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Abstract: This article focuses on how nutrition may help prevent and/or assist with recovery from
the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ
injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First,
the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of
various supplements on immune function are discussed, including antioxidant defense modulators
(vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized
milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is
reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection
is briefly mentioned. While additional verification of the safety and efficacy of these supplements
is still necessary, current evidence suggests that these supplements have potential applications for
health promotion and disease prevention among athletes and more diverse populations.

Keywords: exercise; training; immunity; inflammation; metabolism; oxidative stress; muscle damage;
antioxidant; anti-inflammatory substances; functional foods

1. Introduction

Immunity is a biological defense mechanism that attempts to maintain homeostasis by
eliminating foreign bodies, such as microorganisms, abnormal substances, waste products,
and diseased cells in the body. In immunocompromised states, such as malnutrition and
old age, infections and malignant diseases are more likely to occur. On the other hand,
excessive immune response (inflammation) may cause autoimmune diseases and allergic
diseases, and may destroy healthy normal tissues [1,2]. Thus, the immune responses have
both merits and demerits. The immune system must be appropriately maintained and
managed to respond to foreign bodies without deficiency or excess and avoid infections
and inflammatory diseases [1,3,4]. In the context of exercise and sport, exhaustive physical
activity (either acute or chronic) can perturb the immune system, causing an imbalance and
prompting the immune system to either over- or under-perform. Conversely, if immunity
and inflammation can be controlled, various diseases can be prevented and improved,
leading to the maintenance and promotion of health (Figure 1).

Although the relationship between nutrition and immunity has been studied for a
long time, the relationship between exercise and immunity has not been fully elucidated
until the last few decades. The International Society of Exercise and Immunology (ISEI)
(https://exerciseimmunology.com/, accessed on 26 November 2021), a representative
academic organization, was established in 1993. Thus, exercise immunology is a relatively
new field of study developing with the involvement of related areas, such as inflammation,
ageing, and nutrition. Exercise immunology is deeply related to the issues of today, such as
countermeasures against problems with the ageing population, and an increase in chronic
diseases, as well as in the diagnosis and prevention of various diseases (such as metabolic
syndrome and COVID-19) and conditioning of athletes [1,3–10]. Thus, it can be applied to
both sport and broader society.
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field. Topics are considered with athletic applications, including: how ketogenic diets 
(KD) might alter both immune function and metabolism [11,12] (Section 2); how vitamin 
C, sulforaphane (SFN) [13], and taheebo polyphenol might bolster antioxidant defense 
(Section 3); how colostrum and a concentrated form of hyperimmunized milk termed “im-
mune proteins” (IMP) [14] might prevent systemic inflammation or organ damage (Sec-
tion 4); how 3-hydroxy-3-methyl butyrate monohydrate (HMB), a leucine derivative 
[15,16], may influence muscle strengthening in athletes (Section 5); and the importance of 
both diet (including fasting condition) and exercise in athletes following pandemic proto-
cols, such as the recent COVID-19 lockdown [8] (Section 6). Finally, some overarching 
conclusions and potential future directions are suggested.  

2. Role of Ketogenic Diet and Carbohydrate Intake to Control Inflammation and 
Transform Energy 

Excessive intake of carbohydrates and fats is a hindrance in competitive sports, re-
quiring weight control due to the risk of lifestyle-related diseases, such as obesity [3,4,17–
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sidered to avoid hypoglycemic symptoms (insulin shock) during exercise due to the in-
creased secretion of insulin [20,21]. Furthermore, it is necessary to take into account the 
individual’s constitution, the amount of physical activity, rest, and timing of energy intake 
with meals [20–22]. While glucose oxidation requires 11 chemical reactions to produce 
energy, ketone bodies, metabolites of fat, can produce adenosine triphosphate (ATP) 
quickly with only three chemical reactions. Moreover, the energy density and possible 
storage amount of fat are promising. A KD can also make fatty acid mobilization and uti-
lization more easily. In addition, lipid oxidation produces less reactive oxygen species 

Figure 1. Homeostasis enforcement model for disease prevention through functional
foods/supplements, exercise and rest by enhancing body’s innate defense systems.

