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Abstract: Extracellular vesicles (EV) deliver cargoes such as nucleic acids, proteins, and lipids be-
tween cells and serve as an intercellular communicator. As it is revealed that most of the functions
associated to EVs are closely related to the immune response, the important role of EVs in inflamma-
tory diseases is emerging. EVs can be functionalized through EV surface engineering and endow
targeting moiety that allows for the target specificity for therapeutic applications in inflammatory
diseases. Moreover, engineered EVs are considered as promising nanoparticles to develop person-
alized therapeutic carriers. In this review, we highlight the role of EVs in various inflammatory
diseases, the application of EV as anti-inflammatory therapeutics, and the current state of the art in
EV engineering techniques.
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1. Introduction

Extracellular vesicles (EVs), including exosomes and microvesicles, are secreted by
almost all types of cells and carry genetic information between cells. Thus, EVs emerge
as important contributor in cell–cell signaling and communication between cells. These
EVs are characterized according to their size, with exosomes ranging from 50 to 100 nm
and microveisicles usually larger than 200 nm [1,2]. EVs are able to transfer variety
of cargos including proteins, lipids, antigen and RNAs such as miRNA, siRNA [2–4]. In
addition, it has been reported that chromosomal DNA is present in certain types of EVs [5,6].
EVs have been reported to have a variety of functions and, in particular, contribute to
antigen-specific and non-specific immune regulation to both immune and non-immune
cells in the form of immunomodulation [7,8]. They also likely play an important role in
modulating inflammatory diseases, such as cardiovascular disease, dermatitis, diabetes,
and arthritis [9,10].

With their given ability to modulate inflammation, EVs have tremendous potential as
therapeutic agents and biomarkers. Since EVs have several advantages such as biocompati-
bility, low toxicity, low immunogenicity, and membrane permeability, they are considered
as an ideal engineerable nanotherapeutic carrier for delivering various drugs and targeting
inflammation. In this review, we focus on the role of EVs in various inflammatory dis-
eases and their potential as therapeutic agents, and outline at the latest advances in EV
engineering technologies for targeting and modulating inflammation.
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2. The Role and Therapeutics Potential of Extracellular Vesicles in Inflammatory Diseases

Recent research on the utility of EVs in inflammatory diseases is being studied in two
broad fields. Currently, many researchers believe that EVs could be used as a potential
biomarker for a liquid biopsy, an alternative to a typical biopsy characterized by various
limitations, through studies of EV’s role in inflammatory diseases [11–13]. On the other
hand, it is suggested that EVs can also be utilized as therapeutic vehicles and targets for
the treatment and prevention of inflammatory diseases. This section will focus on the
role of EVs involved in the immune response, either directly or indirectly in inflammatory
diseases, and discuss the therapeutic utility of various EVs (Table 1).

Table 1. Summary of therapeutic potential of extracellular vesicles according to disease.

Disease EV Source Effective
Molecule Therapeutic Effect Target Cell References

Cardiovascular
diseases

Cardiovascular
diseases

Cardiosphere-
derived

cell
Y RNA fragment Increase the expression of

IL-10 Cardiomyocyte [14]

Cardiovascular
diseases Dendritic cell Not determined Activate CD4+T cell CD4+T cell [15]

Cardiovascular
diseases

Adipose-derived
stromal cells &

mesenchymal stem
cell

miR-93-5p &
miR-181a Suppress inflammation

Hypoxic H9c2 cell &
Peripheral blood
mononuclear cell

[16,17]

Cardiovascular
diseases

Human umbilical
cord mesenchymal

stem cell
PA-GHRPS peptide Protect from oxidative

stress H9C2 cell [18]

Skin inflammation

Cutaneous wound Human umbilical
cord blood miR-21-3p Promote wound healing

factors Human skin fibroblast [19]

Skin wound Human keratinocyte miR-21 Mediate a
pro-inflammatory response

Human foreskin
fibroblast [20]

Chronic diabetic
wound

Adipose-derived
mesenchymal stem

cell
Not determined Promoted proliferation and

angiogenesis
Human umbilical vein

endothelial cell [21]

Chronic diabetic
wound

Human umbilical
cord blood

mononuclear cell
miR-150-5p

Increase skin
neovascularization and

re-epithelization

Human umbilical vein
endothelial cell & normal
dermal human fibroblast

[22]

Autoimmune
diseases

RA IL-10-treated
dendritic cell Not determined Suppress inflammation Not determined [23]

RA Mesenchymal stem
cell Not determined

Inhibit T lymphocyte
proliferation & decrease the

percentage of CD4+ and
CD8+ T cell subsets

T lymphocyte & CD4+
and CD8+ T cell [24]

Autoimmune &
Neurodegenerative

diseases

IFNγ-treated
mesenchymal stem

cell

IFN-γ &
anti-inflammatory

RNAs

Decrease pro-inflammatory
cytokines & increase
immunosuppressive

cytokines

CD4+CD25+FOXP3+
regulatory T cells &

peripheral blood
mononuclear cell

[25]

EAE Gene-modified
dendritic cell TGF-β1

Decrease the frequency of
Th17 cell & inhibit
proteolipid protein

Th17 cell & CD4+T cell [26]

MS Engineered a murine
microglia cell IL-4 Increase anti-inflammatory

factors Macrophages & microglia [27].

