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Abstract
A challenge of metabolomics is data processing the enormous: Background

amount of information generated by sophisticated analytical techniques. The
raw data of an untargeted metabolomic experiment are composited with
unwanted biological and technical variations that confound the biological
variations of interest. The art of data normalisation to offset these variations
and/or eliminate experimental or biological biases has made significant
progress recently. However, published comparative studies are often biased or
have omissions.  We investigated the issues with our own data set,: Methods
using five different representative methods of internal standard-based,
model-based, and pooled quality control-based approaches, and examined the
performance of these methods against each other in an epidemiological study
of gestational diabetes using plasma.  Our results demonstrated that: Results
the quality control-based approaches gave the highest data precision in all
methods tested, and would be the method of choice for controlled experimental
conditions. But for our epidemiological study, the model-based approaches
were able to classify the clinical groups more effectively than the quality
control-based approaches because of their ability to minimise not only technical
variations, but also biological biases from the raw data.  We: Conclusions
suggest that metabolomic researchers should optimise and justify the method
they have chosen for their experimental condition in order to obtain an optimal
biological outcome.
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Introduction
Metabolomics is the large-scale study of small molecules in bio-
logical systems. It combines strategies to identify and quantify 
cellular metabolites using sophisticated analytical techniques with 
the application of multivariate statistics for data mining and inter-
pretation1. Metabolomics, particularly mass spectrometry (MS)-
based approaches, is increasingly being used in population-based 
or epidemiological studies, since the technology offers a high-level 
of reliability and sensitivity over conventional biochemical tech-
niques, and multiple metabolites can be simultaneously monitored2. 
Furthermore, the technology can be used to examine biological 
matrices in a holistic non-biased manner, with the goal of bring-
ing a global understanding of these complex systems and creating 
new hypotheses on how they function. However, even if clinical and 
pre-analytical procedures (e.g., specimen collection, storage and 
handling, and preparation of the samples) have been standardised 
and conducted appropriately, inevitably, there are still unwanted 
variations2. These variations are introduced by (1) the natural 
biological variations among the individual subjects and samples 
(the cohort); (2) the fluctuations in experimental conditions; and  
(3) the effects of the instrumental drifts that confound with the 
biological variations of interest. The instrumental drifts vary from 
changes in column condition and ageing, progressive contami-
nation of the ion source and optics, and the deterioration of the  
detector response. The changes in column condition result in shifts 
in retention time, increased column bleeding that leads to errone-
ous data extraction. The progressive ion source and optics con-
tamination lower the absolute instrument responses that result in  
profound difficulty in compound quantification. These varia-
tions can be detrimental to epidemiological studies that typically  
involve a population of subjects with a diverse range of bio-
logical characteristics, and large numbers of samples that are  
analysed over weeks with multiple batches of analyses. These 
unwanted variations in the raw data are minimised through a 
processing step called normalisation3,4. The removal of unwanted 
variation is by no means a trivial matter and is important, and yet 
remains a grey area, in which there is a distinct need to develop a 
greater understanding of when, why, and how, in order to achieve 
optimal biological outcomes5. Since every metabolomics experi-
ment is exposed to multiple sources of unwanted variation, the 
results obtained in the subsequent data analysis can vary depend-
ing on the normalisation method used to remove the unwanted  
variations6.

In our previous work, we have discussed the fundamental issues 
surrounding the data pre-processing and normalisation of an untar-
geted gas chromatography-mass spectrometry (GC-MS)-based 
environmental study7. In this research article, we extend our discus-
sion with a study of a longitudinal cohort study of Chinese pregnant 
women8–10, and share some of our experience in handling the analyt-
ical challenges of untargeted GC-MS-based epidemiological study. 
The structure of this manuscript is as follows: The current state-of-
the-art data normalisation methods are reviewed and the challenges 
of data extraction and its effect toward downstream data processing 
are discussed; representative normalisation methods, including IS-
based, QC-based, and model-based data normalisation approaches 
are used to process the data set, and the performance of these 

methods is evaluated by principal component analysis (PCA), rela-
tive log abundance (RLA) plots, relative standard deviation (RSD), 
and receiver operating characteristic (ROC); logistic regression is 
then used to adjust the significance with the biological confounders; 
and the implications of the findings are discussed.

Methods
The full experimental design, procedures, and statistical meth-
ods are described in the Supplementary Methods (Supplementary 
File 1). The clinical characteristics of the participants have been 
described previously8.

