed all images (n
= 831). The averaged heatmap shows that the algorithm utilized
regions of the central cornea in making its prediction.

DISCUSSION

In this study, we developed a novel DL algorithm to
quantitatively predict ACD through smartphone-acquired
anterior segment photographs. The predicted ACD showed
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FIGURE 4 | Averaged heatmap shows the regions of the anterior segment photograph that were most important for the deep learning algorithm predictions in test

set. Hotter colors (reds) indicate higher activity while cooler colors (blues) represent lower activity. (A) an example of original anterior segment photograph (right eye)

obtained by iPhone Xs; (B) the heatmap of the corresponding photograph; (C) an example of original anterior segment photograph (left eye); (D) the heatmap of the

corresponding photograph; (E) averaged heat map crossed all images (n = 831).

good agreement with the measured ACD values. To our
knowledge, this may be the first investigation to demonstrate
that a DL algorithm can potentially predict the ACD through
smartphone-acquired anterior segment photographs.

Our novel DL algorithm successfully predicted ACD through
smartphone captured anterior segment photographs. The MAE
of the predictions in test set was only 0.16 ± 0.13mm (RMSE =

0.20mm). The MAE of eyes with shallow ACD was bigger than
the MAE of eyes with ACD ≥ 2.80mm. That may be because
of the number of eyes with ACD < 2.80mm in training set
is only 498, much less than the number of eyes with ACD ≥

2.80mm (n = 2,828). The average difference of measured and
predicated ACD was −0.04 ± 0.20mm (P = 0.000). However,
this difference was significant statistically but not clinically
as the difference was small. We captured two photographs
for 50 eyes for assessing repeatability and reproducibility. For
group one, the MAE of predicted ACD was 0.14 ± 0.09mm,
with 95% limits of agreement ranging between −0.36 and
0.16mm, repeatability coefficient was 0.33mm. For group two,
the MAE was 0.14 ± 0.10mm, with 95% limits of agreement
ranging between −0.34 and 0.07mm, repeatability coefficient
was 0.33mm. The MAE and repeatability coefficient were similar
when ACD were predicted using two different photographs.
Supplementary Figure 2 showed the Bland-Altman plot of
the predicted ACD from group one and group two. The
mean difference was −0.04 ± 0.09mm, with 95% limits of
agreement ranging between −0.20 and 0.13mm. For the 50
eyes photographed twice, the distribution of predicted ACD was
showed in Supplementary Figure 3.

A previous study that utilized machine learning to predict
ACD from slit lamp images captured with a smartphone also
reported a RMSE of 0.20mm (11). However, in that study,
the images used for prediction required manual maneuvering
of a narrow slit (0.1mm) which was subjective and time-
consuming. In contrast, our study involved the development
of a deep-learning algorithm that was trained on a much
larger dataset and without manual maneuvering. Furthermore,
our anterior segment photographs were captured under diffuse
illumination, which suggested a two-dimensional image without
slit illumination can be used to predict a third dimensional
parameter, the ACD.

The overall mean difference between measured and predicted
ACD in test set was −0.04 ± 0.20mm, with 95% limits

of agreement of −0.43 to 0.34mm. Study focused on the
repeatability of Lenstar showed that for ACD measurement,
mean standard deviation between three consecutives
measurements was 0.029, coefficient of variation was 1.06%
and intraclass correlation coefficient was 0.991 (27). A previous
study evaluated the agreement of ACD (ACD measurement
were all from corneal epithelium to the anterior crystalline lens)
measured by different instruments, including partial coherence
laser interferometry (IOLMaster), scanning peripheral anterior
chamber analyzer (SPAC) and anterior segment OCT (AS-OCT)
(28). The 95% limits-of-agreement was: AS-OCT vs SPAC,−0.44
to 0.51mm; AS-OCT vs. IOLMaster: −0.37 to 0.25mm; SPAC
vs. IOLMaster:−0.57 to 0.50mm (28). Another study found that
the 95% limits of agreement of ACD between Lenstar and IOL
Master in eyes with cataract was −0.12 to 0.38mm, in eyes with
clear lens was −0.33 to 0.63mm (29). The extent of agreements
reported by the authors was similar to ours. Therefore, the mean
difference between measured and predicted ACD is unlikely to
be clinically significant. Although there was a proportional bias
of our results, similar trends were observed between different
methods for ACD measurement (28).

The generated saliency maps showed that the algorithm
mainly utilized central corneal region in making its prediction,
which was similar to another DL algorithm that predicted shallow
ACD (binary classification) from Scheimpflug images (30). The
hottest region was congruent with the actual measurement site of
ACD which is centered on the cornea, along the visual axis from
the corneal endothelium to the anterior crystalline lens capsule.
Iris also played a role in making predictions. We speculate that
iris was an important panel for the algorithm, like clinicians
evaluate the anterior chamber in real world. The upper and
right side of the iris were less used by the algorithm, that was
because of the eyelid and reflex of the light make these parts less
important. Randomly selected heatmaps with MAE ≤ 0.2mm
are presented in Supplementary Figure 4. We also investigated
those images with poor predictions. The poor predictions were
mainly attributed to dilated pupils. Randomly selected heatmaps
with MAE > 0.2mm are presented in Supplementary Figure 5.
In the present study, we only excluded those participants
with pronounced opacities of the central cornea, and/or with
intraocular surgery history. Images with small eyelids, obscured
by eyelashes, and dilated pupils were all included, to make the
dataset closer to the real-word dataset, and to make the algorithm
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more generalizable. The MAE of the predictions with dilated
pupil (n = 47) and un-dilated pupil (n = 784) was 0.22 ±