T1D
Human

urine-derived
stem cell

Not determined Protect target cell from
apoptosis

Human podocyte cell &
tubular epithelial

cell
[28].

T1D Mesenchymal stem
cell Not determined

Inhibit activation of
antigen-presenting cell &
suppress development of

Th1 and Th17 cell

Not determined [29,30].
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Table 1. Cont.

Disease EV Source Effective
Molecule Therapeutic Effect Target Cell References

Respiratory system
inflammation

Lung injury Mesenchymal stem
cell miR-21-5p Inhibits ROS-induced

apoptotic pathway Epithelial cell [31]

Bacterial pneumonia Mesenchymal stem
cell Not determined Increase the phagocytotic

activity Neutrophil & monocyte [32]

Lung injury Mesenchymal stem
cell Not determined Polarize into M2

macrophages Alveolar macrophage [33]

Lung injury Mesenchymal stem
cell Not determined Reducing the

pro-inflammatory cytokines Regulatory T cell [34]

Lung fibrosis Mesenchymal stem
cell Not determined Suppress the maturation Dendritic cell [35]

Neuroinflammation

Ischemic stroke Mesenchymal stem
cell Not determined Decrease the cell infiltration Astrocyte & leukocyte [36]

Alzheimer’s disease Bone marrow stem
cell BACE1 siRNA Reduce the expression of

disease-related proteins Neuro2A cell [37]

Brain inflammation Embryonic stem cell Curcumin
Reduce inflammation and

N-methyl-d-aspartate
receptor expression

Not determined [38]

Brain inflammation EL-4 cell Curcumin Decrease the percentage of
CD45.2+IL-1β+ cell Not determined [39]

Neuroinflammation Dendritic cell miR-124 Alleviate cocaine-mediated
microglial activation Microglia [40]

2.1. Cardiovascular Diseases
2.1.1. Role of Extracellular Vesicles in Cardiovascular Diseases

Cardiovascular diseases (CVDs) are caused primarily by atherosclerosis, a chronic
inflammatory disease in which the vascular endothelium is constantly damaged, caus-
ing endothelial dysfunction [41,42]. EVs of various cells such as leukocytes, platelets,
smooth muscle cells and endothelial cells are involved in all stages of vascular inflamma-
tion, including endothelial activation, monocyte adhesion and transmigration, resulting
in atherosclerosis [9,43,44]. Indeed, it has been reported that EVs can induce the release
of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, from endothelial cells
or leukocytes [45,46]. In addition, there have been reports that platelet-derived EVs en-
hance leukocyte adhesion by delivering pro-inflammatory molecules such as caspase-3
and RANTES protein to endothelial cells [47,48]. In view of these findings, it has been
shown that circulating EV levels are associated with the occurrence of major cardiac dys-
function. Research on EVs as a prognostic and diagnostic biomarker is being actively
conducted by improved EV purification technology and accurate content quantitative
analysis technology.

2.1.2. Therapeutic Potential of Extracellular Vesicles for Cardiovascular Diseases

Inflammatory responses in CVDs have become a target for cardioprotection. After my-
ocardial infarction (MI), immune cells infiltrate the infarcted area to remove the wounded
tissue and participate in cardiac repair [43,44]. EVs affect cardiac repair by interacting with
these invasive immune cells and modulating the polarization of immune cells and their
secretion of cytokines. For example, cardiosphere-derived cell (CDC)-derived EVs loaded
with Y-RNA fragments improved cardiac repair by increasing the release of IL-10 in the
infarcted myocardium [14]. In addition, dendritic cell-derived EVs reduced the expression
of pro-inflammatory cytokines by activating CD4-positive T cells [15]. Furthermore, several
studies have been conducted to utilize EVs as drug delivery vehicles by overexpressing
miRs, such as miR-93 and miR-181, which are related to cardiac repair, through genetic
modification of the parental cells of EVs [16,17]. There have also been attempts to encapsu-
late EVs with functional peptide hydrogels in order to prolong EVs retention in the heart
more than free EVs [18]. Despite the promising perspective on CVD treatment, EV-based
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therapies still need further investigation from experimental data to clinical application.
Through a clear understanding of the mechanisms of EVs and controlling the balance
between the harmful and beneficial effects of EVs in the heart, EVs could be utilized as new
therapeutic tools to combat CVDs.

