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ABSTRACT
Biologically distinct subtypes of metastatic breast
cancer (MBC) have been defined by multiple efforts in
recent years, showing broad heterogeneity at the
molecular level of disease. Throughout this endeavour,
oncogenic drivers within MBC were identified as
potential therapeutic targets. With recent results from
clinical trials targeting these well-known cancer-
promoting pathways, this review is trying to elucidate
as well as summarise current new therapeutic aspects
in MBC and shed light on translational aspects within
this entity.

INTRODUCTION
The biological heterogeneity of breast cancer
(BC) has been defined by various efforts in
recent years, taking into account the distinct
molecular and histopathological features of
these tumours. Luminal-type and basal-like
BCs have been shown to be completely differ-
ent diseases at the molecular level, as well as
in terms of the course of the disease, patient
prognosis and survival.1–6 While the luminal
subtype, characterised by the expression of
estrogen and/or progesterone receptors
(ER/PR), shows well-known characteristics of
adenocarcinoma, basal-like phenotypes exhibit
a wider and more continuous spectrum of
genomic evolution and have been linked to
biological features of other malignancies.3

With recent results from clinical trials targeting
well-known cancer-promoting pathways, this
review is seeking to elucidate and summarise
current new therapeutic aspects in metastatic
BC (MBC) and shed light on translational
aspects within this entity.

METHODS
Articles from peer-reviewed journals as well
as published abstracts were searched for
using NCBIs ‘PubMed’ as well as ESMO,
ASCO, AACR and SABCS online library
databases as of 22 March 2016. Keywords
used were ‘metastatic breast cancer’,

‘HER2’, ‘luminal breast cancer’, ‘triple-
negative’, ‘translational’, ‘hormone’, ‘metas-
tases’, ‘brain’, ‘bone’ and names of medica-
tions as well as gene and protein symbols of
therapeutic targets dealt with in this
manuscript.

HER2-overexpressing advanced BC
Targeted therapy in MBC consists of
approaches where well-established or novel
pathways are being targeted with the aim of
prolonged disease control.7–9 Besides the ER,
targeting HER2 is today regarded as the best
established targeted treatment approach in
MBC. HER2 is a transmembrane growth
factor receptor of the ERBB family; HER2
protein overexpression and/or HER2/neu
gene amplification result in an aggressive BC
phenotype with high recurrence rates and
poor outcome.10 Of note, before the avail-
ability of targeted treatment options, median
overall survival (OS) in HER2-positive MBC
was low at around 20 months.11 Addition of
trastuzumab, a humanised monoclonal anti-
body targeting the extracellular domain of
HER2, to chemotherapy significantly pro-
longed progression-free survival (PFS) and
OS over chemotherapy alone.11 12 Still, sec-
ondary resistance to trastuzumab will eventu-
ally evolve and patients initially responding to
HER2-targeted therapy will usually progress
within 18 months,13 indicating the need for
further alternative treatment approaches.
In the phase III trial CLEOPATRA, the

classic first-line treatment standard of doce-
taxel plus trastuzumab was compared with a
triple therapy of docetaxel, trastuzumab plus
pertuzumab, a humanised monoclonal anti-
body targeting the dimerisation domain of
HER2, thereby preventing receptor homodi-
merisation and heterodimerisation and con-
sequently activation of HER2 signalling.14 At
a median follow-up of 50 months, median
OS in the pertuzumab group was 56.5
months.15 This number indicates the
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impressive outcome improvements achievable in
HER2-positive MBC with today’s therapeutic options.
Trastuzumab emtansine (TDM1) is another novel

approach for targeting HER2. DM1 is a potent micro-
tubule agent bound to trastuzumab via a molecular
linker. When the antibody binds to HER2, the cell inter-
nalises the antigen-antibody complex; consequently, tras-
tuzumab is degraded in the lysosome and DM1 is set
free within the cancer cell. TDM1 was shown to be
superior to lapatinib, a small molecule tyrosine kinase
inhibitor (TKI) of HER2 and epidermal growth factor
receptor (EGFR), plus capecitabine in terms of activity
as well as tolerability in the phase III trial EMILIA with
PFS 9.6 vs 6.4 months (HR 0.65; 95% CI 0.55 to 0.77).16

