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Ovarian carcinomas (OCs) represent a heterogeneous group of neoplasms consisting of
several entities with pathogenesis, molecular profiles, multiple risk factors, and outcomes.
OC has been regarded as the most lethal cancer among women all around the world.
There are at least five main types of OCs classified by the fifth edition of the World Health
Organization of tumors: high-/low-grade serous carcinoma, mucinous carcinoma, clear
cell carcinoma, and endometrioid carcinoma. With the improved knowledge of genome-
wide association study (GWAS) and expression quantitative trait locus (eQTL) analyses,
the knowledge of genomic landscape of complex diseases has been uncovered in large
measure. Moreover, pathway analyses also play an important role in exploring the
underlying mechanism of complex diseases by providing curated pathway models and
information about molecular dynamics and cellular processes. To investigate OCs deeper,
we introduced a novel disease susceptible gene prediction method, XGBG, which could
be used in identifying OC-related genes based on different omics data and deep learning
methods. We first employed the graph convolutional network (GCN) to reconstruct the
gene features based on both gene feature and network topological structure. Then, a
boosting method is utilized to predict OC susceptible genes. As a result, our model
achieved a high AUC of 0.7541 and an AUPR of 0.8051, which indicates the effectiveness
of the XGPG. Based on the newly predicted OC susceptible genes, we gathered and
researched related literatures to provide strong support to the results, which may help in
understanding the pathogenesis and mechanisms of the disease.
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INTRODUCTION

Ovarian carcinomas (OCs) are one of the most fatal cancers in
women; a scientific study of the disease is of vital priority due to
its high death rate (1). A better understanding of the entities and
molecules that contribute to the pathogenesis and progression of
OC is essential to improve the diagnostics and treatment of the
disease. Although the etiologic causes of OCs have not been
recognized well, genetic factors that caused mutations in the
disease have been examined profoundly with the help of many
genetic approaches. However, there are still many disease
susceptible genes not identified, and it is of vital importance to
explore the mechanism and underlying pathogenic factors to
better understand the disease and make a contribution in treating
the disease.

A genome-wide association study (GWAS) is an approach
utilized in genetics research to associate specific genetic variants
[single-nucleotide polymorphisms (SNPs)] with a specific
disease. It has identified hundreds of risk genetic variants
(SNPs) that may result in ovarian cancers (2–6). However,
these studies can only explain a small fraction of disease-
related regions in a functional point of view (7–9). Since many
risk alleles may locate in the non-protein-coding regions to
regulate the expression of target genes (10), though GWAS
provides strong support in revealing the associations between
variants and traits, it is not comprehensive to discover the
disease-related genes or gene regulators merely based on
GWAS datasets.

Expression quantitative trait loci (eQTLs) are genomic loci
that explain variation in expression levels of genes, which can be
regarded as an additional evidence for identifying disease-related
genes. eQTLs indicate the chromosomal loci that can explain
variance in expression traits. These distinguishing characteristics
from most expression quantitative trains are not the product of
the expression of a single gene. With the help of eQTL analyses, a
lot of causal genes for multiple types of cancers have been
identified, such as kidney cancers, prostate cancers, breast
cancers (9, 11, 12), and other complex diseases such as
Alzheimer’s disease and schizophrenia (13, 14). Therefore, it is
more worthy to discover disease causal genes based on the
integration of both GWAS and eQTL datasets.

In addition to the genetic information derived from GWAS
and eQTL datasets to understand the mechanisms of complex
diseases, investigation and identification of molecular pathways
are also important in exploring the underlying mechanism of
diseases. Pathway analysis is a typical efficient analysis to explore
the biology of genes and proteins that are differentially expressed
in biological processes. There are many widely accepted pathway
databases such as KEGG and BioCarta that can provide
illustrative information to study diseases from the view of
pathway system (15, 16). According to the information of
molecular dynamics and cellular processes, genes and gene
products are annotated based on different functions and
characteristics (17). Since complex diseases are not only caused
by a single gene or a single biological process, it is important to
understand the diseases and identify disease causal genes from
the point of view of a pathway system.
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In this article, we proposed a novel OC causal gene
identification method, XGPG, integrating gene features from
both genomic point and pathway annotation point. We first
employed the graph convolutional network (GCN) to
reconstruct the gene feature based on both gene feature and
network topological structure, then utilized a boosting method,
extreme gradient boosting (XGBoost), to predict OC-related
susceptible genes as a binary classification problem. By
applying this method, we built an efficient gene prediction
model and prioritized more putative genes associated with OCs.
METHODS