2.2. Skin Inflammation
2.2.1. Role of Extracellular Vesicles in Inflammatory Skin Disorders

Psoriasis, atopic dermatitis (AD), systemic lupus erythematosus (SLE), and chronic
wound healing are refractory chronic inflammatory skin diseases. Inflammatory skin disor-
ders that proceed through complex pathophysiological processes are also affected by EVs
derived from various cells. First, psoriasis is the most common chronic inflammatory skin
disease caused by abnormal differentiation and growth of keratinocytes and a large number
of infiltrated immune cells [49]. Many studies have shown that endothelial and platelet-
derived EVs are elevated in patients with psoriasis [50–52]. Recently, potential biomarkers
of psoriasis are being discovered through miRNA profiling analysis of plasma-derived
EVs [53,54]. AD, one of the eczemas, is another common chronic inflammatory skin disease.
Due to the findings that AD patients, characterized by dysfunction of the skin barrier, are
susceptible to Staphylococcus aureus, several studies have explored the correlation be-
tween Staphylococcus aureus-derived EVs and AD. For example, it has been reported that
Staphylococcus aureus-derived EVs increase the production of pro-inflammatory cytokines
in dermal fibroblasts, activate endothelial cells, and induce monocyte recruitment [55,56].
In addition, EVs derived from thymol-treated Staphylococcus aureus showed their therapeu-
tic potential for AD by alleviating skin lesions in AD [57]. SLE is a chronic inflammatory
disease caused by the production of various autoantibodies due to viral infection, hor-
monal abnormalities etc. It harms multiple organs, and skin is the second most commonly
affected organ [58]. According to an earlier reported study, the levels of EVs derived from
annexin V non-binding cells were high in SLE patients, and the levels of IgG, IgM, and
C1q in EVs were elevated [59,60]. A recent study reported that distinct subpopulations of
EVs may have different functions, and that there is an increase in mitochondrial-carrying
IgG-positive large EVs in SLE patients [61]. Wound healing usually occurs in four stages:
hemostasis, inflammation, proliferation and maturation. Chronic wound healing, which
is common among diabetics and older people, is mostly stuck in the inflammatory phase
and delayed wound healing. Numerous studies on EVs derived from various types of cells
involved in the wound healing process have been reported [62–64]. Studies have shown
that the expression level of miR-21 in EVs derived from keratinocytes in a mouse diabetes
model is remarkably low [65]. In addition, there have been studies showing that advanced
glycation end products induce human umbilical endothelial cells to secrete miR-106b-rich
EVs, thereby reducing collagen synthesis and delaying skin wound healing [66].

2.2.2. Therapeutic Potential of Extracellular Vesicles for Inflammatory Skin Disorders

In dermatology research, EVs are starting to show promising prospects as a therapeutic
for inflammatory skin diseases. Several studies have shown that EVs can be used as a
therapeutic agent for wound healing. Umbilical cord blood-derived EVs rich in miR-21
accelerated cutaneous wound healing by promoting angiogenesis of endothelial cells and
enhancing the migration and proliferation of fibroblasts [67]. Keratinocyte-derived EVs also
facilitated wound healing by promoting angiogenesis and regulating fibroblast function
through miR-21 [20]. Recently, a new approach to chronic inflammation treatment by
combining these therapeutic EVs and biomaterials is being studied. A study has been
reported to promote skin regeneration and accelerate wound healing through injectable
antibacterial hydrogels with EVs derived from mesenchymal stem cells (MSCs) [21]. In
addition, a study also reported that mononuclear cell-derived EVs carrying various miRs
with a light-activatable hydrogel could promote wound healing [22]. EVs, especially
exosomes, can also be used as drug delivery vehicles for inflammatory skin diseases.
Choi et al. incorporated srIκB (super-repressor IκB) protein into exosomes by optogenetic
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method to inhibit the action of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB), which plays a major role in activating inflammation [68]. However, these
drug loading and targeting techniques must be applied in appropriate situations to suit
their respective advantages, and standardization and deep understanding of techniques
are also required to apply them to clinical trial.

2.3. Autoimmune Diseases
2.3.1. Role of Extracellular Vesicles in Autoimmune Diseases

Autoimmune disease refers to diseases such as rheumatoid arthritis (RA), multiple
sclerosis (MS), and type 1 diabetes (T1D) caused by the self-immune system responding
to autoantigen. There are many reports that the level of circulating EV increases in an
autoimmune condition [69,70]. RA is a chronic inflammatory disorder that primarily affects
joints. The pathogenesis of RA may be related to EVs involved in many complex cell-to-cell
communications such as antigen presentation and inflammation [69,71]. It is known that
synovial cell-derived EVs activate surrounding cells to secrete pro-inflammatory mediators
for damaging cartilage [72]. MS, also known as encephalomyelitis, is an inflammatory
demyelinating disease in which the insulating covering of nerve cells in the central nervous
system is damaged by autoimmune activated immune cells [73,74]. It has been reported
that EVs can transfer brain antigens to periphery through the blood brain barrier (BBB) [75].
T1D, formerly referred to as juvenile diabetes, is a form of diabetes in which little or no
insulin is produced because autoimmunity destroys β cells of the islet of Langerhans in
the pancreas. Recent studies reported that EVs deliver autoantigen peptides involved in
the pathogenesis of T1D to insulin-producing β cells. A recent study reported that EVs
deliver autoantigen peptides involved in the pathogenesis of T1D to insulin-producing β

cells, inducing apoptosis and resulting in insulin secretion disorders.

