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Retinitis pigmentosa (RP) is a group of inherited retinal 
degeneration diseases that affect retinal photoreceptor cells 
and RPE cells. With the slow degeneration of rod cells 
followed by loss of cone cells, patients suffer from progres-
sive visual field constriction and gradual or rapid vision loss 
until visual acuity is severely affected in their 50s to 60s; 
some specific types may bring about severe vision loss in 
early decades. The prevalence of RP worldwide was reported 

to be approximately 1/4,000 [1], with a prevalence of 1:1,000 
to 1:4,016 in China [2-4].

RP has varied inherited patterns, including autosomal 
dominant (30%–40%), autosomal recessive (50%–60%), and 
X-linked (5%–15%) [5]. It shows great genetic heterogeneity, 
and to date, there have been 89 genes reported to relate to 
RP in the RetNet Database. The gene spectrum of RP was 
reported to overlap with other inherited retinal dystrophies 
(IRDs), including Leber congenital amaurosis (LCA), cone-
rod dystrophy (CRD), macular dystrophies, and congenital 
stationary night blindness (CSNB) [6].

The complicated gene spectrum and inherited pattern 
of RP raises great challenges to doctors and researchers 
for genetic diagnosis. With the increasing number of gene 
therapy approaches in IRDs (e.g., RPE65-associated retinal 
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dystrophies [RDs]-Luxturna [7], MERTK-associated RDs 
[8], and REP1-associated RDs [9]), genetic diagnosis was 
not only beneficial in confirming the diagnosis, predicting 
disease prognosis, and providing genetic consultant advice, 
but it was also crucial in identifying patients who could 
benefit from these emerging novel therapeutic techniques. 
With the development of next-generation sequencing (NGS), 
whole-exome sequencing (WES) and panel-based NGS have 
been widely used in molecular genetic diagnosis of IRDs 
[10]. Whole-genome sequencing (WGS), which is based on 
non-PCR technology, can provide more information about the 
whole genome, including introns and areas that cannot be 
sequenced using WES and panel-based NGS, such as large 
indels and copy number variants. However, WGS is much 
more expensive at this stage than other methods, and it is 
more complicated in terms of data processing, making it 
inapplicable for small laboratories [11]. WES, which targets 
the complete protein coding region in the genome, has been 
reported to be successful in identifying genetic defects in 
60%–80% of Mendelian diseases [12]. Compared with 
panel-based NGS, which comprises a well-established panel 
including certain genes, WES can be used to detect novel 
mutations in IRD patients. The decreasing cost makes it more 
practical to apply than other NGS approaches are.

In this study, we investigated the disease-causing genes 
of 28 Chinese families with a clear family history of RP 
through WES. The results may benefit the RP gene diagnosis 
and the pathogenic and genotype-phenotype study of RP.

METHODS

Ethics statement: All procedures performed in studies 
involving human participants were conducted in accordance 
with the ethical standards of the institutional or national 
research committee and with the 1964 Declaration of Helsinki 
and its later amendments or comparable ethical standards. 
The study was approved by the Medical Ethics Committee 
of Beijing Tongren Hospital, and written informed consent 
was obtained from all study participants. All methods were 
performed in accordance with the relevant guidelines and 
regulations.

Study subjects: Twenty-eight families with a definite diag-
nosis of RP and clear family history were recruited from the 
Beijing Tongren Eye Center from January 2019 to October 
2019. The clinical diagnosis of RP was confirmed by an expe-
rienced retinal specialist (Dr. Wei Wenbin) with the following 
diagnostic criteria: 1) typical history and fundus appearance; 
2) presence or absence of a family history of night blindness 
or low vision; 3) defective static perimetry; and 4) defective 
electroretinogram (ERG). The criteria for defining RP in 

the families were based on the probands’ and their family 
members’ descriptions, such as poor vision and night blind-
ness, and then confirmed by clinical examinations.

All patients visiting the outpatient department received 
comprehensive ophthalmic examinations including best-
corrected visual acuity (BCVA), intraocular pressure (IOP) 
measurement (noncontact tonometer, Cannon, Tokyo, Japan), 
slit-lamp biomicroscopy, color fundus photography (TRC 
RETINAL CAMERA 50 DX, Topcon Inc., Tokyo, Japan), 
ocular biometry applying optical low-coherence reflectom-
etry (Lenstar 900 Optical Biometer, Haag-Streit, Koeniz, 
Switzerland), OCT and OCT angiography (VG200, SVision 
Imaging, Ltd., Luoyang, China), stationary perimetry tests 
(Humphery field analyzer; Carl Zeiss Meditec, Inc., Dublin, 
CA), and ERGs.