This article shares findings from our experimental research on exercise immunology
as it relates to inflammation and nutrition. It is not intended to be comprehensive nor
exhaustive; rather, it is intended to be a representative sampling of current research in
the field. Topics are considered with athletic applications, including: how ketogenic
diets (KD) might alter both immune function and metabolism [11,12] (Section 2); how
vitamin C, sulforaphane (SFN) [13], and taheebo polyphenol might bolster antioxidant
defense (Section 3); how colostrum and a concentrated form of hyperimmunized milk
termed “immune proteins” (IMP) [14] might prevent systemic inflammation or organ
damage (Section 4); how 3-hydroxy-3-methyl butyrate monohydrate (HMB), a leucine
derivative [15,16], may influence muscle strengthening in athletes (Section 5); and the
importance of both diet (including fasting condition) and exercise in athletes following
pandemic protocols, such as the recent COVID-19 lockdown [8] (Section 6). Finally, some
overarching conclusions and potential future directions are suggested.

2. Role of Ketogenic Diet and Carbohydrate Intake to Control Inflammation and
Transform Energy

Excessive intake of carbohydrates and fats is a hindrance in competitive sports, requir-
ing weight control due to the risk of lifestyle-related diseases, such as obesity [3,4,17–19].
In addition, the amount and timing of carbohydrate intake should be carefully considered
to avoid hypoglycemic symptoms (insulin shock) during exercise due to the increased
secretion of insulin [20,21]. Furthermore, it is necessary to take into account the individ-
ual’s constitution, the amount of physical activity, rest, and timing of energy intake with
meals [20–22]. While glucose oxidation requires 11 chemical reactions to produce energy,
ketone bodies, metabolites of fat, can produce adenosine triphosphate (ATP) quickly with
only three chemical reactions. Moreover, the energy density and possible storage amount
of fat are promising. A KD can also make fatty acid mobilization and utilization more
easily. In addition, lipid oxidation produces less reactive oxygen species (ROS) during
the metabolic process than glucose oxidation. Thus, KD may improve endurance through
metabolic transformation, and at the same time, it may prevent organ injury caused by
ROS production during exercise and accelerate recovery from fatigue [11,23,24].
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KD utilize fat and lipid metabolism as the main energy source while limiting carbohy-
drate intake [11,23,24]. This diet has several advantages and disadvantages. One benefit is
that limiting carbohydrate consumption can help regulate levels of serum triglycerides,
blood glucose, and insulin [25]. Such benefits may be more critical for individuals with
insulin resistance, for whom ingesting large amounts of carbohydrates can be hazardous,
as was shown in a 14-month research study in obese diabetic adults [26]. Other benefits
include: reducing fasting blood glucose levels, fat oxidation, inflammation, and oxidative
stress resulting from exercise; decreasing cardiovascular and cardiometabolic risk factors;
preserving glycogen reserves; and, maintaining and even losing weight in those with high
blood fats [27]. Also, this diet is favored by athletes who need to lose weight and increase
performance [28]. Regardless of protein, fat, or calorie intake, it is thought that participants
should consume less than 20 g of carbohydrates per day to reap these advantages [29], but
athletes usually achieve the desired results by consuming less than 50 g [30].

Almost all studies on KD have been short-term (up to two years), with just a few
studies reporting long-term consequences of this type of diet. Common adverse effects
seen in short-term studies include dizziness, vomiting, difficulties with exercise tolerance,
nausea, constipation, headache, sleeplessness, and exhaustion. Of course, remission from
these symptoms can take anywhere from a few days to a few weeks, and it is usually ad-
vised to drink enough electrolytes and fluids to counteract the diet’s unwanted effects [31].
Long-term intake of KD increases the production of ketone bodies in the liver and other
organs, and skeletal muscles and the brain adapt to use ketone bodies as an energy source
(keto-adaptation) [11]. Though the number of research studies is limited, adverse effects
seen in long-term studies (greater than two years) include kidney stones, hypoproteinemia,
vitamin and mineral shortages, and hepatic steatosis. KD can also induce side effects such
as anemia and liver dysfunction due to fatty liver, which should be monitored by regular
blood tests [11,31].