2.3.2. Therapeutic Potential of Extracellular Vesicles for Autoimmune Diseases

Receptors for pro-inflammatory cytokines such as TNF-α have also been reported
to be found on the EV surface [76]. These findings suggest that EVs may act as an en-
dogenous mechanism for receptor transfer to poorly expressed recipient cells or for the
inhibition of inflammation by the release of decoy receptors. Thus, despite the major
pathogenic role of EVs in autoimmune diseases, many researchers are currently attempting
to utilize these bioparticles for therapeutic agents. Kim et al. reported that IL-10-treated
dendritic cell-derived EVs can suppress the onset of arthritis and reduce the severity of
established arthritis [23]. In addition, MSC-derived microparticles and exosomes both
play an immunosuppressive role in inflammatory arthritis, but exosomes were more ef-
fective [24]. Based on the role of EVs in MS, several groups have developed therapeutic
strategies that use the function of EVs. MSC-derived EVs stimulated with IFN-γ carried
anti-inflammatory factors and neuroprotective proteins and showed a good therapeutic
effect on MS [25]. EVs derived from dendritic cells overexpressing TGF-β1 have been
shown to reduce the expression of MS by inhibiting Th1 and Th17 differentiation and
promoting Treg production [26]. In addition, there has been a study to engineer a mouse
microglial cell line to secrete exosomes that carry the anti-inflammatory cytokine IL-4 and
overexpress the “eat me” signal MFG-E8 on its surface [27]. Zhuang also reduced neuroin-
flammation by loading curcumin or a signal transducer and activator of transcription 3
(Stat3) inhibitor into EVs and delivering them to microglia cells through a non-invasive
intranasal route [39]. In treating T1D, EVs also have shown therapeutic potential. A study
reported that EVs isolated from urine-derived stem cells can prevent kidney injury from
diabetes by inhibiting apoptosis of podocytes and promoting angiogenesis [28]. Also, Lee
et al. showed that MSC-derived EVs inhibit the activity of antigen-presenting cells and
suppress the development of T helper cells, thereby reducing the immune response in T1D
and uveitis animal models [29,30]. Collectively, with an understanding of the underlying
mechanisms and roles of EVs associated with each stage of the disease, EVs can be used as
a potential therapeutic tool for autoimmune diseases.
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2.4. Respiratory System Inflammation
2.4.1. Role of Extracellular Vesicles in Respiratory System Inflammation

Pulmonary inflammatory diseases can be categorized as either acute or chronic. Acute
inflammation entails vasodilation and recruitment of immune-modulating cells at the
site of the injury, while chronic inflammation is commonly characterized by fibrosis, a
scarring of the lung tissue from a persistent inflammation [77,78]. In an acute inflammatory
setting, like that of acute lung injury (ALI) and its more severe form (ARDS), inflammation
causes a profound immune response throughout the body and the increased level of pro-
inflammatory cytokines [79]. The role of EVs in reinforcing the process of inflammation
has been extensively studied both in vitro and in vivo. Secreted EVs enable intercellular
communication between damaged cells of lung tissue and alveolar macrophages or be-
tween alveolar macrophages [80,81]. Analysis of EVs from a bronchoalveolar fluid (BALF)
expressed a high level of inflammatory molecules, both major histocompatibility complex
(MHC) [82] and various miRNAs [83,84]. The contents and the main cellular source of
BALF-EVs, however, varied based on the conditions and the type of stimulus. Depending
on the mode of induction, the sterile method (toxicant, acid, or hypoxia) induced BALF-EVs
and those induced by the non-sterile method (LPS or bacterial infection) vary in the major
secreting cells as well as the interleukin profile within the BALF-EVs [85]. Each stimulus
can induce micro-vesicles with different contents, and therefore, activates different path-
ways in receiving cells [81]. BALF-EVs from controlled asthmatic patients showed different
miRNAs profiles control healthy subjects [83,86]. Exhaled breath condensates EVs from
COPD, asthma, healthy individuals showed different miRNA expression: some were down-
regulated specifically to asthmatic patients (miR-1248, miR1291, and let-7a), while some
were down-regulated in both COPD and asthmatic group (miR-328 and miR-21) [87,88]. In
such a way, miRNAs in the EVs can serve as diagnostic and prognostic biomarkers for lung
inflammation. For instance, let-7c and miR-125b from EVs are found to be inversely related
to ARDS severity [31]. Besides miRNA analysis, levels of circulating EV can serve as the
prognostic biomarkers of pulmonary inflammatory disease [89]. Increased circulating EVs
were affiliated with a lower risk of ARDS in critically ill patients, thus providing insights
into health and disease progression. The cellular origin of the EVs can also serve as the
biomarker for ALI/ARDS: ARDS is associated with increased leukocyte-derived EVs, while
ALI is associated with increased alveolar EVs [90].