WES experiments and data analysis: DNA samples were 
extracted from whole blood using a DNeasy Blood & Tissue 
Kit (50; Qiagen, Berlin, Germany) following the manufac-
turer’s instructions. The purity of DNA was determined using 
a NanoPhotometer® (Implen, San Diego, CA). The concen-
tration of DNA was determined by Qubit® 3.0 Fluorometer 
(Life Technologies, San Diego, CA).

Whole-exome capture of 83 individuals from 28 RP 
families (including 55 RP patients and 28 of their healthy 
relatives) was performed using Agilent SureSelect Human 
All Exon V6 kits. Then, sequencing was conducted on an 
Illumina HiSeq X Ten System from Annoroad Gene Tech. 
Co., Ltd. The sequencing reads were mapped against UCSC 
hg19 by BWA. Individual sample single-nucleotide polymor-
phisms (SNPs) and insertion or deletion events (indels) were 
detected by SAMTOOLS. After generating initial single 
nonsynonymous variant (SNV) calls, we performed further 
filtering to identify high-confidence variants that had the 
following characteristics: (i) they had a quality >Q30 and a 
depth of ≥5×, and (ii) they were not located in the major histo-
compatibility complex homologous sequence. WES data from 
1000 Genomes, dbSNP147, the ExAC database, and unrelated 
healthy individuals from the Annoroad Healthy person muta-
tion database were used as reference data for variant filtering. 
Prediction of potential functional consequences of variants 
was conducted using SIFT and PROVEAN [13] and Polymor-
phism Phenotyping v2 (PolyPhen-2) [14].

The mutations were filtered with the following multiple-
step bioinformatics analysis: (1) the SNPs and short indels 
in the exome region were filtered against data from 1000 
Genomes, dbSNP147, ExAC and unrelated individuals of 
2020 in-house non-RP controls, removing minor allele 
frequency (MAF) values that were greater than 0.005 for the 
recessive model and were greater than 0.001 for the dominant 
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model; (2) noncoding variants were excluded without altering 
splicing sites; (3) synonymous variants without were excluded 
the altering splicing sites in the genes; and (4) missense vari-
ants predicted to be Neutral/Tolerated/Benign by PROVEAN, 
SIFT, and PolyPhen-2 simultaneously were excluded. All 
mutations that passed through the filtering procedure were 
searched in a set of 662 gene defects that can cause vision-
associated phenotypes (including 89 RP genes in RetNet 
Database; Appendix 1). Autosomal recessive, autosomal 
dominant, X-linked, and digenic heredity patterns were 
included in this research. The pathogenicity of the selected 
mutations was predicted according to American College of 
Medical Genetics and Genomics standards and guidelines 
[15].

PCR and direct Sanger sequencing for variant confirma-
tion: Sanger sequencing was used to validate the pathogenic 
mutations among patients. Segregation tests were also 
performed in all the available family members. Primers were 
designed (Primer Premier 5) to use PCR amplification on the 
400–500 bp region flanking the mutation. To ensure high-
quality Sanger sequencing, the amplification was designed 
to have a boundary at least 150 bp away from the mutation 
base. The amplification was then Sanger sequenced on an 
Applied BioSystems 3730xl DNA Analyzer (Waltham, MA). 
The Sanger sequencing results were analyzed with Applied 
Biosystems’ Sequencer software. Compound heterozygous 
variants were defined as a variant that detected the patient’s 
father and mother, each carrying a heterozygous mutation, or 
the direct relatives without RP only carrying a heterozygous 
mutation. Variants were excluded when exactly the same vari-
ants were detected in a relative who was not diagnosed with 
the RP phenotype. When RP patients’ mutations were not 
detected in their biological parents, we defined these muta-
tions as “de novo.” Variants were defined as “novel” if they 
had not been reported in the literature or registered in the 
HGMD and OMIM databases.

Statistical analysis: All analyses were conducted using 
SPSS (IBM SPSS for Windows, version 23) and GraphPad 
PRISM version 8.0 (GraphPad Software Inc.) statistical soft-
ware. Descriptions of the quantitative data are presented as 
the means (standard deviations, SDs) and median. Disease 
durations were calculated as current age minus disease onset 
age. Disease onset age of patients who could not remember 
accurately and described the disease onset as early childhood 
were defined as 5 years old in the calculation.