In addition, it was recently reported that KD, either alone or combined with training,
had no beneficial effects in the intensive exercise-evaluation model, suggesting that KD
may be promising in terms of improving endurance in low-to-moderate-intensity exercise,
but may not be an optimal choice for those undertaking in high-intensity exercise [32].
Anaerobic or high-intensity exercise is a type of intense short-term activity that lasts less
than 2 min. During short-term activity, immediate energy supply is needed, while body
synthesizes ATP/energy very quickly using a phosphagen system and provides maximal
power for an acute burst of activity [33]. Because the lactic acid and phosphagen systems
use it for energy, skeletal muscle glycogen is essential in this action. On the other hand,
intense activity is frequently accompanied by many muscular contractions, resulting in
muscle damage. As a result, a steady supply of glycogen to the muscles supplied by
dietary carbohydrates can play an essential role in the regeneration and repair of these
muscle fibers [34]. A sufficient supply of necessary amino acids, in addition to supplying
appropriate muscle glycogen, aids in the better and quicker healing of injured muscle
fibers. Given this, KD which provide adequate protein at around 15% of daily calories can
constitute a good alternative to preventing amino acid deficits in skeletal muscle fibers.
The low carbohydrate content of this diet, on the other hand, causes muscle glycogen
regeneration to be hampered. As a result, during high-intensity activity, the KD is rarely
employed [35].

During endurance exercise, skeletal muscle produces interleukin-6 (IL-6), which is
called a myokine because it is produced by muscle and involved in energy metabolism,
such as glucose uptake and lipolysis [36]. We have also reported that IL-6 may be associ-
ated with endurance exercise performance [37], lipolysis [38], and metabolic changes in
keto-adaptation [39]. However, immunohistochemical staining results indicate that IL-6
production during endurance exercise mainly occurs in monocytes/macrophages in the in-
terstitial space rather than in myofibres themselves (Figure 2). This suggests that IL-6 is not
a myokine but a classical monokine (monocyte-derived cytokine), whereas immune cells
may be involved in energy metabolism during endurance exercise [40]. However, carbohy-
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drate intake does not affect the infiltration of IL-6-producing monocytes/macrophages into
skeletal muscle by exercise, which is different from the previous findings that carbohydrate
intake suppresses IL-6 production during exercise; therefore, there is still room for further
study [7,22,40].
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In addition, carbohydrate intake after endurance exercise does not adversely affect the
inflammatory response and contributes to glycogen recovery [20]. Jürimäe and colleagues
used female rowers as volunteers in their study, who were asked to row incrementally
until fatigue on a wind resistance-braked rowing ergometer for an hour. This endurance
activity increased blood IL-6 [41]. In research, the three athletes competed in ironman
and half-ironman events, and their inflammatory markers, particularly IL-6, increased
towards the end of the race [42,43]. Well-trained triathletes competed in an ironman
triathlon competition (3.8 km swimming, 180 km cycling, and 42.2 km running) in a
study comparable to the previous one [43,44]. In addition, Robson-Ansley and colleagues
recruited male athletes to complete a six-day cycling challenge (468 km), and a rise in
IL-6 was also detected immediately after exercise on the first day of this research [45]. In
another study, healthy volunteers’ inflammatory markers (IL-6) did not alter after 16 weeks
of endurance training [46]. In addition, Sponder and colleagues found a reduction in IL-6
following long-term endurance training in their study [47]. It is true that circulating IL-6
levels increased by more than 100 times following full marathon races [2,36,37,48], but
decreased in longer endurance exercises, such as ironman triathlon races [42–44], and even
downregulated by long-term training [47].

To summarize, a KD may exert its positive influence, including enhancing exercise
capacity, and alleviating exercise-induced inflammation and oxidative stress, whereas it
is employed to suitable situations, for instance, low-to-moderate-intensity sports. Fur-
thermore, consideration of using substitution of KD, such as exogenous ketone bodies to
achieve ketosis, may further contribute to the field of athletes’ wellness, and it is necessary
to examine the effectiveness and safety precisely in the future research.