Most patients received TDM1 as second-line therapy but
16% of patients had progressed on or within 6 months
after the end of adjuvant trastuzumab; this lead to the
approval of TDM1 as first-line treatment standard in
earlier relapse. Another phase III study, TH3RESA, ran-
domised pretreated patients to TDM1 or treatment by
investigator’s choice. Since approximately 80% of
patients in the control arm received trastuzumab-based
therapy, TH3RESA is considered a comparison of TDM1
to trastuzumab treatment in multiple lines. In this study,
TDM1 improved PFS from 3.3 to 6.2 months (HR 0.53;
95% CI 0.42 to 0.66).17 In summary, these results
suggest that despite considerable costs, TDM1 is indeed
a valuable novel treatment option.
Besides, other antibody-drug conjugates targeting

HER2 are currently being tested in clinical trials and
already showed favourable safety profiles, such as
MM-302. Owing to the use of small amounts of its active
agent doxorubicin, it caused only minor haematological
toxicity when used as a monotherapy or in combination
with trastuzumab, as well as with trastuzumab and cyclo-
phosphamide in a phase I study. It is currently being
evaluated in the randomised phase II HERMIONE trial
in patients with anthracycline naïve HER2-positive
locally advanced or MBC previously treated with trastu-
zumab, pertuzumab and TDM1.18

Lapatinib was the second HER2-targeted drug to
become available after trastuzumab. This first-
generation, reversible TKI inhibits the tyrosine-kinase
domains of HER2 as well as EGFR. In a prospective ran-
domised phase III trial, addition of lapatinib to capecita-
bine improved PFS over chemotherapy alone in
pretreated patients (median PFS 8.4 vs 4.4 months; HR
0.47; 95% CI 0.32 to 0.68; p<0.001) while OS was not
changed.19 This was the first phase III study to demon-
strate that continuing anti-HER2 therapy in combination
with chemotherapy in patients who had virtually all
received prior trastuzumab was superior to chemother-
apy alone. Owing to relevant side effects, however, lapati-
nib plus capecitabine was rarely used as second-line
treatment. Often physicians continued their patients on
trastuzumab in multiple treatment lines after a switch of
the cytotoxic combination partner; indeed, several
phase II trials suggested that this was a feasible

treatment approach.20 21 Before second-generation anti-
bodies became available, this strategy was so common
that the only prospective randomised phase III trial
investigating trastuzumab treatment in multiple lines
had to be closed early due to slow accrual after the
inclusion of only 156 patients.22 Similar to the lapatinib
study, continuation of anti-HER2 treatment resulted in
longer PFS (8.2 vs 5.6 months; HR 0.69; 95% CI 0.48 to
0.97; p=0.0338) while once again no difference in terms
of OS was observed.
The concept of vertical dual blockade of HER2 with a

combination of trastuzumab plus lapatinib has recently
led to renewed interest in HER2 TKIs. In a heavily pre-
treated population, the combination of trastuzumab with
lapatinib improved OS over lapatinib alone (14 vs
9.5 months; HR 0.74; 95% CI 0.57 to 0.97; p=0.026).23

Of note, this effect was more pronounced in the
HER2-positive/hormone receptor-negative subgroup,
eventually leading to European Medicines Agency
approval of vertical dual blockade in this subset.
Further, recent studies have focused on irreversible

second-generation TKIs such as neratinib and afatinib
with potentially improved activity. Afatinib yielded a
partial response rate of 11% and stable disease rate of
37% in a phase II trial of 41 patients progressing on
prior trastuzumab treatment (BIBW 2992 trial).24