RESULTS

Twenty-eight Chinese families with a diagnosis of RP were 
recruited for this study. Of these, 9 were autosomal domi-
nant RP (adRP) families, 17 were autosomal recessive RP 
(arRP) families, and 2 were X-linked RP families. WES was 
performed in 83 individuals from 28 RP families (including 55 
RP patients and 28 of their healthy relatives), with 2 patients 
and 0–2 healthy relatives sequenced in each family. All indi-
viduals who were sequenced are highlighted with genotype 
in Figure 1. WES achieved an average of 116.75×depth and an 
average of 99.88% coverage rate of the exome targeted region. 
The mapping rate and coverage of the targeted region of each 
sample are shown in Appendix 2. Sanger sequencing results 
of each family are listed in Appendix 3.

For 28 RP families, putative pathogenic mutations of 20 
(71.4%) families were identified, including the 12 following 
RP genes (Table 1) [16-31]: USH2A (4/20, 20%), CYP4V2 
(3/20, 15%), PRPF31 (2/20, 10%), RHO (2/20, 10%), RP1 
(2/20, 10%), CNGA1 (1/20, 5%), CNGB1 (1/20, 5%), EYS (1/20, 
5%), PRPF3 (1/20, 5%), RP2 (1/20, 5%), RPGR (1/20, 5%), 
and TOPORS (1/20, 5%). Three families with CYP4V2 muta-
tions were rediagnosed as having Bietti crystalline dystrophy 
(BCD). The pedigree charts of the 20 families are listed in 
Figure 1. All the putative genes cosegregated with the pheno-
type in RP families. All suspicious mutations found in each 
family and the reason we choosed putative mutations were 
illustrated in Appendix 4. Putative genes of 7 (7/9, 77.78%) 
autosomal dominant families, 11 (11/17, 64.71%) autosomal 
recessive families, and 2 (2/2, 100%) X-linked families were 
identified. In total, 28 mutations were identified, including 10 
(35.17%) missense mutations, 9 (32.14%) frameshift mutations, 
5 (17.86%) missplicing mutations, and 4 (14.27%) truncation 
mutations. The mutation type spectrum of each gene is listed 
in Appendix 5. The following seven novel mutations were 
identified in this research: USH2A, c.9337dupA(p.I3113fs); 
USH2A, c.C10498T(p.Q3500*); PRPF31, c.967_968delGA 
(E323Dfs*151); RP2, c.758_761delTAAT (p.L253fs*10); 
TOPORS, c.2323_2324delAG (p.S775*); CNGB1, c.G2006A 
(p.W669*); RPGR, c.T773C (p.L258P).

From the 20 families with confirmed molecular diag-
noses, 33 patients visited our outpatient department. Their 
clinical characteristics are listed in Table 2. The mean age of 
all patients was 42.9 ± 14.5 years, whereas the mean age of 
disease onset and mean age of visual acuity decline were 11.7 
± 9.9 years and 33 ± 9.5 years. Of the 33 patients, 26 (78.8%) 
had an eye with BCVA lower than 0.3, whereas 20 (60.6%) 
had an eye with BCVA lower than 0.1. The long duration 
from disease onset to molecular diagnosis and poor preserved 
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BCVA in this research indicated a late molecular diagnosis 
in Chinese RP patients.

Phenotype–genotype was detected in this research. 
Average disease duration, average visual acuity, and average 
disease onset age were calculated and analyzed as shown in 
Figure 2. Genes on the left side of the image were found to 
have a more severe phenotype with shorter disease duration 
and poor visual acuity; genes on the right side were found to 
have a milder phenotype. USH2A was found to have a disease 
onset from adolescence, but the visual function exhibited 
moderate defect over 35 years of disease duration. In contrast, 
CYP4V2 was found to have a later disease onset from the 30s, 
but severe visual function defects were observed in the later 
17 years.