In brief, the longitudinal cohort of this study constituted 61 Chi-
nese pregnant women who completed their antenatal care at the 
First Affiliated Hospital of Chongqing Medical University. Of the 
61 participants, 34 had normal glucose tolerance (controls), and 27 
met the diagnostic criteria for gestational diabetes (GDM) based 
on the International Association of Diabetes and Pregnancy Study 
Groups recommendations11. Blood samples were collected on the 
scheduled antenatal visits, one in each trimester. Samples were 
stored at – 80°C until analysis.

An enhanced GC-MS method12 was employed to investigate the 
longitudinal change of non-esterified fatty acids (NEFAs) and other 
aromatic metabolites in the maternal plasma of women who devel-
oped GDM and healthy pregnancies (controls). To enhance the sepa-
ration of cis- and trans- isomers of mono- and polyunsaturated fatty 
acid, methyl esters, a 100 m long biscyanopropyl/phenylcyanopro-
pyl polysiloxane column was used. EDTA-treated plasma samples 
were thawed on ice and extracted with methanol/toluene pre-mixed 
with internal standards. The extracts were derivatized with acetyl 
chloride solution in round-bottom glass tubes with screw caps and 
sealed. The tubes were then heated and stirred at 100°C for 1h. 
NEFAs were derivatized to their fatty acid methyl esters (FAMEs). 
The organic layer was recovered and analysed directly by GC-MS 
after neutralisation with aqueous potassium carbonate solution. 
GC-MS data were acquired with an Agilent GC-MS system in the 
splitless mode. An RESTEK Rtx®-2330 column (90% biscyano-
propyl/10% phenylcyanopropyl polysiloxane) was installed in the 
system. The column temperature was computer controlled and was 
ramped from 45°C to 215°C in over 65 mins. Data pre-processing  
was performed in the Agilent MassHunter suit (version 8  
of Qualitative Workflows and Profinder), Metabolite Detector13  
(version 2.5), and AMDIS (Automated Mass Spectral Deconvolu-
tion and Identification System) (version 2.72), and the accuracy of 
data extraction of these software tools was compared. Data was 
further processed and analysed with five different normalisation 
methods (CRMN, EigenMS, PQN, SVR and LOWESS). The per-
formance of the normalisation methods and the marker candidates  
identified were investigated. PCA was performed with EZinfo 
(version 3.0.3). Multilevel PCA14 was performed using mixOm-
ics (version 6.1.3). Pareto scaling was used in PCA and mPCA 
modelling. RLA plots were drawn with the RlaPlots function of 
the package metabolomics15 (version 0.1.4). ROC was calculated 
with the colAUC function of caTools (version 1.17.1). Binomial  
logistic regression was performed with the glm function of R  
(version 3.3.3).
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An overview of the state-of-the-art data normalisation 
methods
Normalisation is typically performed post-analytically (i.e., data 
normalisation). Data normalisation can be categorised as (1) inter-
nal standard (IS)-based (especially with the use of isotopic internal 
standards); (2) quality control (QC)-based, such as pooled samples; 
and (3) statistical- or model-based. The IS-based approach is the 
standard technique for targeted analysis of metabolites and pep-
tides. Methods using multiple internal standards, such as NOMIS 
(Normalisation using Optimal selection of Multiple Internal  
Standards)16, CCSC (Comprehensive Combinatory Standard  
Correction)17,18 and CRMN (Cross-contribution Robust Multi-
ple standard Normalisation) have been proposed for untargeted 
analysis. The latter methods address the specific issue of cross- 
contribution. Nevertheless, there is a practical limit to the number 
of internal standards that can be added to the samples, and so the 
coverage of different classes of compound in a complex mixture 
of biological extract. Despite the numerous drawbacks, IS-based 
approaches are still used in untargeted epidemiological metabo-
lomics, particularly with the use of GC-MS19,20. However, the 
reported results of these studies are, in our view, dubious at best.