Median PFS was 15.1 weeks and a median OS of
61.0 weeks was reported. These results led to the initi-
ation of the phase III LUX-Breast 1 trial comparing afati-
nib plus vinorelbine to trastuzumab plus vinorelbine in
patients with HER2-positive MBC progressing on prior
trastuzumab-based treatment. A similar outcome in
terms of PFS was observed in both groups; OS, however,
was shorter in the afatinib arm.25 This effect was most
likely caused by higher rates of dose reductions and
treatment discontinuations in patients receiving afatinib.
Indeed, toxicity issues—especially diarrhoea—remain a
concern with first-generation and second-generation
TKIs inhibiting EGFR and HER2, but may be less so with
HER2-specific third-generation TKIs such as ONT-380.26

The lack of benefit of afatinib over standard treatment
options was further substantiated by results of a rando-
mised phase II trial of afatinib versus afatinib plus vinorel-
bine versus treatment by investigators’ choice in patients
with progressive brain metastases after trastuzumab-based
and/or lapatinib-based therapy (LUX-Breast 3 trial). In
this study including 121 patients, both regimen containing
afatinib did not yield gains in terms of clinical benefit rate
at 12 weeks (which was defined as primary study end
point) as well as PFS or OS. Further, afatinib-containing
treatments were less well tolerated.27

Another irreversible TKI, neratinib, has shown promis-
ing objective response rates (ORR) of up to 56% as
single agent in patients with HER2-overexpressing
advanced BC in an open-label phase II trial; PFS in this
study was 39.6 weeks.28 However, the benefit was more
substantial in patients without prior trastuzumab treat-
ment compared with those with prior treatment (ORR
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24%, PFS 22.3 weeks), suggesting that trastuzumab resist-
ance may not be fully overcome by neratinib. When
neratinib was directly compared with the former second-
line standard of lapatinib plus capecitabine in a rando-
mised phase II trial, it failed to show benefit in terms of
PFS and OS (PFS 4.5 months on neratinib vs
6.8 months; not significant; and OS 19.7 months on ner-
atinib vs 23.6 months; not significant).29 While this trial
could not establish the superiority of irreversible TKIs
over lapatinib plus capecitabine, single-agent activity of
neratinib was confirmed; still, the exact future place of
neratinib in the continuum of anti-HER2 therapy awaits
further clarification. A phase I basket study of 60
patients with HER2-overexpressing carcinomas was able
to shed light on a potential future avenue for the devel-
opment of neratinib; in this trial, neratinib was com-
bined with temsirolimus in order to achieve inhibition
of HER2-signalling by the additional abolishment of one
of its major downstream effector kinases, mammalian
target of rapamycin (mTOR). This combination pro-
duced responses in 2 of the 15 patients (13.3%) with
MBC resistant to trastuzumab; on the downside, this
dual blockade led to relevant treatment-related toxicity:
diarrhoea was observed in 93% of all patients and also
held responsible for 4 of the 10 dose-limiting toxicities
(DLTs); dose-limiting metabolic alterations were
observed as well.30 A subsequent phase I/II trial of nera-
tinib plus temsirolimus in HER2-positive MBC31

reported a partial response rate of 30% for patients
treated at both the maximum tolerable dose (MTD) and
dose escalation (DE) cohorts (median duration of
response 3.0 and 7.4 months, respectively). While con-
cerns regarding tolerability remain, these findings again
strongly supported a model of ongoing HER2 pathway
addiction even in MBC resistant to trastuzumab. Of
note, neratinib may further play a role in maintenance
therapy after adjuvant chemotherapy and trastuzumab
treatment. In a randomised phase III trial in the afore-
mentioned setting, neratinib led to a significant 2.3%
increase in disease-free survival when compared with
placebo (93.9% vs 91.6%; HR 0.67; p=0.009). Again, a
high rate of grade 3 diarrhoea (40%) was observed.32