Framework
Our method, XGPG, contains 4 main parts, data collection,
feature extraction, gene feature reconstruction based on both
gene feature and network topology structure, and OC causal gene
prediction based on the constructed XGBoost model. In the first
section (A), we manually collected different types of ovarian
diseases including OC-related genes from the DisGeNET
database (18) and then we obtained gene features from the
GWAS Catalog, GTEx Portal, and KEGG database for different
features (19, 20). Furthermore, we collected gene interaction
information from the HumanNet database (21). (B) Thus, we
extracted gene features from GWAS data, eQTL data, and
pathway annotations, and then extracted gene network
structure topological features based on the gene–gene
interaction network. (C) After the feature extraction process,
we utilized the GCN model to reconstruct the integrated gene
features based on both gene feature and topological structure for
a more precise representation of collected genes. (D) In the
disease gene prediction part, a boosting model, XGBoost, is
employed for constructing the prediction model and to
prioritize OC-related genes. The work frame is shown
in Figure 1.

Data Collection
We first downloaded published verified ovarian cancer-related
genes from the DisGeNET database; after filtering, the dataset
contains 3,181 genes to be regarded as a positive gene set. To
construct a balanced training set, we randomly selected 3,171
genes that have interactions with positive genes but have no
associations with ovarian diseases. These genes are used to
construct the negative gene set. Then, we downloaded gene
interaction information from the HumanNet database to build
the gene–gene interaction network. For the prediction of OC
causal genes, we also downloaded 721 ovarian disease-related
genes as candidate genes to construct the prediction gene set. To
extract gene features, we downloaded GWAS data from the
GWAS Catalog and obtained 9,793,553 susceptible loci
associated with OC, and we downloaded eQTL data from the
GTEx v8 database including 25,325 susceptible loci detected in
ovary tissue based on gene expression level. Moreover, we
downloaded gene-pathway information from the KEGG
database, including 343 annotated pathways.
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Feature Extraction
We extracted gene features from three aspects, namely, GWAS
data, eQTL, data and KEGG pathway information. We first
obtained the detailed gene location information of the training
and predictive gene data, including chromosome name, start
position, and end position. Then, the genes are mapped to the
SNPs provided by GWAS data. To construct the SNP feature, we
sorted the gene-mapped SNPs by p-value and extracted the top 5
significant SNPs as the SNP feature of the gene. Thus, the SNP
feature can be denoted as a 5-D vector:

FSNP = D1,D2,  D3,D4,  D5½ � (1)

For those genes that have less than 5 mapped SNPs, we set the
value to 9 × 10−6 to avoid calculation error. For the expression
feature, we mapped the genes to eQTL data based on gene
location information and then extracted the top 5 significant
eQTL p-values as expression feature. We also set the value to 9 ×
10−6 for those genes mapped to less than 5 loci to avoid the
calculation error. Thus, the expression feature can be denoted as
a 5-D vector:

Fexp = D1,D2,  D3,D4,  D5½ � (2)

We then downloaded the KGML files from the KEGG
database, representing the details for computational analysis
and pathway relations in KEGG pathways. According to the
KGML files, we can obtain the genes that participate in each
KEGG annotated pathway. In total, the KEGG database has
annotated 343 pathways; thus, the pathway feature of each gene
can be denoted as a 343-D vector; the value is set to 1 if the gene
is in the pathway process or set to 0 vice versa:

Fpath = D1,D2,…,D342, D343½ � (3)

Di = 0,    if gene is in pathway i
1, if gene is not in pathway i

(
(4)