3. Enhancement of Endogenous Antioxidant Defense Mechanisms against
Exercise-Induced Oxidative Stress (OS)

When the quantity of reducing compounds in a cell is substantially lowerr than the
number of oxidized compounds, a redox reaction becomes unbalanced, resulting in the
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formation of ROS and OS in the body’s biological functions [49–51]. When ROS are pro-
duced in modest amounts, cellular adaptation and even some cellular redox balance are
both promoted [49–53]. ROS contribute to the maintenance of proper muscle contractions
by interacting with the troponin protein complex and calcium (Ca2+) secretion sites in the
sarcoplasmic reticulum (SR) [52–54]. ROS overproduction might overload the muscle’s
ability to produce strength and contraction under stressful conditions, such as participating
in physical activities with variable intensities of anaerobic and resistance training [55]. It
would also have a detrimental effect on athletic performance [56]. As previously men-
tioned, the absence of reducing compounds as a result of ROS production is a cellular
destructor. Exogenous (such as taking antioxidant supplements including vitamin C) and
endogenous (such as the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD),
and glutathione peroxidase (GPX)) antioxidants are present in the body’s cells [55–57].
Antioxidants are essential for preventing ROS-induced damage [55–58]. As a consequence,
they typically transform these reactive species into less reactive ones [55–59].

The production of ROS during exercise, on the other hand, induces skeletal, muscular
damage, which eventually appears as delayed-onset muscular soreness (DOMS) as one of
the damage’s side symptoms [60–65]. Morrison and colleagues employed healthy young
men as their research respondents in one study. For 28 days, they were administered
antioxidant supplements of vitamins C and E (1 g and 400 IU per day, respectively). They
underwent acute aerobic exercise and also had their skeletal muscle changes evaluated.
According to the research, antioxidant supplements could not diminish the OS produced
in skeletal muscle by performing acute aerobic exercise [66]. He and colleagues supplied
vitamins C and E (1000 mg and 400 IU per day, respectively) to trained men for 14 days.
They conducted a 40-min downhill run and concluded that these vitamins alleviated
DOMS [67]. Gabrial and colleagues employed active men who exercised recreationally as
subjects in another experiment. These people were put to a lot of inconsistent exercises
(2 to 3 times a week). For three months, they were also given 500 mg of vitamin C each day.
Vitamin C decreased exercise-induced muscle damage and oxidative stress, according to
the study [68]. Evans and colleagues investigated untrained individuals’ muscle force and
athletic performance in a research study. The subjects were given 500 mg of vitamin C and
resistance training for 28 days. The researchers concluded that reducing OS from exercise
enhanced muscular force and athletic performance [69]. Jalalvand and colleagues selected
eccentric contraction in two hands as the exercise test in another experiment. Healthy
people consumed 750 mg of vitamin C per day for four days in this study. Ultimately,
they found that taking the supplement diminished exercise-induced muscle damage [70].
Vitamin C supplements (100 and 200 mg per day) and placebo were administered to healthy
non-athlete women before exercise and 24 and 48 h after training in an investigation. These
subjects were exposed to eccentric contractions. Finally, it was revealed that the DOMS
induced both by the supplement and placebo groups were the same [71].