The question whether the addition of mTOR inhibi-
tors to anti-HER2 treatment might reverse resistance
against HER2-targeted therapy was also stressed in the
BOLERO-3 trial.33 34 Patients with advanced taxane-
pretreated BC who had advanced on prior trastuzumab
therapy were treated with vinorelbine plus trastuzumab
with or without everolimus. The primary end point
(PFS) was met, indicating a moderate prolongation of
median PFS from 5.78 months (95% CI 5.49 to 6.90) to
7.00 months (95% CI 6.74 to 8.18) with the addition of
everolimus (HR 0.78; 95% CI 0.65 to 0.95; p=0.0067).
Grade 3/4 side effects observed more commonly in the
everolimus group included neutropenia (73%), leuco-
penia (38%), anaemia (19%), febrile neutropenia (16%),
stomatitis (13%) and fatigue (12%). Serious adverse
events were reported in 42% of patients in the everolimus

arm as compared with 20% in the placebo group. On the
basis of these results, the authors stated that the clinical
benefit observed needs to be balanced in the context of
the toxicity profile in an MBC population. Owing to this
fact, mTOR inhibitors have not yet found their way into
the clinical routine in HER2-positive MBC.
Finally, novel antibodies may also help in optimising

outcome in patients with HER2-positive MBC.
Margetuximab is a chimeric monoclonal antibody with
optimised Fcγ fraction in order to increase antibody-
dependent cell-mediated cytotoxicity activity. In a phase
I trial, 52 patients with different HER2-positive malig-
nancies without any further standard therapy available
were included.35 In the BC subset consisting of 19 parti-
cipants, a reduction in tumour size was observed in
57.9% of patients. Treatment was generally well toler-
ated, with grade I/II fever and nausea as well as diar-
rhoea and fatigue being the main toxicities.
Heterodimers of HER2 and HER3 are known to

be the most potent inducers of HER2 signalling.36

Furthermore, upregulation of HER3 was also described
as a relevant mechanism of resistance to treatment with
trastuzumab and lapatinib.37 38 Recently, it was shown
that co-expression of HER2 and HER3 was associated
with shorter OS in patients with HER2-positive MBC
treated with trastuzumab in multiple lines.39 Therefore,
it appears reasonable to examine strategies of targeting
HER3 in combination with HER2. In a phase I trial,
patritumab was added to trastuzumab plus paclitaxel in
18 patients with HER2-positive MBC who had received at
least one prior treatment line for MBC; this fully human
monoclonal antibody targets HER3, blocks receptor–
ligand interaction and receptor activation and induces
HER3 downregulation. Tolerability of this approach was
excellent and no DLTs were observed with diarrhoea
being the main side effect; the authors reported a rela-
tively high response rate of 38.9%, suggesting that this
approach should be investigated further in future clin-
ical trials.40

Luminal BC
Luminal BC is defined by the expression of the ER and
progesterone receptor; the vast majority of all BC cases
belong to this subtype. Hormone-dependent cancer
growth allows for targeted therapy with antihormonal
agents. In this context, surgical oophorectomy, first
described by Beatson,41 is regarded as the first systemic
anticancer therapy and the prototype of the concept of
biologically targeted treatment. The former adjuvant
treatment standard of tamoxifen administered for
5 years reduces recurrence risk by half and BC mortality
by one-third.42 In the metastatic setting, sequential
administration of different non-cross resistant classes of
antihormonal therapy allows for delaying initiation of
cytotoxic chemotherapy.43 Still, even in highly hormone
expressing tumours, resistance to endocrine therapy will
eventually arise. Several factors add to secondary resist-
ance: CCND1 amplification, ESR1 mutation and
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activation of growth factor signalling pathways.44–47 The
latter results in ER activation even in the absence of
estrogen via the activation of signalling molecules down-
stream of receptor tyrosine kinases (RTKs); phosphati-
dyl-inositol-3-kinase (PI3K) and mTOR have been
identified as central downstream molecules in this cross-
talk leading to the testing of mTOR inhibitors such as
everolimus in combination with endocrine therapy in
clinical trials.
In the prospective randomised placebo-controlled trial

