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ABSTRACT

Advances in single-cell RNA sequencing over the
past decade has shifted the discussion of cell iden-
tity toward the transcriptional state of the cell. While
the incredible resolution provided by single-cell RNA
sequencing has led to great advances in unraveling
tissue heterogeneity and inferring cell differentiation
dynamics, it raises the question of which sources
of variation are important for determining cellular
identity. Here we show that confounding biological
sources of variation, most notably the cell cycle, can
distort the inference of differentiation trajectories.
We show that by factorizing single cell data into dis-
tinct sources of variation, we can select a relevant
set of factors that constitute the core regulators for
trajectory inference, while filtering out confounding
sources of variation (e.g. cell cycle) which can per-
turb the inferred trajectory. Script are available pub-
licly on https://github.com/mochar/cell_variation.

INTRODUCTION

Single cell RNA-sequencing enables quantitative gene ex-
pression profiling of individual cells. From an RNA view-
point, these cells live in a high-dimensional space defined
by the expression of their genes. A critical step when an-
alyzing such data is the identification of cells in order to
find and label the cell types present in the data. This is of-
ten achieved by grouping together cells with similar expres-
sion profiles by applying a clustering method. The resulting
cell clusters are thus separated from one another by a set
of genes that vary in expression between the clusters. These
so-called marker genes can then be used for identification by
cross-referencing with known marker genes or marker genes
found in other studies. This clustering-based approach for
cell identification relies on the general presumption that the
measured expression levels are reflective of the cell’s identity,
which may be violated due to shared transcriptional pro-

grams between two or more types. Large variations within
cell type clusters due to many exclusive programs may also
pose a problem as it can become hard to discern between cell
types and cell states (1). More generally, sources of variation
that contribute significantly to the cell-cell distances in gene
space, yet do not reflect the cell type, can be detrimental to
the identification task. These can vary from small transient
changes ¢.g. cell communication, up to complex shifts in the
cell’s regulatory state such as the cell cycle, which has been
reported to contribute a substantial portion of the gene ex-
pression variance (2). Moreover, cell identification is often
preceded by a gene filtering step whereby genes with low
variance are discarded to ease the computational burden in
downstream analysis. Gene filtering can lead to a lower di-
mensional space that further amplifies unwanted variabil-
ities, depending on the normalization and filtering criteria
that is used. It becomes clear then that identifying and filter-
ing out unwanted biological sources of variation can serve
an important step in cell identification.

The immediate question to ask is how to identify what
genes are necessary and what genes need to be left out when
carrying out such analysis, which leads into a broader dis-
cussion of the definition of a cell type. Classically, cells were
characterized using a combination of morphology, lineage,
location and overall cell function. (1,3) However it has long
been demonstrated that terminally differentiated cells can
convert into other selected cell types by overexpression of
key regulators (4-6). It has therefore been argued that cell
types can be identified by the expression of a unique com-
bination of transcription factors that make up the core reg-
ulatory complex, which is preserved along all states of the
cell (1,7). Successfully identifying these core regulators al-
lows one to differentiate between clusters of cell types and
clusters of cell states, as the latter would share core reg-
ulators. Furthermore, focusing only on this stable set of
differentially expressed genes relieves us from determining
what transcriptional programs relate to the identity of a
cell. In developmental systems, before complete cell matu-
rity is reached, developing cells have been shown to undergo
a series of discrete metastable states here referred to as dif-

*To whom correspondence should be addressed. Tel: +31 71 52 69513; Fax: +31 71 52 68285; Email: a.mahfouz@lumc.nl

© The Author(s) 2020. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com


http://orcid.org/0000-0002-3405-1995
http://orcid.org/0000-0001-8601-2149
https://github.com/mochar/cell_variation

2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3

ferentiation checkpoints (7-9). By relaxing the aforemen-
tioned definition of regulatory complexes to also include
differentiation checkpoints, an analogous approach can be
used to identify types when dealing with continuous cell
transitions.