One of the determinants of endurance performance during strenuous exercise is aero-
bic metabolism capacity, which particularly impairs skeletal muscle contractile function
and inevitably leads to muscular exhaustion. Muscle weariness then results in free radicals
and metabolic disturbances, such as lactic acidosis [72]. Nutrient supplementation is one
option to enhance an athlete’s endurance performance. Decreased serum triglycerides,
blood pressure, blood glucose and insulin levels, and visceral adipose tissue are all asso-
ciated with high endurance performance. Polyphenols with antioxidant properties are
crucial among these nutrients for boosting endurance capacity by enhancing mitochondrial
biogenesis and fatty acid intake and reducing oxidative stress [73]. Anti-inflammatory
properties are another feature of polyphenols. Natural polyphenols have been built to
demonstrate up to approximately 30% of anti-inflammatory pharmaceuticals developed
in the 1980s. Inflammation caused by bacteria and other pathogens infecting the human
body, in which case the immune system fights the infections [74]. Obesity, which increases
triglyceride production in adipose tissue and leads to an excess release of free fatty acids,
is one of the most essential factors in producing local inflammation in the body. Cyclooxy-
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genase (COX)-2 catalyzes the transformation of arachidonic acid to thromboxane and
prostaglandin (PG) E2 (PGE2) in response to inflammation. COX-1, on the other hand,
produces PGs, which are engaged in a variety of hemostatic tasks, such as renal blood flow
control and platelet function integrity. The gastrointestinal system is harmed when COX-1
is absent [75]. By eliminating free radicals, such as superoxide anions, polyphenols also aid
in maintaining the body’s immune system and the prevention of cancer cell development.
On the other hand, these nutrients contribute to the control of blood glucose transporter
gene expression and the lowering of blood glucose levels [76]. However, some polyphe-
nols are effective for skeletal muscle antioxidation but have side effects, such as hepatic
dysfunction [73,76,77]. As a result, we must be cautious regarding the type, dosage, and
timing of antioxidant ingestion.

The aqueous extract of taheebo (derived from the inner bark of Tabebuia avellanedae)
is suggested to have anti-inflammatory, anti-fatigue, anti-obesity, and anti-cancer properties.
Taheebo also aids in the immune system’s upkeep. This plant has mostly been found in
Central and South America [73,76]. The influence of taheebo polyphenol on endurance
capacity was investigated for the first time in our study [73]. All mice used in the study
were C57BL/6J mice. The mice were provided taheebo polyphenol extract and were given
endurance exercise. Yada and colleagues determined that consuming this polyphenol
eliminates free radicals, which regulates skeletal muscle glycogen levels and speeds up the
gluconeogenesis process, resulting in improved mouse endurance capacity [73].

Sulforaphane (SFN) is another antioxidant supplement that is abundantly contained in
broccoli sprouts and fights against OS via nuclear factor E2 factor-related factor (Nrf2) [13,78].
It also has immunomodulatory, anti-inflammatory, antibacterial, anti-carcinogenic, cardio-
protective, and neuroprotective effects [13,78–80]. Inflammation is induced by exogenous
and endogenous stimuli. Furthermore, nuclear factor-kappa B (NF-κB) is a transcription
factor that regulates various genes responsible for inflammatory responses, and SFN in-
activates NF-κB and contributes to anti-inflammatory effects. In our animal study, it was
demonstrated that pre-administration of SFN prevented the production of inflammatory
cytokines and hepatic dysfunction induced during strenuous exercise, due to the induc-
tion of antioxidant enzymes via Nrf2 [78–80]. Since no specific side effects have been
reported in human studies, it is expected that the various effects and safety of SFN will be
further investigated in the future [13,78–80]. We also looked at organ damage mediated
by intensive exercise in mice in one trial. Two hours before exhaustive exercise, mice
were given a 50 mg/kg body weight SFN. Finally, we arrived at the conclusion that SFN
would treat inflammation spurred on by rigorous activity. The important reason for this
improvement was the activation of the Nrf2/HO-1 signal transduction pathway as a result
of antioxidative defense responses [79].