An alternative approach is the use of a pooled QC sample to cali-
brate the symmetric biases. Pooled QC was originally designed 
to monitor the system and sample stability over the course of an 
analysis21, but was adopted to provide an ability to perform signal 
correction22. A common method uses locally weighted scatterplot 
smoothing (LOWESS) for signal correction23. Several regression 
models have been proposed in this regard, but these algorithms have 
different susceptibility/tolerance to outliers. One method models 
the data by a set of local polynomials, which avoids the constraint 
that the data follow any one global model and is less sensitive to 
errant data points24. An improved version uses cubic spline interpo-
lation to determine the coefficient values between QC samples25,26. 
Recently, single value regression model with the total abundance 
information (Batch Normalizer)27, support vector regression (SVR) 
normalisation (MetNormalizer)28 and mixture model normalisation 
(mixnorm)29 have also been proposed. While QC-based methods 
have been shown to provide an effective mean for performance 
monitoring and signal correction, the sources of unwanted variation 
seen in metabolomic data can occur due to both experimental and 
biological reasons5. QC-based methods are limited to drift in signal 
over time and batch effect removal. The applicability of these meth-
ods can also be limited by practical considerations.

In contrast, statistical- or model-based approaches are able to 
remove both experimental and biological variations. Probabilistic 
quotient normalisation (PQN) is one of the most commonly used 
model-based methods, particularly in nuclear magnetic resonance 
(NMR)-based metabolomics. The method assumes that biologically 
interesting concentration changes influence only parts of the NMR 
spectrum, while dilution effects will affect all metabolite signals30. 
The mean or median of the QC data is typically used as the ref-
erence spectrum3. EigenMS is an adaptation of surrogate variable 
analysis for microarrays and it uses a combination of ANOVA and 
singular value decomposition (SVD) to capture and remove biases 
from metabolomic peak intensity measurements, while preserving 
the variation of interest31,32. The number of bias trends is determined 

by a permutation test and the effects of the bias trends are then 
removed from the data. This approach has an advantage as it per-
mits researchers to remove unwanted symmetric variation without 
knowing the sources of bias.

Concurrent pre-analytical normalisation equalising the concen-
tration of the samples prior to sample analysis is also desirable. 
For example, this can be achieved with freeze dried samples by  
weight. For urine, an application of appropriate dilution factor after 
a measurement of specific gravity33, osmolality34, or creatinine  
concentration35, reportedly reduces the analytical variability.

Results and Discussion
The sources of technological biases and possible solutions
The GC-MS data were first pre-processed with AMDIS and Metab-
olite Detector. As reported in our previous work7, despite having 
carefully adjusted software parameters, data deconvolution with 
AMDIS was error prone. In particular, a single component could 
be assigned to multiple components (insert in Supplementary  
Figure 1a). Some researchers use peak height instead of peak area 
to allow a manual removal of incorrectly assigned components from 
the data matrix. However, many components detected in our experi-
ment were unsymmetrical and/or had tailings. Accordingly, we 
consider that the use of peak height was inappropriate. Relatively, 
the data deconvolution of Metabolite Detector was a lot better than 
AMDIS (Supplementary Figure 1b), and the problems encountered 
in AMDIS was not observed with Metabolite Detector (insert in 
Supplementary Figure 1b). Given our current and previous observa-
tions, we do not recommend using AMDIS (or workflow based on 
AMDIS) for untargeted GC-MS data deconvolution7.

Another challenge was the relatively large non-linear retention 
time shift over the course of the two-week analysis. For exam-
ple, the retention of the cholest-3,5-diene varied nearly 50 s  
(Supplementary Figure S2). Retention time could normally be 
adjusted with retention time alignment and was performed with 
Metabolite Detector. However, many of the compounds detected 
were structurally similar or isomeric, closely eluted, and had identi-
cal or very similar electron impact mass spectra (Supplementary 
Table 1). We found that the retention alignment did not have the 
expected accuracy. As a result, the data extracted by the automatic/
batch process of the software contained non-zero errors. These non-
zero errors were poorly tolerated by the QC-based normalisations 
(especially by the LOWESS normalisation) in the downstream data 
processing. Although these errors also affected the IS-based and 
model-based normalisations, these errors were tolerated to some 
extent by these approaches. However, to make an accurate and 
impartial comparison, an alternative data pre-processing method 
was used.