We focus on the problem of pseudotime inference where
the aim is to order developing cells along a ‘pseudotime’
axis based on their transcriptional similarities. These simi-
larities should therefore strictly reflect differences between
cell types as they progress through the differentiation trajec-
tory. The majority of pseudotime inference tools rely on the
existence of a continuous manifold that reflects this trajec-
tory such that a one-dimensional curve or graph can be fit
(10). Confounding biological sources of variation (such as
the cell cycle) can therefore perturb the inferred trajectory.
We therefore hypothesize that by factorizing the matrix into
distinct sources of variation, a relevant set of factors that
constitute the core regulatory complexes can be selected for
improving trajectory analysis.

MATERIALS AND METHODS
Data and preprocessing

Two single cell RNA-seq datasets with continuous cell type
transitions were acquired from La Manno ez al. (11): de-
veloping glutamatergic neurons in the human forebrain,
which has a well-defined linear manifold and a complex
branching dataset of the developing mouse hippocampus
(Gene Expression Omnibus accession code GSE104323).
Both datasets were available as raw unspliced and spliced
count matrices with the corresponding gene and cell anno-
tations. Normalization was done with Seurat 3.0’s scTrans-
form (12). In short, a regularized negative binomial model
is fit on the data to model the counts as a function of total
cell size. The Pearson residuals yielded by this fit can then
be treated as normalized expression values, where a posi-
tive value indicates a higher count than expected, and vice
versa. Seurat uses these residuals to return a count matrix
that is unbiased by cell size, which was used for pseudotime
inference. However, scHPF models the genes directly as neg-
ative binomial and was therefore passed the unnormalized
spliced matrix instead. Filtering of low quality genes and
cells was done in correspondence to the Jupyter notebooks
provided by the authors (https://github.com/velocyto-team/
velocyto-notebooks): In the human forebrain dataset, genes
in the unspliced matrix with a total count <25 or a mini-
mum cell count <20 were removed, and in the spliced ma-
trix the thresholds were set at 30 and 20, respectively. The
1720 cells in the dataset were not filtered. In the mouse hip-
pocampus dataset, the same gene threshold was set for the
unspliced matrix while the thresholds were increased to 40
and 30, respectively for the spliced matrix. Cells with a to-
tal gene count lower than the 0.4 percentile were also filtered
out. In addition, neuronal clusters identified by the source
(Subiculum, CA1, CA3, CA2/4, Granule) were removed,
leaving a total of 6673 out of 18 213 cells. Variant genes in
both datasets were selected on the basis of residual variance
provided by the model fit rather than the mean-variance as-
sociation.

Cell-cycle effect analysis

The branching mouse hippocampus dataset was truncated
by removing the neuronal specification branches identified
by the original paper, which included everything beyond the
neuroblast clusters. A UMAP embedding was created with
parameters n_neighbor = 30, min_dist = 0.1, and metric =
correlation. scHPF was run with K = 60 (number of factors)
and the resulting factors were annotated by Gene Ontology
(GO) enrichment of the top scoring factor genes using the
Enrichr web service (13). Factors with enriched GO terms
within the cell cycle hierarchy were recognized as cell-cycle
factors (Figure 2E). Two new UMAP embeddings were then
calculated with the top scoring factor genes, one includ-
ing and one excluding the cell-cycle factors. To quantify the
agreement of both embeddings with the original, the distri-
bution of Jaccard distances between the 500 nearest neigh-
bors of each cell were calculated (Figure 2D). Results were
validated using RNA velocity, a method by which the RNA
splicing dynamics are used to extrapolate the expression
profile at a future time point (11). The similarity of the ex-
trapolated profile of a cell and that of the measured profiles
of all other cells can be restated as a transition probability
(Supplementary Note 1 of (11)). In summary, the transition
probability between two cells 7 and j is found by calculating
the Pearson correlation of the difference between the two
cell profiles and the RNA velocity vector of cell 7, which is
then passed through an exponential kernel. Repeating this
procedure for each pair of cells yields a matrix of similarity
values which is then transformed into probability-like val-
ues by normalizing the rows to sum up to 1. These cell-to-
cell transition probabilities were used to showcase the effect
of cell cycle on the transition.