4. Prevention of Exercise-Induced Intestinal Injury and Systemic Inflammation by
Colostrum and IMP

Intense exercise causes inflammation, immunosuppression, gastrointestinal disorders,
and other health problems [7,81,82], and colostrum has been used to prevent the increased
intestinal permeability that causes these problems [83,84]. Colostrum contains high-quality
proteins necessary for growth and antibodies necessary for infection protection, and it
has also been proven to inhibit the production of pro-inflammatory cytokines [85,86].
Bovine colostrum is the first milk produced after birth, and it contains peptides with
antimicrobial activity, nutrients, growth factors, and immunoglobulins [86]. Pregnant
women in their seventeenth week were enrolled as subjects by Aparicio and colleagues
until delivery. The goal of this research was to see how exercising during pregnancy
affected the inflammatory markers in colostrum. This research used resistance and aerobic
training program (3 sessions of 60 min per week). During colostrum, the results showed
that this activity reduced pro-inflammatory and anti-inflammatory profiles (just like TNF-
α, IL-1β, IL-6, IL-8, and IL-10) [87]. Immune system markers, such as TNF-α and IL-1,
IL-2, IL-10, and IL-13, were measured in elite basketball players in a recent study by
Skarpanska-Stejnborn. For six months, these participants were additionally given 6.4 g of
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bovine colostrum every day. They undertook a rigorous physical activity regimen before
supplementation, as well as three months and six months after supplementation. The
findings of this investigation revealed that using bovine colostrum did not change the
dynamics of immune function markers [88].

Furthermore, hyperimmunized milk, obtained from cows vaccinated against specific
pathogens (26 antigens including E. coli, Salmonella, and Staphylococcus aureus), contains
large amounts of antibodies against pathogens and anti-inflammatory effects to protect
intestinal functions, and IMP is a concentrated form of hyperimmunized milk. We investi-
gated organ injury and inflammatory response in male runners to determine whether IMP
has a protective effect against exercise-induced inflammation and organ injury [14]. The
results suggested that urine-specific gravity and urine osmolality decreased, and urine con-
centrating ability in the kidney dropped after running an all-out time trial of 3000 m [89].
Still, urine-concentrating power was maintained in the IMP-treated group, making them
less prone to dehydration [14]. In addition, we proved that eight weeks of IMP administra-
tion suppressed the elevation of intestinal fatty acid-binding protein (I-FABP), which is a
marker of intestinal injury and inflammatory cytokines after all-out running, and that IMP
intake can prevent exercise-induced intestinal damage and inflammation [7,14,90].

5. Exercise-Induced Muscle Damage, Strengthening and HMB

We have reported for more than 20 years that neutrophils and macrophages are
involved in muscle damage, inflammation, and oxidative stress caused by intensive ex-
ercise [7,91–97]. In one of our studies, we reported that the secretion of inflammatory
cytokines and the activation of various neutrophil activation markers, such as lactoferrin
(LTF) and myeloperoxidase (MPO), increased after strenuous exercise, especially marathon
running [95]. On the other hand, it has been shown that ROS production in neutrophils
can be modulated through regular and single bouts of exercise [92,93]. Furthermore, there
are defense mechanisms against OS and inflammation in the body [94,95], and it has been
reported that not only endocrine factors (such as adrenaline and cortisol), which have
anti-inflammatory effects, but also anti-inflammatory cytokines (such as IL-1 receptor an-
tagonist and IL-10) are induced during exercise [2,7,37,65]. In addition, we have found that
such antioxidant and anti-inflammatory responses can be partially induced by functional
foods such as curcumin [97–100], and we believe that measures targeting inflammation
control are important to prevent muscle function deterioration and fatigue caused by
intense exercise, and we are working on the selection of candidate substances and analysis
of the mechanisms such as Nrf2 [7,13,78–80].

HMB, a derivative of leucine contained in branched-chain amino acids (BCAA),
activates protein synthesis in skeletal muscle and also inhibits oxidative stress and in-
flammation [9,15,16,101,102]. HMB has a positive impact on the body by decreasing the
effectiveness of intracellular proteolytic pathways and enhancing the membrane integrity
of myocytes, such as the sarcolemma. HMB forms a partnership with a protein called
ubiquitin because of its antagonistic effect on protein breakdown processes [101–103]. Acti-
vation of the mTOR kinase pathway by HMB, on the other hand, can contribute to muscle
protein anabolism by boosting the transcription level of the insulin-like growth factor-1
(IGF-1) gene [101]. The mTOR kinase pathway is important because it aids cell proliferation,
transcription, growth, and translation in muscle protein production [101–103].