In all 12 identified RP genes, four families (20%)—
RP008, RP015, RP028, and RP033—were detected to have 
compound heterozygous mutations in USH2A (Table 1), with 
six mutations. Among all mutations detected, two novel 
mutations were found—namely, c.C10498T (p.Q3500*) in 
RP015 and c.9337dupA (p.I3113Nfs*17) in RP033. These two 
mutations were located in the extracellular matrix protein-
related regions, making the subsequent extracellular structure 
of more than 2,000 amino acids untranslatable, which may 
have led to damaging effect for Usherin protein [31]. They 
were identified as pathogenic mutations according to the 
ACMG guidelines. Patients in all four families were siblings 
who exhibited the arRP inheritance pattern’. Since not all 
mutations were novel, some of them has been reported previ-
ously. The clinical data of the patients in the four families 
are listed in Table 2. All patients visiting the outpatient 

Figure 1. Pedigree charts of the 20 retinitis pigmentosa (RP) families with confirmed molecular diagnosis. The genotype of each individual 
sequenced is mentioned in bold, and individuals who were clinically investigated in our outpatient department are indicated with black 
frames.
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department showed a defect in the fundus with mild to 
moderate peripheral bone spicule-like pigments, gray retina 
color, and attenuation of retinal vessels (Figure 3). Patients in 
family RP008 and family RP028 had hearing defects, so we 
revisited and rediagnosed the patients in RP008 and RP028 
as having Usher syndrome type II. The other two families, 
RP015 and RP033, did not have obvious hearing problems; 
they were diagnosed as having simple RP.

CYP4V2 accounted for 15% (3/20) of mutations detected 
in this research. All three families with CYP4V2 mutation 
(RP026, RP034, RP037) showed a compound heterozygous 
mutation pattern, and the patients in these three families were 
revisited and rediagnosed as having BCD. Five mutations 
identified in this research had been reported previously. In 
the three families, all six patients (five visited our outpatient 
department and one provided medical materials from a 
local hospital) showed highly reflective crystal deposits and 
profound RPE atrophy in the fundus photography (Figure 
4). Five patients who could complete the visual field test all 
showed acentric visual field islands.

RP1, RHO, and PRPF31 each accounted for two (2/20, 
10%) families in this research. TOPORS, EYS, CNGA1, 
CNGB1, and RPGR were all identified in only one (1/20, 5%) 

family. All clinical data for these patients are listed in Table 2, 
and fundus images are shown in Appendix 3. Novel mutations 
in these families are elaborated on below.

One novel mutation in PRPF31 was identi-
fied as pathogenic in family RP014—namely, c.967_ 
968delGA(E323Dfs*151). This novel mutation was a small 
deletion mutation, which led to translation frameshift and 
protein truncation. This may cause abnormal posttranslation 
after 323 amino acids, potentially leading to the abnormal 
function of the C-terminal domain and affecting the normal 
localization of protein in cells [32]. The mutation was identi-
fied as pathogenic according to the analysis of the ACMG 
guidelines. Two patients in RP014 showed moderate visual 
defect, with slight pigments in the fundus (Figure 5).

One novel mutation in RP2 was identified as pathogenic 
in family RP010—namely, c.758_ 761delTAAT (p.l253fs*10). 
This was a small deletion mutation and led to translation 
frameshift and protein truncation. The C-terminal domain of 
the RP2 (RP2 activator of ARL3 GTPase) protein has weak 
homology with nucleoside diphosphate kinase (NDK). The 
mutation causing protein truncation has been reported to 
relate to a more severe phenotype [33]. Moreover, Jayasundera 
et al. reported that two different missense mutations at amino 

Figure 2. Phenotype–genotype relationship. Bars represent average disease duration of each gene; blue line and annotated data aside represent 
average visual acuity of individuals in each gene; black dots represent average disease onset in each gene.
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acid 253 lead to more severe phenotypes in RP2 mutations 
[34]. In family RP010, the fundus of proband III:2 showed 
slight pigments and myopia in both eyes (oculus dexter [OD]: 
−5D, oculus sinister [OS]: −3.5D; Figure 5). In contrast, 
II:3—the mother of the proband, who was a carrier of this 
mutation—had high myopia of −14.5D in her left eye. In addi-
tion, II:2—the uncle of the proband, who did not come to the 
outpatient department of our hospital for examination—was 
totally blind at the age of 40 years. The local data provided 
showed that there was no light perception in either eye, and 
leopard fundus and high myopia were present in both eyes.