Data pre-processing was further performed with the most recent 
release of Agilent MassHunter Suit. Data deconvolution and 
compound identification with the Qualitative Workflows and the 
Agilent NIST14 database were relatively easy, fast and accurate  
(Figure 1a). 385 components were detected above the user’s defined 
threshold value in a typical QC sample, of which 62 components 
were confidently annotated. The compound identification and the 
retention time information were then exported to the Profinder. The  
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Figure 1. Agilent MassHunter (a) Qualitative Workflows and (b) Profinder interface. 385 components were extracted from a typical QC sample 
from 14.5 to 56 min, of which 62 were confidently annotated with match factor ≥ 80. Data was then exported to a CEF file. The file was then 
used by Profinder for batch data extraction. The Profinder tool was designed with the use of reference spectra and retention time windows to 
assist data extraction.
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automatic/batch data extraction process of the Profinder was, how-
ever, far from perfect. Nevertheless, the interface of Profinder per-
mitted a user-friendly visual inspection and manual correction that 
other similar software tools (including MS-DIAL, eRah, ADAP-
GC, metaMS and MassOmics) did not provide. By manually cor-
recting the inconsistency of data extraction (carefully selecting the 
exact region of the corresponding peak), an error-free data extrac-
tion was achieved (Figure 1b).

A common problem with most GC-MS studies is the progressive 
deterioration of the instrumental performance caused by the ion 
source and optics contamination. The unadjusted (raw) data (left 
panel, Supplementary Figure 3) showed the extent of loss of abso-
lute signal intensity of the two internal standards and a background 
compound over the course of the analysis. The signal of 1,3-dime-
thyl-benzene from both QC and analytical samples (Supplementary 
Figure 3a) showed that the loss of absolute intensity was faster in 
the first batch and then recovered after setting the system at idle. 
Thereafter, the loss of absolute signal became stabilised. The  
overall trend of the two internal standards, tridecanoic acid and 
nonadecanoic acid, was similar (Supplementary Figures 3b and c), 
but batch 4 and 5 had a higher absolute signal relative to batch 3. 
These changes might be caused by fluctuation of other experimen-
tal condition as per batch-to-batch variation. The systematic biases, 
either due to loss of absolute intensity, or other fluctuations, were 
removed by normalisation (right panel, Supplementary Figure 3). 
However, not every normalisation method performed equally, and 
the normalisation employed had a significant influence on the deter-
mination of significant metabolites.

Evaluating the performance of the selected normalisation 
methods
The pre-processed data were processed with five selected nor-
malisation methods. The outputs from the CRMN, EigenMS and 
MetNormalizer packages are shown in Supplementary Methods, 
Figures M1-M3. The performance of these normalisation methods 
was evaluated by three methods. The PCA score plots are shown in 
Supplementary Figure 4. The within-group RLA plots are shown in 
Supplementary Figure 5. The RSD of the QC and analytical sam-
ples are shown in Table 1 and Supplementary Table 1.

The PCA score plot of the unadjusted data revealed a transition  
from red to green and blue, representing the first-, second-, and  

third-trimester samples (Supplementary Figure 4a). The RLA plot 
showed a relatively large within-group variation (Supplementary  
Figure 5a). The RSD of the QC samples was relatively high 
(19.34%) (Table 1) and four metabolites had QC RSD values ≥ 30%  
(Supplementary Table 1). After normalisation with CRMN, the 
classification was improved. The QC samples were seen clus-
tered together in the PCA score plot (Supplementary Figure 4b).  
However, the RSD of the QC samples was higher than 10% 
(Table 1) and four metabolites had QC RSD values ≥ 30% 
(Supplementary Table 1). The within-group RLA plot sug-
gested that the CRMN normalisation performance was rela-
tively modest compared to other normalisation methods 
(Supplementary Figure 5b). These observations were partly because 
of the small number of ISs used in this experiment. As a result, we 
did not find the usefulness of CRMN or other IS-based normalisa-
tion methods for this data set.

The data processed with EigenMS, on the other hand, had signifi-
cantly improved the classification (Supplementary Figure 4c), and 
it was the only method in all normalisation methods tested that 
was able to distinctively separate the clinical groups in the PCA 
plot. The RSD of the QC samples was reduced to 9.77% (Table 1) 
and two metabolites had QC RSD values ≥ 30% (Supplementary  
Table 1). The data processed with PQN was improved slightly 
further with RSD of the QC samples reduced to 8.92% (Table 1),  
although classification of the PCA score plot was less clear  
(Supplementary Figure 4d). Only one metabolite had a QC RSD 
value ≥ 30% (Supplementary Table 1).