Pseudotime linear dataset

The human glutamatergic neurogenesis dataset was factor-
ized into 15 scHPF factors. Cell type and differentiation
checkpoint factors were selected on the basis of known
marker genes and enriched GO terms linked to neuronal
differentiation such as dendrite extension and cell morpho-
genesis in differentiation. The top 10 factor genes were se-
lected and subsequently passed to Ouija for pseudotime in-
ference. However, kKNN-smoothed expression values were
passed instead of the log-transformed counts as this leads
to a better model fit (Supplementary Figure S5). A princi-
pal curve was also fitted on the first four principal compo-
nents following the aforementioned notebook provided by
the data source. Pseudotimes of the two methods were then
compared by simply calculating the differences in pseudo-
time assignment per cell. This revealed a disagreement in
pseudotime assignment between the two methods. This dis-
agreement was evaluated by correlating the downregulated
genes with the pseudotimes under the basic presumption
that these should be negatively correlated, i.e. downregu-
lated genes decreases monotonically in expression as a func-
tion of pseudotime.

Data Availability

Both datasets are acquired from La Manno et al. (11).
The developing mouse hippocampus dataset is available
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Figure 1. A graphical overview of the methodology. A single cell RNA-seq
dataset of developing cells is first decomposed into a set of factors using
matrix factorization. Each factor captures a different source of variation,
a subset of them of which constitute the core regulatory genes driving the
differentiation. A gene-based modeling approach is then used to find the
unobstructed trajectory using only the regulatory genes of the differentia-
tion factors.

in the Gene Expression Omnibus with accession code
GSE104323. Analysis scripts can be found as a Snakemake
pipeline in https://github.com/mochar/cell_variation.

RESULTS
Overview

A summary of our approach is visualized in Figure 1. First,
the count matrix is factorized into a set amount of fac-
tors, each representing a transcriptional program. For this,
scHPF (14) was used, which assigns for each factor a score
per gene that quantifies the contribution of that gene to the
factor. Similarly, cells are assigned a score based on how ac-
tive the factor is in the cell. Scores concentrated on a select
subpopulation of cells and a small subset of genes indicate
specialized processes, whilst factors with a more uniform
score distribution indicate broader processes active in many
cells. The number of factors is selected based on the pre-
sumed number of major and intermediate cell types. How-
ever, by increasing this number of factors, the resolution
can be increased from broad subpopulations to highly spe-
cific cell states. Next, the factors representing the cell types
and differentiation checkpoints are selected. This is a man-
ual process done by a combination of known marker genes,
GO annotations, the number of highly variant genes and
preservation of the factors across different runs. Next, the
top 10 factor genes are passed to Ouija (9), a pseudotime
inference method that models gene expression directly as
either switch-like, where the gene is activated or repressed
at some point during differentiation, or transient, when ex-
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pression is only active for a short period of time. The direct
modeling of a small set of marker genes allows for more in-
terpretable inference and is therefore more in line with our
biologically motivated approach. However, Ouija is limited
to linear, non-branching data but can be used nonetheless
by repeating the process for each sequence of progenitor to
mature cell type factors.