One novel mutation in TOPORS was identified in a 
large four-generation autosomal dominant family, family 
RP012—namely, c.2323_2324delAG, p.S775*. This small 
deletion mutation led to a truncated protein of 775 amino 
acids, resulting in partial loss of the RS domain and loss of 
two proline, glutamic acid, serine, and threonine (PEST) 
domains in the TOPORS protein. The RS domain is a region 
rich in arginine and serine, which may affect pre-mRNA 
splicing, whereas PEST domains are five residues rich in 
PEST elements (proline, glutamic acid, serine, and threo-
nine), which are usually the characteristics of fast degradation 

protein. Loss of these crucial domains may severely affect 
protein function [35]. This novel mutation was identified as 
pathogenic according to the ACMG guidelines. Eight patients 
tested in RP012 carried this heterozygous mutation; they all 
complained about night blindness from 6 to 17 years old 
accompanied by constricted visual field in adult age. The 
proband V:I who visited our outpatient department was a 
22-year-old female. She complained about night blindness 
from 6 years old. At presentation, she had preserved a BCVA 
of 1.0 in both eyes but had a constricted visual field less than 
24° (Figure 5).

A truncated mutation c.G2006A (p.W669*) in CNGB1 
was first reported in this research. This mutation was located 
in exon 10 (amino acids 661–838), which damages all key 
domains in CNGB1 protein, including the N-terminal gluta-
mate rich domain (encoded by exons 1 to 16), transmem-
brane and pore domain (encoded by exons 21 to 26), cyclic 
nucleotide-binding domain (encoded by exons 29 to 31), and 
carboxyl terminal channel-like domain [36]. This mutation 
may also trigger nonsense-mediated decay and affect the 
normal function of protein. This novel mutation was identi-
fied as pathogenic according to the ACMG guidelines. Two 

Figure 3. Fundus images of patients with USH2A mutations.
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Figure 4. Fundus images of patients with CYP4V2 mutations and typical acentric visual field from patient RP026 II:3.

Figure 5. Fundus images of patients with novel mutations in PRPF31, RP2, TOPORS, CNGB1, and RPGR.
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patients in family RP035 who carried this heterozygous muta-
tion were siblings. Proband II:5 was a 64-year-old male, and 
his younger brother II:3 was 54 years old. They complained 
about night blindness before 5 years old and visual loss from 
the age of 25 (II:5) to their 40s (II:3). Dense pigments and 
profound RPE atrophy were found in the fundus of proband 
II:5 (Figure 5).

One novel mutation of RPGR (c.T773C, p.L258P), 
detected in the four-generation family RP036, was consid-
ered likely pathogenic. This missense mutation was located 
on exon 2 and was predicted to be damaging by PolyPhen, 
SIFT, and Provean. It has not been reported in the ExAC, 
1000 Genomes, or Annoroad Healthy person mutation data-
bases. According to ACMG guidelines, this novel mutation 
was identified as pathogenic. The proband III:5 and his 
three female cousins experienced night blindness from early 
childhood and visual defects from their 40s, whereas several 
female members of this family complained about high myopia 
over −10.00D. The female family member IV:2 had a high 
myopia of −14.00D in the right eye and −18.00D in the left 
eye. She had also complained about night blindness from early 
childhood, and her ERG examination showed diminished rod 
and cone responses. The fundus appearance of two patients 
showed dense pigments, attenuated retinal vessels, and a pale 
optic nerve head; in contrast, the fundus of the carrier female 
showed no pigments and a leopard fundus (Figure 5).

DISCUSSION

In this research, several important findings were reported, 
including the following: 1) 25 putative pathogenic muta-
tions of 12 genes were detected by WES, and they were 
all confirmed by Sanger sequencing in 20 (20/28, 71.4%) 
families, including 12 genes with USH2A and CYP4V2 as the 
most frequent mutated genes; 2) 7 novel mutations were iden-
tified, including USH2A, PRPF31, RP2, TOPORS, CNGB1, 
and RPGR; 3) the phenotype–genotype relationship in the 12 
RP genes were analyzed which revealed later disease onset 
and more severe visual function defects in CYP4V2; and 4) 
late molecular diagnosis with long disease duration and poor 
preserved BCVA were found in Chinese RP patients.