In particular, HMB-free acid (HMB-FA) has excellent intestinal absorption and is
expected to have immediate effects, but a double-blind, randomized, controlled trial
using 3 g of HMB-FA and placebo per day for 6 weeks after resistance training showed
that HMB-FA increased muscle strength and the secretory response of growth hormone
and IGF-1, which have anabolic effects on protein [15,16,102]. In addition, plyometric
training, which has been attracting attention as a method of increasing instantaneous
power, such as jumping power [101,103,104], causes muscle damage and inflammatory
oxidative stress when the load is high, but HMB-FA intake was shown to prevent these
problems [16,101–103]. Thus, HMB may have led to the enhancement and improvement of
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muscle function, not only by promoting muscle protein synthesis but also by preventing
muscle damage through its antioxidant and anti-inflammatory effects. As an application
of the above findings, HMB is expected to be effective in the prevention of age-related
muscle weakness (sarcopenia) and arteriosclerotic diseases, and this will require further
the accumulation of knowledge in the future, such as combining it with various types of
exercise [9,105]. Furthermore, our studies report that decreased muscle mass and strength
could occur due to systemic age-related inflammation in skeletal muscle, suggesting that
this is due to ROS accumulation and an increase in inflammatory mediators [106].

One of the questions that has recently arisen for researchers in exercise and health
fields is whether excessive injection of peptide hormones, combined with resistance train-
ing, can weaken the immune system. This is a question for which there is no conclusive
solution. However, several studies have examined this issue. One study found that free
radicals and OS may accumulate in bodybuilders who do strenuous resistance exercises.
An increase in OS in the body provides the basis for increasing circulating concentrations
of elastase, MPO, and neutrophils, ultimately increasing inflammation in the body and
accelerating the weakening of the immune system [97,107]. In this regard, Mohammadja-
fari and colleagues used male bodybuilders as subjects in their research. These subjects
were injected with growth hormone and IGF-1 for one year. They underwent strenuous
resistance exercises (five sets with 80% of one-repetition maximum). They eventually
concluded that OS markers, such as 8-hydroxy-2-deoxyguanosine (8-OHdG), malondi-
aldehyde (MDA), and nitric oxide (NO), increased in these bodybuilders, which were
associated with inflammation [107].

6. Exercise and Nutrition under the Spread of COVID-19 Infection and Consequent
Lockdown Restrictions

At the end of October 2021, the worldwide number of infected people was about
243 million and the number of deaths was about 4.9 million, and those data continued to
increase (https://www.who.int/publications/m/item/, accessed on 26 November 2021),
and researchers in Iran, the United Kingdom, and other regions where the spread of
the disease was serious made urgent proposals for countermeasures [8,108]. As a result
of the spread of COVID-19 infection, people refrained from going out, which reduced
opportunities for exercise and training, and there were concerns about the decline in
immune function as well as physical weakness [8,109,110].

Proper nutrition and exercise have no alternative to support immune function, whereas
dietary restriction, such as fasting, is known to have positive effects, such as prolonging
life span, improving insulin sensitivity, reducing OS and inflammation, and decreasing
mortality from cancer and cardiovascular diseases. It is recently reported that, with regard
to immune function, a 3-day fast has positive effects to improve it [108]. However, during
the COVID-19 epidemic, both strenuous exercise and training is dangerous while fasting,
because exercise under fasting conditions not only causes exhaustion and dehydration, but
also leads to OS, inflammation, muscle damage, and fatigue, and increases the possibility
of becoming infected. Therefore, the precautions for training during the month-long fasting
period (Ramadan), a religious event for Muslims, including the intensity, duration, and
frequency of exercise, as well as the recommended timing of food intake and nutrient
requirements, were presented [108,110].

In order to maintain the immune system, it is important to maintain the amount of
exercise that does not cause excessive stress to the body, and to provide adequate nutritional
intake and rest [8,108,111–117] (Figure 3), which were also explained by a digest version in
an easy-to-understand manner [118]. Furthermore, it is recently suggested that moderate
exercise and physical activity is effective, even for the recovery from COVID-19, suggesting
the importance of exercise in the rehabilitation of the disease as well [119,120].
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