Finally, the data set was processed with two QC-based normalisa-
tion methods. Under the default settings of the two normalisation 
tools, the SVR normalisation was found to have a higher toler-
ance to outliers than the LOWESS normalisation (Supplementary  
Figure 6). In contrast, the LOWESS algorithm merely adjusted the 
analytical data according to the QC data after smoothing (data not 
visualised). These observations suggested that the algorithms of the 
SVR and LOWESS normalisation handled the outliers quite differ-
ently. This observation had an implication to the selection of ana-
lytical platform and the QC-based data normalisation methods. The 
RLA plots suggested that the performance of EigenMS, PQN and 
SVR normalisation were similar (Supplementary Figures 5c-e), but 
the data processed with LOWESS normalisation was the most pre-
cise (Supplementary Figure 5f). The RSD of the QC samples was 
5.73% and 4.79% of the data processed with the SVR and LOW-
ESS normalisation (Table 1), and no metabolite was found to have 
QC RSD ≥ 30% in the LOWESS-processed data set (Supplementary 
Table 1).

To account for the repeated measurements of the same subject at 
different stages of pregnancy (the longitudinal data set), multilevel 
statistics14 was used8,9. The three most promising normalisation 
methods were further interrogated with multilevel analysis. The 
multilevel PCA score plots of the data processed with EigenMS, 
the PQN and LOWESS normalisation were shown in Figure 2. 
In all cases, a clear separation between the early, middle, and late 
pregnancies was seen in the multilevel PCA score plots. This was 
a significant improvement over single-level PCA (Supplementary 
Figure 4). Still, no or minor separation between the GDM cases 
and the controls was observed. The corresponding loading plots of 

Table 1. Summary statistics for metabolite variability according 
to relative standard deviation (RSD) for QC and analytical 
samples before and after normalisation.

RSD (%) of individual metabolites across 
samples: mean (min, max)

QC Analytical

Unadjusted (raw) 19.34 (45.00, 12.15) 30.11 (64.01, 17.22)

CRMN 11.75 (41.18, 1.14) 30.89 (97.42, 1.95)

EigenMS 9.771 (36.33, 2.19) 22.11 (62.06, 6.70)

PQN 8.916 (31.06, 1.22) 20.80 (58.85, 9.96)

SVR 8.196 (30.27, 1.18) 21.16 (62.66, 2.45)

LOWESS 5.733 (22.05, 1.88) 18.18 (62.60, 2.49)
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Figure 2. Multilevel principal component analysis score plots produced by the data processed with the (a) Eigen, (b) PQN, and (c) LOWESS 
normalisation.
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Figure 3. Multilevel principal component analysis PC1 loading plots (top 10 variables) corresponding to Figure 2. (a) Eigen, (b) PQN, 
and (c) LOWESS normalisation.
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the models were compared. As shown in Figure 3, these models 
produced completely different sets of significantly metabolites that 
were changed in the course of pregnancy. On further inspection, 
the PQN-processed model was rejected, as the basic assumption 
of the PQN model (i.e., the majority of variables do not show “sig-
nificant” differences between the studied groups) was not met. On 
the comparison of the EigenMS- and LOWESS-processed mod-
els, one might reasonably assume that the data set processed with 
the LOWESS normalisation was superior based on the RSD val-
ues (Table 1)29. However, we argue that QC-based normalisations 
could only remove technological variations, but not the unwanted 
biological variations5. The QC-based normalisations would have 
outperformed other normalisation approaches for the studies of 
cell culture, or animal studies, where experimental conditions 
permitted a high degree of control over the experimental subjects 
and so the condition of the samples. This would have hardly held 
true for the epidemiological studies of human subjects (patients). 
Although the precision of the data processed with EigenMS was 
suboptimal, it was unequivocal that the EigenMS-processed model 
gave the best classification of all methods tested and had both tech-
nical and unwanted biological variabilities minimised.

Influence of marker discovery and implications
A heat map of the area under the ROC curve (AUC) of the data 
processed with four of the selected data normalisation methods is 
shown in Figure 4. The data processed with the LOWESS or SVR 
normalisation found no metabolites had an AUC ≥ 0.7. In the data 
processed with EigenMS, only one metabolite, hexadecanoic acid, 
was found significantly different between the GDM cases and the 
controls in the first trimester. The data set was analysed by logis-
tic regression (Supplementary Table 2). Age, BMI, and parity were 
considered as confounding factors. The results were presented in 
the same format as reported by Enquobahrie, et al.36 (which did not 
involve odds ratio). The results of logistic regression analysis were 
consistent with the results of the ROC.