Twelve genes were identified as putative pathogenic 
genes in this group of RP families, with USH2A, CYP4V2, 
RHO, PRPF31, and RP1 as the most frequent genes. Several 
studies of the mutation spectrum in Chinese RP patients 
were reported previously, which were found to have some 
differences from our research (Table 3). USH2A (4/20, 20%) 
was detected to most frequently harbor the mutations in this 
research, which is consistent with the previously reported 
12%–25% proportion worldwide [1,5]. CYP4V2 (3/20, 15%) 

was detected to be the second most frequent mutation gene in 
this research; CYP4V2 encodes a member of the cytochrome 
P450 heme-thiolate protein superfamily, which is involved 
in oxidizing various substrates in the metabolic pathway. 
Mutations in this gene result in corneoretinal BCD [37]. This 
gene has been reported to account for 3% of RP patients 
in Caucasians [38]; it appears to be more common in East 
Asian countries, such as China [3] and Japan [39]. Recently, 
Gao et al. [40] reported a CYP4V2 frequency of 15% in a 
large RD cohort comprising 1,243 patients, which indicated 
a large group of BCD patients in China. The differences in 
the most frequent mutation genes between this research and 
previous reports may come from study scales and different 
inclusion criteria because some studies may exclude BCD 
from RP. In addition, since BCD can be easily diagnosed 
from a unique fundus appearance, some clinicians may use 
Sanger sequencing as the detecting technology.

The diagnosis rate of WES sequencing in RDs varied 
greatly in previous studies because of the sequencing plat-
form selection, inheritance pattern, and proband selection 
[11,12]. It has been reported that WES can achieve a diag-
nosis rate of 41%–55% [41-44] in large RP cohorts, and a 
higher diagnosis rate can be achieved in larger pedigrees. 
Panel-based NGS can promote a diagnosis rate of 70%–80% 
[40,45] in RDs by carefully designing the selected genes in 
the panel. When compared to WES, panel-based NGS was not 
applicable for small research groups because of the high cost 
of the panel design procedure. In this research, we achieved a 
diagnosis rate of 71.4%. There were three factors responsible 
for the relatively high diagnosis rate: First, probands recruited 
in this research all had a clear family history and clinical 
diagnosis. Second, at least one patient and one healthy rela-
tive were sent for WES sequencing. Third, mutations passed 
through the filtering procedure were searched from among 
662 gene defects that can cause vision-associated phenotypes 
(including 89 RP genes in the RetNet Database). With the 
development of NGS, the cost of WES in each patient can be 
relatively low, making WES a more competitive approach for 
molecular diagnosis in RDs.

Seven novel mutations were detected in this study. All 
mutations were found to be cosegregated with phenotype, 
and they were confirmed by Sanger sequencing. Among the 
seven novel mutations, six were mutations causing protein 
truncation, which revealed that truncated mutations were still 
more common in RP molecular diagnosis.

Phenotype–genotype relationships were detected in this 
research. For the two most frequent genes in this research, 
USH2A was found to have a milder phenotype compared 
with CYP4V2, with longer disease duration and moderate 
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visual defect. Visual field tests in CYP4V2 patients were also 
found to have a unique pattern, with preserved acentric visual 
field islands; this indicated that different strategies should be  
adopted in treating BCD from other sub types of RP.

Putative genes in eight families were not identified in 
this research. For RP031, PRPF8 (c.C3543G, p.D1181E) has 
been identified as a putative gene; because the mutation and 
disease did not cosegregate, we excluded PRPF8 as the puta-
tive mutation in RP031. There are several possible reasons 
that these mutations could not be found by WES, which are 
as follows [12]: 1) the mutations were larger deletions or rear-
rangements that are not detectable by WES; 2) the mutations 
were in deeper intronic mutations that cannot be detected by 
WES; and 3) the mutations were in genes that had not been 
reported to be associated with RP.

In conclusion, 25 putative pathogenic mutations of 12 
genes were detected by WES and were all confirmed by 
Sanger sequencing in 20 (20/28, 71.4%) families, including 
7 novel mutations. USH2A and CYP4V2 were found to be the 
most frequent genes in this research. The mutation spectrum 
of RP in Chinese was expanded in this research, which may 
benefit future cutting-edge therapies.

APPENDIX 1. 89 RP GENES IN RETNET 
DATABASE.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. THE MAPPING RATE AND 
COVERAGE OF TARGETED REGION OF EACH 
SAMPLE.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. MUTATION TYPE SPECTRUM OF 
EACH GENE IN 20 FAMILIES.

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. ALL SUSPICIOUS MUTATIONS 
FOUND IN EACH FAMILY AND THE REASON WE 
CHOSE PUTATIVE MUTATIONS.

To access the data, click or select the words “Appendix 4.”

APPENDIX 5. PEDIGREE CHARTS, SANGER 
SEQUENCING RESULTS FOR EACH MUTATED 
GENES.

To access the data, click or select the words “Appendix 5.” 
Fundus images for mutations in RHO, RP1, CNGA1, EYS, 
PRPF3 which have been reported previously
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