Cycling progenitor cells lead to spurious embeddings

As a first demonstration of our methodology, we study ra-
dial glia cells that are known progenitors of glia cells, the as-
trocytes and oligodendrocytes, as well as granule and pyra-
midal neurons in the developing hippocampus (15). When
activated from their quiescent state, radial glia differentiate
into neuronal intermediate progenitor cells (n[PC) and un-
dergo continuous cell division during the development pe-
riod, which is reflected strongly in the transcriptomic profile
of these cells. To show to what extent this cell state can af-
fect the analysis of the continuous embedding, the cells of
the developing mouse hippocampus from La Manno et al.
(11) were reanalyzed, focusing on the subset affected by the
cell cycle by excluding the neuron specification branch. Fig-
ure 2A shows the UMAP embedding based on the top 3000
most variable genes, annotated by cell types as identified by
the data source. The effect of the cell cycle was analyzed
by first identifying a set of three factors associated with
the cell cycle (Figure 2E), and subsequently reconstructing
the embedding twice, with and without the cell-cycle fac-
tors (Figure 2B and C, respectively). A significant differ-
ence in the resulting embedding can be observed, which is
further quantified by the jaccard distances of the cell neigh-
bors visualized for both embeddings in Figure 2D. In all em-
beddings, the radial glia progenitor cells, as well as the as-
trocytes, neuroblasts and oligodendrocytes precursor cells
(OPC) are clearly separated, with developing cells forming
a bridge between all four clusters. Of note are the nIPC cells,
which in the first two embeddings allude to being a differen-
tiation checkpoint for the OPCs and neuroblasts. However,
this observation disappears once the cell-cycle genes are re-
moved, where instead the nIPC cells have a transcriptional
profile that agrees with developing cells in both glia and neu-
ronal lineages. This reveals that the nIPC cells do not form
an intermediate cell type per se, but rather cluster together
due to the significant transcriptional change attributed to
the rapid cell division during development. Instead, a sepa-
rate factor active at the right-hand site of the astrocyte clus-
ter (Figure 2 C) suggests that there exists an intermediate
checkpoint between the astrocytes and OPCs. This factor is
characterized by the highly variable Fabp7, a regulator of
both astrocytes as well as OPCs (16,17). Further effect of
the cell cycle can be observed in a subset of the OPC 2 cells
active in factors 34 and 48 (Figure 2E, top two embeddings).
Indeed, oligodendrocytes in the developing brain have pre-
viously been shown to enter the cell cycle after reaching a
more mature state (18). We note that the common approach
of regressing out cell cycle genes can similarly remove the
nlIPC cluster, however at the cost of a less coherent embed-
ding due to correlated signals (Supplementary Figure S1).
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Figure 2. Cell cycle as a biological confounder in the developing mouse hippocampus. (A) UMAP embedding of developing mouse hippocampus cells
annotated by the cell types identified by La Manno ez al. (11). OPC, oligodendrocyte precursor cell; nIPC, neuronal intermediate progenitor cell. (B and C)
The reconstructed embeddings using the top 50 genes of each factor including and excluding the cell-cycle factors identified by scHPF. (D) The distribution
of Jaccard distances between the nodes of the embedding’s knn-graph and that of the embedding in A. (E) Cell-cycle factors (34, 48, 50) found by scHPF
identified by their GO annotations. The cell scores are shown in the embeddings on the left. The heatmap shows the gene scores of the top 10 genes of
these factors. GO annotations are shown on top. (F) Transition probabilities including (left) and excluding (right) the cell-cycle genes for three selected
cells highlighted in red. The latter shows a clearer transition affinity to one of three cell types (rows).
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RNA velocity is influenced by confounding factors

A scRNA-seq dataset is a static snapshot of the transcrip-
tional state of a cell and therefore does not reveal the regula-
tion of a gene, i.e. if it is currently up- or downregulated or
in a steady state of transcription. However by comparing
the fraction of spliced to unspliced counts, RNA velocity
allows the quantification of a gene’s regulatory state, effec-
tively extracting a time component from the static snapshot
(11). This information was used to further explore the ef-
fects of the cell-cycle dynamics by calculating the cell-to-
cell transition probabilities with and without the previously
identified cell-cycle genes. Figure 2F shows three examples
of nIPC cells that show a strong transition probability to
other nIPC cells when cell-cycle genes are included in the
calculation, with no clear commitment to any one cell fate.
This implies that the transition between the stages of the
cell-cycle dominate, or at least contribute significantly to
the aggregated velocities. However, when excluding the ve-
locities of the cell cycle genes in the calculation of the cell
transition probabilities, a much clearer picture can be es-
tablished of the differentiation, as the probabilities becomes
more concentrated at the different cell type clusters. This
shows that the intermediate nIPC cells already have a clear
commitment to a certain cell type, an observation that is
missed when selecting genes exclusively on dominant signal
rather than biological contribution as showcased before in
Figure 2A. Previous results from the data source (11) fur-
ther exemplify this, as no transition from radial glia to the
nIPC cluster can be observed in the velocity field.