BOLERO-2, postmenopausal patients with ER-positive
advanced BC progressing on or after prior therapy with
a non-steroidal aromatase inhibitor (AI) were rando-
mised to receive everolimus or placebo in combination
with the steroidal AI exemestane. BOLERO-2 was able to
show a clear-cut benefit in terms of PFS (7.4 vs
3.2 months; HR 0.34; 95% CI 0.36 to 0.53)48 for patients
in the everolimus group. This supported findings from
the randomised phase II trial TAMRAD49 and the
HORIZON50 trials; on the downside, a significant OS
advantage could not be shown (BOLERO-2: OS HR
0.89; 31.0 vs 26.6 months, p=0.14) and a relevant
increase in toxicity was observed as well.
PIK3CA, a gene coding for the catalytic p110α subunit

of PI3K, is among the most commonly mutated genes in
BC51; mutations have been linked to endocrine resist-
ance by activating the aforementioned crosstalk between
ER and RTKs, thus suggesting to serve as a predictive
marker for response of drugs targeting the PI3K/mTOR
pathway. Indeed, activity of mTOR inhibitors might be
restricted to patients harbouring alterations in the PI3K/
AKT/mTOR pathway, such as PI3KCA mutations or PTEN
deletions.52 While this notion is supported by preclinical
data53 biological subprotocols of BOLERO-2 and
TAMRAD suggested that, in contrast to expectation,
patients without activating alterations in the PI3K/mTOR
pathway derived the greatest benefit from treatment.54 55

The quest for predictive markers for novel targeted
therapies in luminal BC is therefore ongoing and inter-
est in this field has recently focused on PI3K-inhibitors.
While it appears reasonable to assume that
PI3K-inhibitors may be most active in tumours harbour-
ing activating PIK3CA mutations, no such clinical correl-
ation was proven henceforth. While the addition of
BKM120 (buparlisib, a pan-class PI3K inhibitor)
increased activity of endocrine therapy over endocrine
therapy alone in the BELLE-2 trial, this effect was overall
modest (HR 0.78, PFS 6.9 vs 5.0 months, p<0.001) and
considerable toxicity was observed as well. Of note, in a
prospective substudy within BELLE-2, it was shown that
PIK3CA mutations in cell-free tumour DNA (ctDNA)
predicted further activity of buparlisib in this subset of
patients (HR 0.56, PFS 7.0 vs 3.2 months, p<0.001).56

One hypothesis suggests that PIK3CA mutations may
predict especially for activity of α-specific inhibitors of
the p110α catalytic subunit of class I PI3K, but clinical
proof of this concept is still awaited. If these data can be

verified, however, a predictive biomarker beyond the ER
will be available in luminal BC for the first time.
Cyclin-dependent kinase 4 and 6 (CDK 4/6) inhibi-

tors are a novel and promising treatment approach as
dysregulation of cell cycle control may cause resistance
to antihormonal treatment as well. Palbociclib, an irre-
versible inhibitor of CDK 4/6, when added to letrozole,
has been shown to prolong progression-free interval
over letrozole alone to a significant and clinically rele-
vant extent. In the prospective, randomised phase II
trial PALOMA-1/TRIO-18,57 median PFS at 29.6 months
median follow-up was prolonged from 10.2 to
20.1 months (HR 0.488; 95% CI 0.319 to 0.748; one-
sided p=0.0004) with the addition of palbociclib while
the tolerability profile was generally favourable. The
main toxicity consisted of neutropenia and was easily
manageable with dose delays and modifications. Again,
PALOMA-1 also aimed at identifying markers predictive
for treatment response. Patients were enrolled into two
separate sequential cohorts: cohort 1 (n=66) included
unselected patients with ER-positive, HER2-negative
tumours; cohort 2 (n=99) enrolled patients with luminal
cancers and CCDN1 amplification or p16 loss.
Disappointingly, however, results demonstrated that no
reliable response prediction is possible on the basis of
these markers.
Recently, the favourable results of PALOMA-1 were

duplicated in the prospective randomised phase III trial
PALOMA-3 where palbociclib was added to the pure
antiestrogen fulvestrant in pretreated patients. Again,
addition of palbociclib resulted in a clinically meaning-
ful improvement of median PFS from 3.8 to 9.2 months
(HR 0.422; 95% CI 0.318 to 0.560; p<0.000001); of note,
this study included premenopausal women as well and
results were consistent in this population. No new safety
signals were observed and main toxicity again consisted
of neutropenia (78.8% vs 3.5%), leucopenia (45.5% vs
4.1%), and fatigue (38.0% vs 26.7%). Still, febrile neu-
tropenia was rare and comparable in between both
groups with 0.6% each; furthermore, the discontinu-
ation rate due to adverse events was identical as well
(2.0% vs 1.7%).58 Several other trials of CDK 4/6 inhibi-
tors in BC are currently ongoing. Their results might
add to the notion that a hormone-independent treat-
ment modality is able to prolong the interval to develop-
ment of hormone refractory disease, as also seen in
other malignancies, such as prostate cancer.59