2.4.2. Therapeutic Potential of Extracellular Vesicles in Respiratory System Inflammation

Mesenchymal stem cell therapy is regarded as a promising treatment option for both
chronic and acute lung diseases [91]. Its potential application in tissue repair and suppres-
sion of inflammation has gained great attention. Some pulmonary inflammatory diseases,
like ARDS/ALI, still have no treatment options [33]. MSC therapy showed promising
results for ARDS/ALI, which raised high excitement and led to the development of several
MSCs treatment agents [92]. In recent findings, immunomodulating effects of MSCs were
attributed to MSC-secreted EVs [32]. Having comparative immune suppressive effects to
MSC [34], MSC-EVs have several advantages over MSC as a therapeutic agent. MSC-EVs
have a higher safety profile and lower immunogenicity; MSC-EVs could also avoid several
unwanted side effects of MSC, such as immune rejection, clogging pulmonary capillaries,
and stem cell-induced tumor formation [90,93]. MSC-EVs modulate inflammation in multi-
ple pathways [35]. MSC-EVs protect epithelial cells from reactive oxidative species (ROS)
by delivering miRNA 21-5p, which inhibits ROS-induced apoptotic pathways [31]. Besides
anti-apoptotic miRNA, MSC-EVs contain anti-microbial proteins against Gram-negative
bacteria. MSC-EVs increase the phagocytotic activity of neutrophils and monocytes; hence,
bacterial pneumonia was less severe for the MSC-EVs treated group [32]. During the
inflammatory phase, MSC-EVs induce an increase in phagocytosis; however, in a setting
of resolution, MSC-EVs induce the alveolar macrophage polarization to M2 macrophages,
which are commonly associated with wound healing and anti-inflammatory cytokines [33].
Thus, levels of immunosuppressive cytokines, like IL-10 and TGF-beta, increased while



Int. J. Mol. Sci. 2021, 22, 5487 7 of 18

pro-inflammatory cytokines, like IL-8, IL-1 beta, and TNF-alpha, decreased [34]. Due to the
high concentration of anti-inflammatory cytokines, dendritic cell maturation is suppressed,
and it leads to additive anti-inflammatory effects [35]. For adaptive immunity, MSC-EVs
inhibit B cell proliferation and differentiation, and they promote the differentiation of T
helper cells to regulatory T cells, which causes an increase of anti-inflammatory cytokines
(TGF-beta, IL-10, and PEG2) and a decrease of pro-inflammatory cytokines (IFN-gamma,
TNF-a, and IL-1 beta) [34].

2.5. Neuroinflammation
2.5.1. Role of Extracellular Vesicles in Neuroinflammation

EVs have both beneficial and detrimental roles in neuroinflammation. EVs can fa-
cilitate neuroinflammation by spreading the inflammatory signals from damaged cells
to neighboring naïve neural cells [94]. The resident phagocytic cells within the brain,
microglial cells, are known to be the first to respond in terms of neuroinflammation [95].
Once activated, microglial cells multiply in numbers, and each releases a greater number
of ATP-filled EVs, sending danger signals across the brain. Thus, nearby microglial cells
and astrocytes are stimulated and produce secrete inflammatory signals which further
disseminate the inflammation. Besides worsening the inflammation via proinflammatory
contents, EVs play crucial roles in several neurodegenerative disease progression, and
consequently, lead to more pronounced chronic neuroinflammation [96]. Neural diseases,
such as Alzheimer’s disease, Parkinson’s disease, traumatic brain injury (TBI), and mul-
tiple sclerosis (MS), all involve neuroinflammation and loss of cognitive function as the
results [97]. The role of EVs as carriers of pathogenic proteins applies to Alzheimer’s
disease (AD), Parkinson’s disease (PD), Creutzfeldt–Jacob disease (CJD), and amyotrophic
lateral sclerosis (ALS) [98–100]. In the case of AD and PD, the main destructive effects are
induced by the spreading of the causative agents: αβ peptide and phosphorylated tau for
AD, α-Syn for PD; in the case of AD, ab protein aggregates formed extracellularly occurs
as the cells get rid of ab with EVs. Meanwhile, through EVs, prion protein (PrPc) is carried
across the brain, leading to overall damage [101]. Besides causing the conformational
change of protein, these EVs contained higher levels of mRNAs that are related to neural
disorders (miRs-29b, 128a, 146a) [97]. The specific interplay between neurodegenerative
disease and neuroinflammation needs to be further clarified, but the interdependent rela-
tionship between neuroinflammation and the progression of neurodegenerative disease is
confirmed in many recent studies [102–104]. As EVs move across the blood–brain barrier
(BBB), transport of inflammatory materials from the peripheral to the brain can induce
neuroinflammation, and in reverse, inflammation from the periphery can be the cause of
neuroinflammation as well. HIV and HCV, typified by chronic peripheral inflammation, are
associated with a higher rate of neurological problems. Individuals who suffered systemic
autoimmune disease, also, showed a higher rate of the neurological disorder compared to
healthy individuals [105].