Matrix factorization captures regulators of cell differentia-
tion

The second dataset from La Manno et al. is of developing
glutamatergic neurons in the human forebrain. It follows a
linear path from the radial glia progenitor cells to the ma-
ture neurons through a sequence of differentiation check-
points. These checkpoints were captured in six out of 15
factors generated with scHPF and are shown sequentially
in Figure 3. For each of these factors, the cell scores on the
embedding are shown in addition to the expression dynam-
ics of the top 10 most contributing genes recovered by pseu-
dotime inference using Ouija. Factor genes are largely pre-
served even with variable numbers of K (see Supplementary
Figure S3). The first factor, factor 8, captures the radial glia
cells identified by the highest scoring gene, the homeobox
transcription factor HOPX, a well-known marker gene for
radial glia (11,19). Factor 6 follows immediately after and
is marked by an early deactivation of the KLF5 gene which
belongs to the Kruppel-like family of transcription factors.
KLF5 and other KLF genes are known repressors of neu-
rite growth, and their downregulation are linked to cell-
cycle arrest and neuronal development (20,21). The later
suppression of Vimentin (VIM) in the same factor, which
is a highly variable gene (Supplementary Figure S2) and
known marker of gliogenesis, indicates that this might be a
commitment point of the progenitor cells to either neuronal
or astrocytic cell fates. Factor 7 has EOMES as the highest
scoring gene which is a well-known transcription factor in
early neuroblasts that regulates neurogenesis (11). Though
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no direct link can be found between EPB4114A4 and neuro-
genesis, the early activated SDC2 gene has a known role in
regulating axon morphology in developing neurons in mice
(22). This function is continued in factor 3 where GO terms
such as regulation of dendritic spine morphogenesis and reg-
ulation of cell morphogenesis involved in differentiation are
highly enriched. Of note in this factor is LAMCI, a target
gene of miR-124, a microRNA that has an important reg-
ulatory function in differentiation and maturation of neu-
roblasts (23,24). The excitatory effects of glutamatergic neu-
rons are already specified by the GPR39 gene in factor 3 and
is further regulated by the two synaptotagmins SY74 and
SYTI (Supplementary Figure S2) in factor 1. The activity
of synaptotagmins are indicative of synaptic integration, the
final stage of neurogenesis (23,23,25-26). The highly vari-
able LM O3 gene in the final factor is a co-factor that phys-
ically interacts with other regulatory proteins to form tran-
scriptional regulators in the developing brain (27,28). To-
gether these results show that genes captured with matrix
factorization have important regulatory roles in the timing
of neuronal differentiation.

Pseudotime curve fitting ignored biological confounds

We compared the pseudotime assignment obtained using
Ouija on the factor genes (shown in Figure 3), with the
pseudotimes identified by the data source, where a prin-
ciple curve was fit on the first four principal components.
Figure 4A shows the fitted principal curve while Figure 4B
shows the alignment of the cells based on the two pseudo-
time assigned by the two methods. A disagreement is visible
in the first half of the trajectory with a delay in the radial
glia cluster (blue) by Ouija. This delay is propagated un-
til the midpoint is reached which corresponds to the start
of factor 3. We hypothesize the cause of the delay to be
due to confounding variability within the radial glia clus-
ter, most likely related to cell-cycle effects. Indeed, GO en-
richment on factor 13, which is active in the delayed first
half, captures cell cycle-related activities (Figure 4 and Sup-
plementary Figure S4). As the true labels are unknown, we
resort to working on the basic assumption that early down-
regulated genes (e.g. those found in factors 8 and 6) are to
be negatively correlated with pseudotime. A higher corre-
lation value would therefore indicate a better ordering of
cells along the pseudotime axis. Figure 4C shows the Pear-
son correlations that support the idea of a necessary delay
within the radial glia cluster as captured by our approach.
Scatterplot of the downregulated genes as a function of both
pseudotime assignments are shown in Supplementary Fig-
ure S7.