The role of immunotherapy and immune checkpoint
modulators in luminal BC has not been fully charac-
terised, although safety and comparably good response
rates have been reported after multiple lines of therapy
for patients suffering from programmed death ligand 1
(PD-L1)-overexpressing tumours in the KEYNOTE-028
trial.60 Further investigation in this field is greatly needed
to objectify biological activity and to find biomarkers
aside from PD-L1 that would point to responsiveness
towards immune checkpoint inhibition in this setting.
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Triple-negative BC (TNBC)
As indicated by the negative definition of being a BC
subtype without expression of the ER and progesterone
receptor as well as by the lack of HER2 protein overex-
pression or HER2/neu gene amplification, TNBC is the
disease subtype with the least clinically relevant attri-
butes. This lack of potential targets is clinically reflected
by the poor prognosis of patients with TNBC.
Chemotherapy remains the mainstay of TNBC therapy

and patients with pathological complete remission to
neoadjuvant chemotherapy are known to have a favour-
able prognosis despite the inherent aggressiveness of
this disease subtype.61 Patients with a less chemotherapy-
sensitive disease, on the other hand, have a markedly
poor prognosis with high recurrence rates and mortality.
This warrants the search for novel targets in TNBC.
Around 10% of all BC cases can be attributed to

BRCA-1/2 germline mutations with considerably higher
rates of BRCA-1 mutations in women with TNBC.62

Further, women with early-onset BC are at a higher risk
of carrying BRCA-1/2 mutations, with BRCA-1 being the
more frequently altered gene.63 64 Owing to consecutive
defects in genetic repair mechanisms such as homolo-
gous repair, BRCA-deficient cells must resort to other
error-prone options of double-strand brake repair such
as non-homologous end-joining (NHEJ) and base exci-
sion repair (BER).65 Both repair mechanisms depend
on PARP (poly-(ADP-ribose)-polymerases) as molecular
scaffolds for repairing double-strand breaks, making
PARP inhibitors either alone or in combination with
DNA-damaging agents a promising treatment option,
inducing synthetic lethality due to loss of PARP and
BRCA-1/2 functions.66

A single-arm multicentre phase II trial of olaparib as a
single agent was conducted in patients with different
malignancies harbouring BRCA-1/2 germline mutations;
62 patients with BC who had received at least three
prior treatment lines for MBC were included. In this
subset, there was an overall response rate of 12.9% (95%
CI 5.7% to 23.9%) with an additional 47% (95% CI
34.0% to 59.9%) of patients experiencing disease stabil-
isation for a minimum of 8 weeks.67 On the other hand,
activity of olaparib in an unselected TNBC population
was disappointing.68 Several trials of PARP inhibitors in
BC are currently ongoing; of special interest, the rando-
mised phase III trial OLYMPIA (NCT02032823) focuses
on the potential role of olaparib as adjuvant therapy in
patients with high-risk HER2-negative primary BC har-
bouring BRCA germline mutations. In this context, it
needs to be mentioned that, in contrast to germline
BRCA mutations, the predictive role of the more abun-
dant somatic BRCA mutations in BC remains elusive.69