0.15mm and 0.15± 0.12mm, respectively.
Anterior chamber depth has been demonstrated to be a

screening tool for angle closure glaucoma (6–8). Devereux et al.
reported that, using a screening cutoff of < 2.22mm, ACD got a
sensitivity of 85% and specificity of 84% for detecting occludable
angles (8). A recent study presented a higher sensitivity of
90.2% and specificity of 85.2% using the same cutoff value
for distinguishing PACD from normal eyes (6). Angle closure
glaucoma is an important public health problem in Asians
due to its higher rate of visual morbidity. Most patients with
PACG are asymptomatic, up to 64.7% of PACG cases are
undetected in Asia (31). China accounts for 48% of angle closure
glaucoma worldwide (2), and 90% of the cases with primary angle
closure in rural China are undiagnosed (32). Gonioscopy is the
current gold standard of anterior chamber angle examination.
However, gonioscopy is time consuming and requires technical
expertise, which limits its feasibility in large-scale population-
based screening (33). ASOCT and ultrasound biomicroscopy
(UBM) can help to assess the anterior chamber angle, but they are
bulky, expensive and need experienced technicians. The flashlight
test and van Herick’s test are simple to operate. However, these
two methods were reported to be of limited use as screening tests
for detecting occludable angles (34).

Smartphones are increasingly used in clinical settings to
provide high quality images (35, 36). Coupled with DL
algorithms, smartphones may be used for detecting ocular
diseases. For example, smartphone based anterior segment
photographs and retinal images for cataract grading, glaucoma
and diabetic retinopathy detection have been reported (12, 36,
37). There are plenty of advantages for smartphones used in
clinics. Since smartphones are widely available, they provide
a low-cost and universally accessible method to capture high
resolution ocular images. Smartphones usually have a large
data storage capacity and do not require extra computers for
image storage or processing. In addition, the images captured by
smartphones can be easily transmitted wirelessly for consultation
in real time. These advantages make smartphone a useful tool
in clinics and can bring great benefits for tele-consultation
or screenings in remote areas. A previous study successfully
developed a machine learning system using anterior segment
images captured by digital camera under visible wavelength
to diagnose anterior segment eye abnormalities (38). It is
conceivable that eye images captured under nature light by
smartphone without extra equipment could provide many useful
information for ophthalmologist with the help of artificial
intelligence. As such it may be used by a wide potential audience
and locations, especially in rural area and developing countries.

There are several strengths in the present proof-of-concept
study. First, this may be the first study to use DL to quantitatively
predict ACD through smartphone-acquired anterior segment
photographs. The generated saliency maps showed that the
algorithm mainly utilized central corneal region in making its
prediction, which was congruent with the actual measurement
site of ACD. Secondly, by usingmerely a smartphone we obtained
high quality of anterior segment photographs. Simple instrument
makes more cost effective and sustainable. These images were

captured under diffuse illumination without slit beam, which
makes the procedure much easier and reproduceable.

There are also some limitations in our study. Participants were
all from a school-based cohort study aged 11–15 years old, and
there were no PACD patient included. Hence, further training of
the algorithm involving eyes of older participants, and PACD eyes
are needed. Nevertheless, the present study is a proof-of-concept
study, which demonstrated that smartphone-acquired anterior
segment images can potentially be used to estimate ACD via DL.

CONCLUSION

In conclusion, we developed a novel method to estimate ACD
using DL algorithm based on smartphone-acquired anterior
segment photographs. Further refinement and training involving
older participants PACD eyes are still needed, followed up further
external validations. This is particularly important in China
where the risk of PACG is high and often undetected, leading to
increased risk of vision impairment.
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Supplementary Figure 1 | Diagram of the human eye. CCT, central corneal

thickness; ACD, anterior chamber depth (back of cornea to front of lens); LT, lens

thickness; AL, axial length.

Supplementary Figure 2 | Bland-Altman plots illustrating agreement between the

predicted ACD from one eye using two anterior segment photographs (n = 50).

Supplementary Figure 3 | Overlapping histogram of the measurements. For the

50 eyes photographed twice, the distribution of predicted anterior chamber depth

overlapped well.

Supplementary Figure 4 | Randomly selected heatmaps with MAE ≤ 0.2mm.

The regions of the central corneal were most important for the deep learning

algorithm making predictions. RE, Right eye; LE, Left eye; GT, Ground truth; Pred,

prediction (mm).

Supplementary Figure 5 | Randomly selected heatmaps with MAE > 0.2mm.

The hottest regions were not the central corneal. Most of them had mid-dilated

pupils. RE, Right eye; LE, Left eye; GT, Ground truth; Pred, prediction (mm).
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