Overall, the increase in NEFAs over the course of pregnancy 
reflected the progressive change in hepatic and adipose metabo-
lism that occurs as part of the natural process of pregnancy, which 
facilitates the maternal utilisation of free fatty acids as an energy 
source, sparing other substrates for placental-foetal transport and 
foetal growth. However, the majority of individual NEFAs was not 
significantly different between the GDM cases and controls. It was 
concluded that the differences in the maternal plasma NEAF com-
position between the GDM cases and the healthy controls were very 
subtle37, and our analysis had reached a limit of untargeted GC-MS 
analysis with the selected data normalisation methods. By using 
targeted GC-MS analysis, Chen, et al., reported that the concentra-
tions of NEFAs in maternal serum had a “graded” (or incremental) 
relationship with the severity of maternal hyperglycaemia38. These 
observational differences in the maternal plasma of our cohort may 
provide an insight into the development of GDM in the homogene-
ous population in China, who consume an oriental diet as opposed 
to populations in western countries.

Dataset 1. Pre-processed raw data and the data further processed 
with the data normalisation methods used in this study are 
available in Excel files

http://dx.doi.org/10.5256/f1000research.11823.d164121

Raw is the unadjusted data; CRMN.norm, EigenMS.norm, PQN.
norm, SVR.norm, LOWESS.norm are the data further processed 
with the corresponding normalisation methods; Injection sequence 
describes the injection order of the GC-MS experiment. This 
information is used for QC-based normalisation.

Conclusions
The choice of the data normalisation method has a significant influ-
ence on biomarker discovery. Accordingly, researchers should 
justify that their selected methods are appropriate for their experi-
mental condition. Where a study is conducted under a control-
led experimental environment, and the specimens are biological 
equivalents (e.g., serum samples in an animal study, dried tissues, 
or cell cultures), we recommend QC-based normalisations. These 
methods effectively eliminate technical variations and the resulting 
data has the highest data precision. The selection of a QC-based 
method is instrumental platform or data dependent (i.e., tolerance to 
outliers and/or missing values). Where the data is generated by an 
epidemiological study of human subjects, model-based normalisa-
tions are recommended. PQN normalisation is the preferred choice 
when the basic assumption of the model is met. Conversely, we 
propose EigenMS. Although EigenMS still requires further devel-
opment, we do believe that the principles of its unique biases cap-
ture and removal approach have a great potential to confront the 
analytical challenges of epidemiological metabolomics. Although 
IS-based normalisation is a common approach in GC-MS-based 
metabolomics, it has been demonstrated that the method is out-
performed by other approaches. This is because batch effects can 
vary substantially according to chemical class and chromatographic 
retention. The use of a few selected ISs is not justified for untar-
geted analysis of complex biological mixtures. It is frequently 
mentioned in the review literature that the targeted analysis is 
limited by the scope of an analysis, but the untargeted analysis is 
also limited by the analytical precision. The current state-of-the-art 
data normalisation methods are not impeccable to the challenges. 
Nevertheless, by understanding the limitations of the popular data 
normalisation methods, a new approach capable of effectively 
eliminating both technical and irrelevant biological variations 
without compromising the integrity of the data may be developed.  
Moreover, a major challenge in the GC-MS-based analysis is the 
lack of suitable informatic tools specific for untargeted metabo-
lomics. Many authors still rely on AMDIS, notwithstanding its 
known problems. It is worth stressing that errors in data extraction 
have an equal or greater effect on the downstream data analysis. We 
performed our data processing locally using R. Those not famil-
iar with the R platform may consider the NOREVA server (http://
server.idrb.cqu.edu.cn/noreva/), which offers a variety of data nor-
malisation methods, including those used in this study, to stream-
line the analysis.
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Consent
All the participants gave informed consent to participate in the 
current study. The study was approved by the Ethics Committee 
of the First Affiliated Hospital of Chongqing Medical University 
(University Hospital). More information can be found in the previ-
ous study8.