The quest for novel therapeutic approaches has
brought to light various potential targets including RTKs
such as MET and FGF. MET and its ligand hepatocyte
growth factor are considered especially promising
targets, being overexpressed in up to 45% of BCs and
associated with poor clinical outcome, increased

propensity to metastatic spread, increased tumour cell
proliferation, high grading and a triple-negative pheno-
type. Of note, the MET-inhibitor cabozantinib has
recently shown activity in humanised patient-derived
xenograft models of TNBC.70 Furthermore, phase I clin-
ical trials have also suggested promising activity and rela-
tive safety of MET inhibitors such as cabozantinib and
foretinib, and results of later-phase clinical trials are
therefore awaited with great interest.71 72 On the other
side, targeting the extracellular domain of MET by
means of the monoclonal humanised antibody onartuzu-
mab has currently shown no benefit when added to
paclitaxel/bevacizumab; in this context, it needs to be
stated that most patients included in this study (88%)
had only weak MET expression as defined by immuno-
histochemistry,73 raising the question whether this study
was indeed conducted in the right population.
FGF was shown to play a significant role in up to 10%

of patients with BC,74 facilitating epithelial to mesenchy-
mal transition and hence metastatic spread.
Subsequently, clinical trials of TKIs targeting selected
(AZD4547) or multiple subforms of fibroblast growth
factor receptor (FGFR) (dovitinib,75 lucitanib76 or ninte-
danib77) were initiated; of note, the latter showed prom-
ising activity when combined with paclitaxel in a
neoadjuvant setting. The rationale for the approach of
FGFR-targeted therapy is to delay mesenchymal dediffer-
entiation and hence resistance to chemotherapy and tar-
geted therapy that had originally been tailored for
epithelial tumours. Although activity was also seen in
luminal tumours,74 75 recent trials using FGFR inhibitors
were focusing on the triple-negative setting because of
inherent toxicity and missing alternative treatments in
TNBC.
As with other malignancies, immune checkpoint mod-

ulators are currently being investigated in TNBC,
although clinical development started with considerable
delay as compared with melanoma or lung cancer.
TNBC is characterised by high mutational load, which
again is apparently associated with high immunogen-
icity.78 This makes TNBC an attractive field for develop-
ing immunotherapy in BC.
First data on immunotherapy with immune check-

point modulators in TNBC were presented at the 2014
San Antonio Breast Cancer Symposium.79 Thirty-two
patients with pretreated MBC received pembrolizumab
(MK-3475), a humanised IgG4 monoclonal antibody tar-
geting PD-1 within the BC cohort of the phase 1b trial
KEYNOTE-012. Of note, approximately 45% had already
received at least three prior treatment lines for meta-
static disease. While the overall response rate was rela-
tively low at 18.5%, it is worth mentioning that responses
were observed even in heavily pretreated participants
and some patients seemed to experience prolonged
disease stabilisation. Another phase I trial tested
MDPL3280A, an anti-PD-L1 antibody, in 54 patients with
TNBC.80 Again, 85% of all patients had at least four
prior systemic therapy lines. In 21 evaluable patients, the
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authors observed a response rate of 19%, with two com-
plete responses and two partial responses; although it is
too early to draw any firm conclusions, it must be men-
tioned that these four patients had high expression of
pretreatment PD-L1. Recently, the phase Ib JAVELIN
study reported first results from the BC cohort.81 The
anti-PD-L1 antibody avelumab (MSB0010718C) yielded
an overall relative reponse (RR) of 4.8% in 168 unse-
lected patients with pretreated MBC. In patients with
TNBC (34.5%), RR was somewhat higher (8.6%) but
responses were seen across all subtypes with a median
duration of response of 28.7 weeks. When analysing
patients with tumours harbouring ≥10% PD-L1 expres-
sion, a response rate of 33% in the overall population
was observed; RR in patients with TNBC was a striking
44%. In summary, these data suggest that immunother-
apy is indeed a valuable addition to the therapeutic
armamentarium in TNBC (table 1).

CONCLUSION
Following the discovery of crucial molecular signalling
mechanisms, targeted drugs have been developed for
MBC. Although generally applicable as a concept, the
identification of a true driver pathway, the identification
of biomarkers for patient selection and, finally and most
importantly, the therapeutic efficacy of a specific tar-
geted approach has to be proven for each BC subtype
and each setting separately. An abundance of drugs is in
development which will challenge the scientific commu-
nity to develop appropriate models for preclinical as
well as clinical testing of these compounds but may even-
tually help in further improving patient outcomes.
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