2.5.2. Therapeutic Potential of Extracellular Vesicles in Neuroinflammation

EVs derived from MSC demonstrated its neuroprotective effects in several preclinical
models [106]. In the preterm brain injury model, MSC-EV therapy reduced the rate of a
histological sign of neuroinflammation and improved the inflammation-induced neuronal
degeneration [107]. In the ischemic stroke model of rats, intra-arterial injection of MSC-EV
has been shown to decrease the cell activation of astrocytes, microglia, and infiltrating
leukocytes [36]. MSC-EV therapy leads to suppression of pro-inflammatory cytokines, TNF-
α and IL-1b, and reduced secretion of anti-inflammatory cytokines, IL-10 and TGF-β [35].
Besides their neuroprotective effects, EVs have shown potential as drug delivery vehicles
due to their safety and targetability based on their origin [108]. Especially in neural disease,
crossing BBB remains a challenge for potential promising therapies. As intravenous EV
injection has been found to cross BBB and target brain cells [37], MSC-EV can serve as
the optimal carrier for various neuroinflammatory diseases. Curcumin-loaded EVs have
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demonstrated neuroprotective effects in the ischemia-reperfusion injury model and LPS
induced brain inflammation [38]. In the setting of LPS induced brain inflammation model,
EVs packaged with curcumin have been delivered intranasally and efficaciously induced
selective curcumin-loaded EV uptake by activated resident immune cells and induced
apoptosis in those pro-inflammatory neural cells [105]. Besides loading anti-inflammatory
chemical compounds, MSC-EVs have been utilized extensively as the delivery vehicle for
gene therapy to the brain [37]. Specifically, MSC-EV mediated transport of miR-124 is
found to reduce the neuroinflammation: in cocaine mediated brain inflammation, intranasal
delivery of miR-124 loaded EVs to the brain dampened the secretion of proinflammatory cy-
tokines (TLR4, STAT3, NF-kB p65, and MYD88) and ceased the activation of microglia [40].
A clinical trial of MSC-EVs for brain inflammation is currently ongoing for acute ischemic
stroke (NCT03384433). However, further pre-clinical and clinical studies need to be done
to determine the full potential of MSC-EV usage in brain inflammation [106].

3. Surface Engineering Techniques of EVs

The surface modification of EVs is a necessary step for practical applications because
surface engineering brings additional functionality to EVs and allow targeting, enhanced
intracellular uptake, and prolonged circulation time. There are two main approaches that
classify surface engineering (Scheme 1).

3.1. Cell Engineering

Cell engineering is a method that introduce peptides, proteins, and antibodies on the
surface of EVs. The cell surface is engineered by fusing proteins of interest, introducing
targeting peptides, or immobilizing proteins to the inner surface of EVs [109,110].

Fusion of proteins with the Lactadherin C1C2 domain has been found to bind exosome
lipids [111]. In more detail, the C1C2 domain of Lactadherin provides exosome targeting
strategy, where fusion proteins to the C1C2 domain of Lactadherin generates chimeric
proteins that bind to exosome lipids. Thus, exosome enables the production of multiple
copies of antigens bounding particles and provides immune system that can react to
encounter foreign microorganisms. Hatman et al. also coupled carcinoembryonic antigen
(CEA) and HER2 to the C1C2 domain of Lactadherin and found that the fusion proteins
showed enhanced expression in exosomes and antigen specific immune responses for
enhanced therapeutic anti-tumor effects [112].

Genetic engineering is able to introduce targeting peptides on the surface of EVs.
The Lamp2b is a protein that found in exosomal membranes and one of the proteins that
has been and widely applied with targeting peptides [37,113]. For example, targeting
was achieved by fusing Lamp2b to the neuron specific rabies viral glycoprotein (RVG)
peptide [37]. When the Lamp2b constructs were transfected to dendritic cells, Lamp2b was
strongly expressed in dendritic cells and the constructs successfully endowed exosomes
with cell targeting ability. In addition, Lamp2b was fused to αv integrin-specific iRGD pep-
tide to facilitate tumor targeting ability by engineering immature mouse dendritic cell line
(imDC) [114]. The engineering of imDCs expressed Lamp2b and the iRGD exosomes from
imDCs loaded with DOX showed highly efficient targeting and demonstrated enhanced
DOX delivery to αv integrin-positive breast cancer cells.

Genetic engineering can be also applied to immobilize proteins to the inner surface
of exosomes. For example, cryptochrome 2 (CRY2)-conjugated cargo proteins to the
exosomes were designed by encoding CIBN to an exosome-associated tetraspanin protein
CD9 with blue light illumination [115]. When the cargo proteins are introduced into the
exosomes via biogenesis, it is detached from CD9-conjugated CIBN by light illumination
and release into the exosomal intraluminal space and efficiently deliver to target cells. Thus,
protein-loaded exosomes demonstrated enhanced intracellular levels of cargo proteins
and their function in recipient cells. Shalitin et al. also reported that CRY2 undergoes a
blue-light-dependent phosphorylation and proposed that the absorption of photons by a
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cryptochrome undergoes its conformation change and triggers signal transduction and
physiological responses [116].
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Scheme 1. Surface engineering techniques of EVs and targeting strategies for inflammation. Cell engineering methods that
express peptides, proteins and antibodies on the EV surface could enhance specific immune responses and cell targeting
capabilities. The method of attaching various substances through chemical modification could provide new functions
different from normal EV. These EVs could achieve increased cell specificity and circulation times. In addition, it can be
applied to inflammation by activating immune cells with peptides or antibodies expressed on the EVs surface, and by
diagnosing cancer proteins on the EVs surface using aptamers. Attachment of specific peptides to EVs increases cell binding
affinity, therapeutic efficacy, and delivery rate, and attachment of specific antibodies can lead to activation of cytotoxic
T cells.
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3.2. Chemical Modification