Matrix factorization decouples cell type and cell states

Cells within each cell type cluster can be further divided into
cell states. One such example are the radial glia, which dif-
ferentiate to produce both neurons and astrocytes, but have
been shown to switch their preference from the former to
the latter at a later stage (29-31). Another example of dif-
ferent cell states within the same cell type cluster are the
astrocytes themselves. Among other differences, astrocytes
are long known to specialize as GFAP-positive protoplas-
mic and GFAP-negative fibrous astrocytes (29,32-33). The
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factors 8 and 6 (see Figure 3).

factor shown in Figure 5 identified such a subpopulation
within the astrocyte cluster with a high specificity for GFAP,
which might reflect the protoplasmic astrocyte state. More
examples are found in the second dataset where multiple
factors are found that overlap with the cell type and check-
point factors identified in Figure 3 (Supplementary Figure
S2).

DISCUSSION

We have made an attempt at understanding the complex
process of cell differentiation by directly modeling regula-

tors of selected transcriptional programs presumed to be
cell type specific. This approach tackles the question of what
biological sources of variation are relevant to developing
cells. We followed a ‘bottom-up’ approach where a small
subset of core marker genes is utilized to represent cell iden-
tity. Alternatively, one can follow a top down approach such
that all biological processes active in the cells are anno-
tated and subsequently stripped away based on their per-
ceived relevance. An example of this is of Buettner et al. (2),
where the same problem formulation of confounding cell
states was tackled. There, a latent variable model was de-
veloped that factorizes the expression matrix into a set of
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factors determined by a database of pathways and another
set of unannotated factors. However, their analysis was lim-
ited to removing technical rather than biological confound-
ing sources of variation. Nonetheless we argue that while
both approaches require a fair amount of domain knowl-
edge and manual interpretation of gene sets, a bottom-up
approach alleviates this by a large margin while still adher-
ing to a concrete definition of cell identity.

Dimensionality reduction in pseudotime inference

The end goal of our methodology is to improve pseudo-
time inference rather than to develop a new algorithm, and
to shift the discussion toward the use of biology motivated
tooling and interpretation. This is in response to most tools
developed for reconstructing trajectories from single cell
data, namely that they adhere to the pipeline of dimension-
ality reduction followed by trajectory modeling, by either
fitting a curve in the resulting embedding or by finding a
path in the embedding’s neighbor graph (10,34). While it is
known that dimensionality reduction leads to a loss of in-
terpretability, other relevant concerns can be raised as well.
First, the issue of the frequently used principal component
analysis (PCA) method in count based data such as sScRNA-
seq was recently addressed by (among others) Townes et al.
(35), where the authors show that there exists an implicit
assumption of normality of the features. The authors show
that this results in distorted components as sScRNA-seq data
violates this assumption. Second, non-linear dimensional-
ity reduction methods such as t-SNE and UMAP can ex-
aggerate the distances between cell clusters with large tran-
scriptional differences, which can lead to disconnected em-
beddings (36). This problem can be amplified with stringent
variance-based gene filtering as developing cells are identi-
fied by more subtle differences in gene expression. Finally, it
has been shown that complex high-dimensional structures
found in scRNA-seq data cannot be fully preserved in a
small number of dimensions, and can therefore miss im-
portant variation or lead to distorted embeddings (37). Our
methodology is unaffected by these issues as dimensionality
reduction is not a prerequisite for matrix factorization and
gene expression modeling. However it must be noted that
the use of gene expression smoothing used in the RNA ve-
locity pipeline, which was subsequently passed to Ouija for
gene modeling, does rely on a PCA step, and may therefore

be affected by possible distortions mentioned before. This is
no shortcoming of Ouija as no smoothing is required per se,
however we did find the model fit to improve with smooth-
ing (Supplementary Figures S5 and 6).