Data and software availability
Dataset 1: Pre-processed raw data and the data further proc-
essed with the data normalisation methods used in this study 
are available in Excel files: Raw is the unadjusted data; CRMN.
norm, EigenMS.norm, PQN.norm, SVR.norm, LOWESS.norm 
are the data further processed with the corresponding normalisation 
methods; Injection sequence describes the injection order of the 
GC-MS experiment. This information is used for QC-based normal-
isation. http://dx.doi.org/10.5256/f1000research.11823.d16412139

Agilent MassHunter suit version 8 is available to licensed subscrib-
ers of Agilent SubscribeNet (https://agilent.subscribenet.com/). 

Agilent Profinder version 8 is available free of charge to all Agi-
lent’s customers.
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Supplementary material
Supplementary File 1: Supplementary Methods.

Click here to access the data.

Table S1. Metabolites confidently (match factor ≥ 80) identified by MassHunter software with NIST14 library and the relative standard 
deviation of individual metabolites in QC and analytical samples before (raw) and after data normalisation. IS denotes internal standard.

Click here to access the data.

Table S2. Binomial logistic regression analysis of the data set processed with (a) EigenMS, (b) PQN, (c) SVR, (d) LOWESS. Variables with 
significance (p-values) ≤ 0.05 are highlighted in bold.

Click here to access the data.

Figure S1. A comparison of (a) AMDIS and (b) Metabolite Detector deconvolution performance. AMDIS extracted a total of 277 compo-
nents from 14.5 to 56 min, whereas Metabolite Detector extracted 264 components from 14.5 to 56 min (274 components up to 65 min) 
in a typical QC sample. Manual inspection revealed that a small number of peaks had been assigned to multiple components by AMDIS 
(insert in (a)) when the peaks were unsymmetrical. This problem was not observed with Metabolite Detector (insert in (b)). Many of the 
peaks, highlighted in blue triangles in (b), were low-intensity background components. 65 components were confidently annotated with 
match factor ≥ 80.

Click here to access the data.

Figure S2. Retention time shift of cholest-3,5-diene. Its retention varied from 54.65 – 55.17 mins.

Click here to access the data.

Figure S3. The left panel shows the raw intensity of (a) 1,3-dimethyl-benzene, (b) tridecanoic acid, methyl ester, and (b) nonadecanoic 
acid, methyl ester over the course of a 10-batch experiment. Their signal intensity was progressively deteriorated as a result of continual ion 
source/optic contamination. The right panel shows their intensity after SVR normalisation.

Click here to access the data.

Figure S4. Principal component analysis score plots of the (a) raw (unadjusted) data, and the data normalised with (b) CRMN (c), EigenMS, 
(d) PQN, (e) SVR and (f) cubic spline-LOWESS.

Click here to access the data.
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Data processing and normalization are critical in large-scale metabolomics studies. Different choice tends
to have a significant impact on the downstream analysis. It is well-known that optimal normalization is
study-specific, as most normalization methods have been developed with certain data distributions in
mind. However, research on this issue is challenging due to the lack of well-accepted benchmark
metabolomics datasets and evaluation criteria. Common approaches include using simulated data in
combination with a well-studied data, or using multiple datasets in order to generate a less biased
conclusion.

In this paper, the authors reported their experience using 5 different normalization methods on an
epidemiological metabolomics dataset generated from GC-MS. Therefore, the conclusion may not be
directly applicable to data from other platforms such as LC-MS or NMR. Nevertheless, the authors
described the pitfalls and challenges in processing such data, and shared their insights which may be
useful for other researchers under similar experimental setup. 

My comments are on two aspects: 

1) Although I have no problem understanding the content, I think the authors need to invest more time and
efforts improving the readability of the paper. I have noticed many grammar issues. Almost all sentences
in the Background section in Abstract needs to be carefully checked. 

Figures:
Figure 2 - Including result based on raw data will be very helpful;
Figure 3 legend - mPCA or msPCA? 
Figure 4 legend - "are under the curve" == > area?

2) Some normalization methods are rather complementary. For instance, some adjust technical variations
and some for biological variations. It will be interesting to test whether combining two different
normalization methods will give better results.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
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Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 10 July 2017Referee Report

doi:10.5256/f1000research.12777.r23714

   Feng Zhu
 Innovative Drug Research Centre and School of Pharmaceutical Sciences, Chongqing University,
Chongqing, China
 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China

The authors investigated five different representative methods and examined the performance of these
methods against each other in an epidemiological study of gestational diabetes using plasma.
Normalization is an important step in the analysis of metabolomics data, and hence, evaluating different
normalization methods is of great importance. However, I have some comments, which are summarized
below.