One way to anchor molecules into the lipid bilayer of exosomes are using alkyl chains
through hydrophobic interactions. Koojimans et al. decorated EVs with targeting ligands
conjugated to polyethylene glycol (PEG). The introduction of PEG-conjugated nanobodies
to EVs provided cell specificity and prolonged circulation times while unmodified EVs
rapidly cleared from the circulation in in vivo studies [117]. In addition, exosomes were
labelled using the PKH26 Red Fluorescent [118]. When exosomes derived from mammary
epithelial cells labelled with PKH26 were incubated with tumor cells, the exosomes were
efficiently incorporated into the tumor cells. Exosomes isolated from bladder cancer were
labelled with PKH26 and showed that exosome uptake based on the number of PKH26
positive spots is dose and time dependent [119]. Smyth et al. also demonstrated DIR
incorporated into exosomes, where DIR is fluorescent that label exosomes [120]. They
labelled exosomes with the lipophilic fluorescent tracer DIR and used them to study
exosomes’ rates of clearance and biodistribution. These studies were performed to stain
exosomal membranes by the intercalation of aliphatic chains into lipid bilayers.

In addition, there are another method for conjugation of ligands to the exosome
surface via click chemistry. Click chemistry, also called Copper-catalyzed azide alkyne
cycloaddition, is a highly efficient reaction that forms a thiazole linkage between an alkyne
and an azide group [121]. Thus, the alkynes are first grafted to the EV membrane and
then react with azide group of molecules of interest and form azide-alkyne cycloaddition.
Presolski et al. also used the click chemistry for the coupling of cargo-azide to biomolecule-
alkyne and designed azaide-modified fluorophores [122]. Click chemistry was also used
to conjugate functional ligands onto exosomal surfaces and Tian’s group proposed the
cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide that shows high affinity to integrin αvβ3 was
conjugated on mesenchymal stromal cell (MSC)-derived exosomes [123].

4. Strategies for Inflammation Targeting EVs

EVs have been decorated with various targeting ligands including peptides, small
molecules, antibodies, and aptamers to obtain active targeting. EVs are modified to target
inflammatory cells for anti-inflammation therapy.

4.1. Peptide-Mediated Targeting

The cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide has been conjugated on the surface of
exosome via bio-orthogonal chemistry to target the lesion region of the ischemic brain [123].
The MSC-derived exosomes conjugated with peptide showed high affinity to integrin αvβ3
in reactive cerebral vascular endothelial cells. Wang et al. designed exosomal enriched mem-
brane protein (Lamp2b) fused to ischemic myocardium-targeting peptide CSTSMLKAC
(IMTP) and found MSC-derived IMTP-exosome exhibited enhanced therapeutic efficacy
on acute myocardial infarction [67]. In addition, exosome expressing cardiac-targeting
peptide (CTP)-Lamp2b were generated by Kim’s group and CTP-exosome showed 15%
enhanced delivery of exosomes to the heart cell and heart tissue of mice [124]. Zhang et al.
used cyclo(1,12)PenITDGEATDSGC (cLABL) peptide that is known to bind and upregulate
intercellular cell-adhesion molecule-1 (ICAM-1) on HUVEC [125]. They demonstrated the
inflammation-targeting peptide is inducing inhibition of the infiltration of immune cells
via blockage or internalization of ICAM-1 receptors on HUVEC. Vascular cell adhesion
molecule-1 (VCAM-1) peptide was also proposed as an inflammation-targeting peptide to
identify the inflammatory activation of cells involved in atherosclerosis [126].

4.2. Small Molecule-Mediated Targeting

Small molecule targeting ligands are referred to targeted delivery that have an aver-
age molecular weight less than 1 kDa. The small molecule-based targeting strategy has
been applied in EV-based therapies. Pi et al. developed siRNA-loaded nanoparticles and
displayed folate on the outer surface of the EVs [127]. Folate is known as an attractive
targeting ligand since many cancers overexpress folate receptors [128]. They demonstrated
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that folate displayed EVs inhibited colorectal cancer growth in mice. In addition, monosac-
charides such as glucose and galactose are another class of small molecule targeting ligands.
Glucose targets the GLUT1 receptor that is overexpressed at the blood–brain barrier and its
derivative modified therapeutic modalities have been studied for glioma targeting [129].

As a low molecular weight targeting system, aptamer was also used in several studies
for aptamer-mediated inflammation targeting strategy. Aptamers also known as chemical
antibodies can function as therapeutic and diagnostic tools due to its target-binding, no
immunogenicity, and deep tumor penetration [130]. Aptamer-guided exosome capturing
nanoplatform system has been developed as a diagnostic tool. For example, aptamer was
utilized to capture HSP70 positive exosomes in urine samples taken from breast, ovarian,
or lung cancer patients [131]. Li et al. designed an exosome that targets dendritic cells
(DC-Exosome). MSCs derived exosomes was applied to the mTOR siRNA delivery system
of targeting dendritic cells. Aptamer/siRNA chimera performed the targeted delivery of
microRNAs into DCs and maintained long-term immune tolerance [132].