Cell type and cell state

Of specific interest in this study is the definition of a cell type
as a summation of its core regulators and its different states.
Trajectory modeling is affected by this as cell distances can
reflect cell state instead of cell types. We argue that reduc-
ing the genes to a small set of core regulators that preserve
the identity of the cells, we are able to circumvent the prob-
lem of confounding cell states. Another consequence of de-
coupling cell type from state is that a shared state between
different cell types can lead to high similarity between cells
of different identities. This is exemplified in the first analy-
sis shown in Figure 2 where it was found that the existence
of the nIPC cluster is a direct effect of the cell cycle on dif-
ferentiating cells. A more subtle example is regarding the
substantial amount of functional similarities between radial
glia and astrocytes, hence their combined classification as
neuroglia (33). The expression of the GFAP protein in both
cell types is an example of their similarities, which can ex-
plain the close proximity observed in Figure 2B between the
radial glia and the aforementioned protoplasmic astrocyte
subpopulation.

Regulator genes for cell type identification

We have motivated and shown that the use of cell type reg-
ulators for pseudotime inference can be a useful alterna-
tive to curve-based fitting due to their biological relevancy.
However not all transcription factors are annotated or even
identified (38). This problem is circumvented in this study
by taking the top factor genes, and although many have
important regulatory functions as shown in the results, it
is not obvious if they are directly coupled to the cell types
and differentiation checkpoints. Further validation must be
needed to confirm such associations. For example, knock-
out experiments of the putative transcription factors can
be used to determine their necessity as important regula-
tors in cell differentiation. Similarly, one can overexpress
the putative regulator in pluripotent stem cells and observe
any structural or regulatory similarities with the cell type
under study. One might argue that as long as the genes
used for pseudotime inference are faithful proxies of the dif-
ferentiation process, the use of effector genes rather than
regulatory genes might not influence the resulting pseudo-
times significantly. A downside to this however is that the
genes cannot be validated or utilized in other similar stud-
ies which hurts the interoperability and reusability of the
study. Furthermore, the genes may no longer provide in-
sight into what processes regulate cell fate decisions. Effec-
tor genes are also much larger in quantity than their reg-
ulators (1), which can lead to an uneven distribution of
signals across the different cell types and checkpoints and
result in distorted pseudotimes. Even when restricting the
number of genes to circumvent this, one must also keep in
mind that there exists a delay in activity between transcrip-
tion factors and effector genes. Namely, when a pathway



used during differentiation is activated in developing cells,
there exists a delay between when its regulators respond to
the activation signals, and the actual transcription and ac-
tivity of the effector genes. This means that the snapshot
provided by scRNA-seq of the transcript counts fluctate in
time, which has led to the utilization of time alignment al-
gorithms such as Dynamic Time Warping, used predomi-
nantly in the field of metabolomics (39). Current compu-
tational solutions might be the use of regulatory network
inference algorithms that have emerged in quantity due to
the granularity provided by scRNA-seq data (40). Another
approach is provided by algorithms that predict physical in-
teractions between proteins, as increasing evidence shows
that core regulators form physical interactions (1), exempli-
fied by the co-factor LMO3 found in factor 12 in the de-
veloping mouse forebrain. Supplementary Figure S8 in the
supplementary shows how the STRING service (41) is used
to find many interactions between top factor genes in the
last stages of glutamatergic neurogenesis.

The incredible resolution provided by single cell RNA-
sequencing data raises the question of what sources of
variation within it are important for the study at hand.
Here we have focused on the problem of cell identification,
more specifically in developmental systems using pseudo-
time inference. We have argued and shown that confound-
ing sources of variation, most notably the cell cycle, can dis-
tort inference of the differentiation trajectory. We have then
shown that this problem can be circumvented by limiting
the scope to a select subset of genes assumed to play a reg-
ulatory role in cell development and directly modeling their
expression.
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