Comment 1:
Liquid chromatography coupled with mass spectrometry (LC-MS) and nuclear magnetic resonance
(NMR) spectroscopy are also the most commonly applied tools to achieve metabolomics studies. The
authors should discuss what renders GC-MS datasets different from LC-MS or different from NMR.

Comment 2:
Normalization is an important step in the analysis of metabolomics data and a variety of normalization
methods have been developed for addressing the complex datasets generated. But their performances
vary greatly and depend heavily on the nature of the studied data. Hence, how to choose the most
appropriate method can be challenging for those without a background in bioinformatics. The recent
published paper referred to identifying the well performed normalization method by taking multiple criteria
into consideration ( , 45(W1): W162-W170 (2017)). So, just to clarify the reader shouldNucleic Acids Res
be alerted when to use any of the best performing methods, plus should be alerted when not to use them.
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Comment 3:
Sparsity of data: in many cases metabolomics datasets contain zero values. Discuss in the manuscript
how zero values affect the normalization and the relevant sections referred in the paper ( , 6:38881Sci Rep
(2016)) could be discussion points.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 12 Jul 2017
, CQMU, ChinaKai Law

I would like to thank Dr Zhu for his detailed review of our article and his approval. Herewith my
response to the reviewer’s comments.

Comment 1 and 2:
With respect to data normalisation for UPLC-MS data sets, please refer to my previously published
articles (Ref. [8-10]). In brief, I have developed a two-step data normalisation approach specific for
our cohort study of GDM (ref. [10]). The first step involves a normalisation method available in
Progenesis QI (normalise to all compounds), which primarily deals with changes in the sample
concentration. The second step involves a data equalisation with EigenMS, which further captures
and removes residual biases, such as instrumental drift and batch effects. Comparison with other
common normalisation methods has been described in the supplementary data in ref. [9]. I am not
an expert of NMR, but to the best of my knowledge, the data normalisation methods (and so the
data analysis methods) described in my works equally apply to NMR data sets.

I agree with the reviewer that the application of data normalisation strategy is dependent on many
factors, from study design, instrumentation, and software platform, to the nature/structure of the
data set. Many authors have conducted their studies without considering this question seriously or
applied the most common methods to avoid questions from the peer-reviewers. The NOREVA
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data set. Many authors have conducted their studies without considering this question seriously or
applied the most common methods to avoid questions from the peer-reviewers. The NOREVA
server the reviewer developed provides resources and tools for analysts, who may have limited
bioinformatic background, to optimise their data normalisation strategy. However, no software tools
can justify which normalisation method is the most appropriate in each situation for the user. For
example, normalise to internal standards or pooled QC samples are common methods for data
normalisation of GC-MS data set. However, I do not find normalising to a few internal standards
can be justified. QC-based normalisation, although may give the highest analytical precision,
model-based approaches are, however, the preferred methods for the cohort study of human
population. It is because QC-based normalisation only deals with analytical drifts and the
consistency of the QC samples may present an analytical challenge in a large-scale study. Data
normalisation remains a challenge in metabolomics and is a grey area that needs further
development. It is up to the readers to decide when a method is more appropriate than the others
in their study. It is beyond the scope of this study to generalise or set rules as the reviewer
suggested.

Comment 3:
“Zero values” is not a problem in our study. I have applied our software platform to avoid this
problem completely in this study and so in my previous UPLC-MS works with the use of
Progenesis QI. I also want to stress that I do not recommend imputation for zero or missing values
since the choice of imputation method, as the reviewer has implied, “affect[s] the normalization”
and so the biological outcome. In this article, I used Agilent’s Profinder to eliminate the problem of
zero values, the data were manually checked and peaks were re-integrated to ensure accurate
data extraction. This has been discussed in the article already. The raw data matrix provided by the
article has shown that our data do not have the problem of zero or missing values. Furthermore,
the Profinder software has a unique function called Recursive Feature Extraction that re-integrates
peaks with intensity lower than the background value input by the user. This is useful when certain
peaks have low intensity in some of the samples but are detected above background in the other
samples. We have used the same method with Metabolite Detector in our previous work (ref. [7]) to
eliminate zero values. We have stressed in this work that methods based on AMDIS (and indeed
ChromaTOF), which require imputation, are not recommended. 

 There is no competing interestsCompeting Interests:
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