4.3. Antibody-Mediated Targeting

Antibodies for immune cells or tissue cells are also introduced on the surface of EVs,
which allows specific inflammation targeting. Exosomes can be act as artificial cellular
immunity controller to activate cytotoxic T cells for cancer cell killing by modification via
antibody fusion [133]. Exosome fused with antibody was called synthetic multivalent anti-
bodies retargeted exosomes (SMART-Exos) and provided a versatile platform technology
for immunotherapy as well as a potent anticancer immune response.

5. Challenges and Perspectives

EVs have great interest and importance in therapeutic applications for the clinic due
to biocompatibility as a nature nanoplatform. They have exhibited therapeutic potential
in various inflammatory diseases including autoimmune diseases, neurology diseases,
and myocardial diseases. To date, several phase I or phase II clinical trials have been
conducted based on considerable evidence of their therapeutic utility accumulated in
preclinical studies (Table 2). However, the practical therapeutic application of EVs faces
significant challenges. The major challenges that must be addressed before turning EVs to
the clinic are: (i) large-scale production, (ii) content analysis of EVs and (iii) EVs engineering
technology control. The separation of EVs from cell culture media is carried out by methods
such as laboratory scale ultracentrifugation or filtration. The yield of EV obtained from
these methods may vary slightly depending on the type of cultured cells, but is generally
very poor. Therefore, standard EVs production methods need to be developed for large
scale production, rapid isolation, and quality control. Also, the analysis of EVs is focused
on the content of the EVs. Cell-derived EVs represent the properties such as nature and
function of the donor cells. However, until now, there has been only a little way to know
how to represent the properties. Prior to the engineering of EVs, the content should be
characterized in the contexts of EVs heterogeneity. In therapeutic applications of EVs, it
may be necessary to discover and recognize the contents that cause therapeutic effects or
side effects. Also, content analysis needs to be linked to standards for the evaluation of EVs.
Through the overall content analysis and evaluation standard, the specific donor cells can
be selected for the treatment of the specific diseases. In terms of engineering technology,
therapeutic molecules, including chemical drugs, genetic material, and proteins, have
been loaded on EVs. During the engineering process, the loading efficiency of cargo to be
loaded onto EVs should be controllable and should not affect the inherent characteristics of
EVs. Changes in the size and surface potential of EVs can affect the biological activity and
therapeutic efficacy of EVs.



Int. J. Mol. Sci. 2021, 22, 5487 12 of 18

Table 2. Human clinical trials of EVs in inflammatory diseases.

Disease Phase Source of Exosomes Results and Status NCT Numbers

Cutaneous wound
healing

Phase I
(n = 5) Plasma derived exosomes Enrolling NCT02565264

Skin graft Phase I
(n = 24) Platelet derived extracellular vesicles Enrolling NCT04664738

Diabetes Mellitus Type 1 Phase II, III
(n = 20)

Umbilical cord blood derived mesenchymal
stem cell exosomes Unknown NCT02138331

Severe Coronavirus
pneumonia, ARDS

Phase II
(n = 60) Bone marrow derived extracellular vesicles Not yet recruiting NCT04493242

Severe Coronavirus
pneumonia

Phase I
(n = 24)

Allogenic adipose mesenchymal stem cell
derived exosome Completed NCT04276987

Severe Coronavirus
pneumonia

Phase II
(n = 90) Mesenchymal stem cell derived exosome Enrolling NCT04602442

Acute respiratory distress
syndrome

Phase I, II
(n = 169)

Allogenic human mesenchymal stem cell
derived exosomes Not yet recruiting NCT04602104

Acute Ischemic Stroke Phase I, II
(n = 5)

Allogenic mesenchymal stem cell derived
exosome Recruiting NCT03384433

The field of EVs therapeutics has been rapidly growing with advanced nanotech-
nology. As a natural nanoplatform, EVs provide a powerful option for overcoming the
challenges of inflammatory diseases, including potential toxicity and complexity. EVs engi-
neered with nanotechnology have shown enhanced therapeutic efficacy. Especially, recent
studies for selective drug encapsulation were focused on the sorting machinery working in
EVs biogenesis and release. Therefore, uncovering the biological pathway related to the
packaging of EVs may provide us with the novel tools for improving EVs-based therapy. In
addition, a light-triggered drug loading technique was developed by integrating optically
light reversible protein interaction module and EVs biogenesis and release process. [115].
This research may suggest the importance of conversing technology with other research
fields such as mechanics, electronics, optics, and omics. The future application of EVs in
the detection and treatment of various inflammatory diseases will be possible through
deep and broad collaboration between different fields.
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EVs Extracellular Vesicles
PEG Polyethylene Glycol
MSCs Mesenchymal Stem Cells
CVDs Cardiovascular Diseases
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IL Interleukin
AD Atopic Dermatitis
SLE Systemic Lupus Erythematosus
RA Rheumatoid Arthritis
MS Multiple Sclerosis
T1D Type 1 Diabetes
ALI Acute Lung Injury
ARDS Acute Respiratory Distress Syndrome
BALF Bronchoalveolar Fluid
COPD Chronic Obstructive Pulmonary Disease
ROS Reactive Oxidative Species
AD Alzheimer’s Disease
PD Parkinson’s Disease
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