Thus, the primary feature representation of each gene can be
denoted as a 353-D vector including the SNP feature, the
expression feature, and the pathway feature. Since the feature
matrix could be very sparse and is not comprehensive, we further
utilized the GCN model to reconstruct the feature representation
with the information of the gene interaction network
topological structure.
Feature Reconstruction by GCN
We first downloaded the gene–gene interaction information
from the HumanNet database and constructed a gene–
interaction network of the training set with dimensions of
6,352 × 6,352. Then, the adjacent matrix can be constructed
based on the topological structure of the net. Next, the gene
interaction network with gene features is input to the GCN
model to reconstruct the gene features to obtain a more
comprehensive feature representation. Consider the graph G =
(V, E, W), where V is the nodes, E is the edge, and W is the
weight matrix encoding the associations between nodes. In the
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GCN model, Rectified Linear Units (ReLU) is used as the
activation function. We input the gene feature matrix X to
the GCN model and then the gene feature can be extracted by
the propagation rule of each layer:

Hl+1 =  s LHlXWl
� �

(5)

ReLU xð Þ =   x, x > 0  
0, x ≤ 0  

�
(6)

where s is the non-linearity activation function; here, we
used ReLU.

Lastly, gene feature representation is reconstructed by GCN.

Gene Prediction Based on XGBoost Model
XGBoost is a state-of-the-art boosting method that has been
widely employed in many kinds of data mining problems. It can
also be used in classification and regression problems. Boosting is
an ensemble learning algorithm that firstly train a weak model
and then train an enhanced model to improve the errors by
iteration. By iteration, the new model can fit the residuals of the
previous model. Here, we utilized the “xgboost” package in R to
perform the training and prediction process. In order to evaluate
our prediction model, we performed a 10-fold cross-validation
on the 6,352 training set. Since the training set is composed of
3,181 positive samples and 3,171 negative samples, we randomly
divided them into 10 groups, and 9 of them is used to train the
model and the last one is used to test the model based on
the labels at each time. Grid searches were performed to evaluate
the best performance of the parameters of the model.
RESULTS

Measurement of Model Performance
Since we have assessed the performance of our model based on
10 CVs with training sets, the ROC curve and PR curve are used
to measure the performance of the model; the curves of 10 CVs
are shown in Figure 2. The AUC and AUPR of 10 CVs are
shown in Table 1. As a result, we obtained the average AUPR of
0.8051 and the average AUC of 0.7541. We chose the best
performance model with an AUPR of 0.8301 and an AUC of
0.7770 to predict the OC causal genes.

Performance Comparison
Between Models
Although we have proved the performance of XGPG by 10 CVs
on the training set, there have been many other machine learning
and deep learning methods used in classification problems, such
as random forest (RF), Naïve Bayesian (NB), support vector
machine (SVM), and deep neural network (DNN). To better
illustrate the effectiveness and credibility of XGPG, we also
compared it with SVM, RF, Naïve Bayes, and DNN. In order
to ensure the consensus of the input to each model, all the gene
features are reconstructed by GCN. The results are shown in
Figure 3. As shown in the figure, SVM and RF perform better
than NB and DNN, but they are far behind the XGBoost model.
Frontiers in Oncology | www.frontiersin.org 4
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OC Gene Prediction Process
Since we have demonstrated the performance of our method and
chose the best model to predict the OC genes, we then performed
the gene prediction process with 721 verified ovary disease-
related genes obtained from DisGeNET to further identify genes
that are significantly associated with OCs. We also extracted the
gene features as mentioned in the Feature Extraction section and
built the gene interaction network to obtain the topological
structure. After the gene prediction process by XGPG, we
finally prioritize the candidate genes by the score resulting
from the XGBoost model.
CASE STUDY

According to the results, our method predicted 148 (score
threshold is 0.8) and 45 (score threshold is 0.9) OC causal
genes from 721 candidate susceptible genes. We listed the top
20 genes in Table 2. As shown in Table 2, some of predicted
genes have been reported to have direct or indirect associations
with OC. Studies have indicated that KNG1 is highly related to
the gonadotropin-releasing hormone (GnRH) (22), which is a
hypothalamic neuropeptide that plays an important role in the
reproductive system. Investigators have made a great effort to
Frontiers in Oncology | www.frontiersin.org 5
develop GnRH agonists and antagonists for the treatment of
tumors such as ovarian cancers (23). Coagulation factor II (F2) is
found to be overexpressed in various epithelial neoplasms
including ovarian cancer (24); F2 receptor, also known as
PAR1, has been provided to be differentially expressed in
ovarian cancer tissue (25). F13A, also known as coagulation
factor XIII A, has been proven to have a significantly higher
concentration in OC plasma, which may be a powerful tool for
the clinical diagnosis and prognostic prediction of the disease
(26). RASA1 is a member of the RAS-GAP family, which has
been reported to play an important role in cell proliferation and
TABLE 1 | AUPR and AUC of 10 CVs.

1 2 3 4 5 6 7 8 9 10 Ave

AUPR 0.8102 0.8301 0.8187 0.8050 0.7731 0.7959 0.8034 0.8191 0.8050 0.7904 0.8051
AUC 0.7484 0.7770 0.7558 0.7592 0.7294 0.7568 0.7533 0.7564 0.7516 0.7532 0.7541
May
 2022 | Volum
e 12 | Article
FIGURE 3 | Performance comparison with different models.
TABLE 2 | Top 20 predicted OC causal genes.

Symbol NCBI ID Symbol NCBI ID

3827 KNG1 2147 F2
2162 F13A1 5577 PRKAR2B
5921 RASA1 4086 SMAD1
657 BMPR1A 58 ACTA1
2688 GH1 2690 GHR
1489 CTF1 3489 IGFBP6
186 AGTR2 4879 NPPB
22806 IKZF3 10370 CITED2
8204 NRIP1 406954 MIR181A2
407021 MIR29A 407036 MIR32
897503
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migration in several types of cancers, including OC, by inhibiting
the malignant progression of OC cells in a high level (27).
Furthermore, SMAD1 can regulate BMPs (such as BMPR1A),
resulting in aberrant BMP signaling in ovarian cancer pathology
(28, 29). The IGF system has been implicated in OC since it has a
key role in normal growth and development. In the Yang study,
they proved that IGFBP-6 may have profound effects on the
migration of two ovarian cancer cell lines, which may help in
developing an IGFBP-6-based therapeutic for ovarian cancers
(30). Since AGTR1 has been demonstrated to be the main
effector of RAS and AGTR1 protein was detected in 86% of
OC tissues, AGTR2 is the antagonist of AGTR1, which means
that it also plays an important role in the pathology of OC (31).
NPPB is a secreted protein that has been proven to maintain a
high level in the blood of women with ovarian cancer, which
indicates that NPPB may be a novel biomarker for the detection
of EOC (32).
DISCUSSION

OCs are one of the most dangerous cancers for women. It is
important and essential to understand the mechanisms of the
disease. In this study, we proposed an OC causal gene prediction
method, XGPG, based on the deep learning method and the
boosting method. Since GWASs have identified lots of
susceptible loci associated with OC, due to the theory of
linkage disequilibrium (LD), SNPs can regulate the pathologies
of traits on the expression level of target genes. Thus, we
integrated both GWAS and eQTL data to integrate the gene
feature from both genetic and expression levels. Moreover, since
complex diseases are not only caused by a single gene or SNP, it
is important to also take gene–gene interaction into
consideration. We built the gene interaction network to extract
Frontiers in Oncology | www.frontiersin.org 6
the gene network topological structure. Based on both gene
feature and structure feature, we can reconstruct the gene
feature representation by the GCN model and then perform
the prediction process using the XGBoost model. We obtained a
high AUPR 0.8051 of and an AUC of 0.7541 on the training set
composed of 3,181 positive samples and 3,171 negative samples
after 10-fold cross-validation. Compared with 4 other models,
SVM, RF, NB and DNN, our model performed much better.
Then, we performed the OC prediction process on the 721
candidate genes and derived a prioritized gene list. As a result,
our method predicted 148 (score threshold is 0.8) and 45 (score
threshold is 0.9) OC causal genes. From the results, prioritized
genes such as F13A, RASA, SMAD, and AGTR2, and several
other genes are published and proved to be associated with OC,
which also proved the effectiveness of our method. In summary,
our method is helpful in further understanding the etiology and
pathology of OC, and may be used as a strong theoretical
evidence for drug design.
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