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Abstract

Local dispersion relations for resistive drift mode in a nonuniform magnetize plasma

are derived for thermal and non-thermal distribution of electrons. The coupled mode

equations are obtained by using Braginskii’s transport equations for ions and

electrons with thermal as well as non-thermal (Cairns and kappa) distribution for

electrons. The dispersion relations are then analyzed both analytically as well as

numerically for all distributions. It is found that growth rate is highest for

Maxwellian, Intermediate for kappa and lowest for Cairns distribution. It has been

found that increasing values of G (which estimate population of non-thermal

electrons) for Cairn distributed electrons are able to stabilize the mode.

Furthermore, increasing the values of k (which is spectral index) for the kappa

distributed electrons have destabilizing effects on the mode. The result might be

useful in the interpretation of electromagnetic fluctuations in nonuniform magneto-

plasma in which resistivity is a key element in calculation of drift instabilities in

the presence of thermal or nonthermal electron distributions, such systems are

extensively observed in laboratory as well as space plasma.
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1. Introduction

Initially the resistive drift instability in potential approximation was described by

Moiseev and Sagdeev [1]. Later, Mikhailovskii [2] presented a comprehensive elec-

tromagnetic theory of this instability. Furthermore, he extended the electromagnetic

fluid model to kinetic estimations with use of model collisional operator [3].

Recently, Mirnov et al. [4] presented analytical and numerical results of this insta-

bility by following Mikhailovskii work [2, 3]. Inclusion of finite resistivity in the

model is the key element in calculations of resistive drift instability, if the electrons

are free to move along magnetic field to cancel the charge separation, there will be

stable drift wave. When the electron motion is delayed due to collision of electron

with ion, a phase shift appears that results in instability. The data base on observa-

tions of space plasmas have shown widespread ion and electron populations and

away from their thermal equilibrium [5, 6, 7, 8, 9, 10, 11, 12, 13]. The main moti-

vation factor for this work is to study such instability for thermal and non-thermal

distribution of electrons for space plasma.

There are many space plasma environments like ionosphere, solar wind, astronom-

ical objects, interstellar medium, magnetosphere of Earth and other planetary envi-

ronments, where non-thermal distribution functions are very common [14, 15, 16,

17]. Cairns et al. [15] proposed highly non-Maxwellian distribution profile, which

has been observed to exist in space plasma [16, 17, 18]. There is another commonly

employed distribution profile is kappa distribution [14], characterized by the param-

eter k. Both distributions have been applied to study many types of acoustic solitons.

For instance, Cairns et al. [15] demonstrated that the nature of ion-acoustic solitary

structures could change due to presence of non-Maxwellian electron distribution and

camp up with an explanation of structures observed by the Freja and Viking satellites

[19, 20]. Mamun [21] have applied the Cairns distributed electrons and investigated

the effect of ion temperature on ion acoustic solitary waves. The supra-thermal par-

ticles are well described by k-distribution. Vasyliunas [14] used k-distribution to fit

OGO 1 and OGO 2 solar wind data. Since then, it has been extensively used by many

scientists [22, 23]. Khan et al [24]. investigated dispersion properties of ion-acoustic

plasma vortices. Later, Rehman et. al [25]. discussed the orbital angular momentum

states of twisted electrons acoustic waves with double kappa distribution for elec-

trons. Recently, Usman et. al [26] investigated Unique features of parallel whistler

instability using Cairns distribution. Batool et al. [27] demonstrated the effect of

nonthermal electron distribution on ITG driven drift instabilities They found signif-

icant modification in ITG driven drift mode due to presence of non-thermal distrib-

uted electrons.

In this paper, resistive drift instabilities are demonstrated by using Maxwellian and

non-Maxwellian distribution of electrons. Well known two types of non-Maxwellian
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distributions have been used i.e. Cairns and kappa. Three dispersion relations have

been derived and solved numerically for space plasma physical parameters. The ef-

fect of Maxwellian, Cairns and kappa distributed electron on the mode have also

been pointed out. The limiting case has been discussed, so that one can retrieve

the well know results of Ref. [1, 2, 3, 28].

The rest of manuscript is arranged in the following manner. Section 2 is allocated for

the theory of the electromagnetic perturbation. In Section 3 calculations have been

carried out, in order to obtain the dispersion relation. Section 4 contains results of

the present investigation.
2. Theory

Let us assume a nonuniform plasma composed of electrons and ions, placed in

nonuniform externally applied magnetic field B along z-direction in Cartesian coor-

dinate system. The equilibrium number density gradient dn0ðxÞ=dx is along x-axis.

Assuming hot electrons and cold ions. The mathematical model for dynamics of

plasma read as,

min
�
vvi
vt

�
¼ enðEþ vi �BÞ; ð1Þ

men
�
vve
vt

�
¼�enðEþ ve �BÞ �Vpe � n2e2hðve � viÞ; ð2Þ

vnj
vt

þVt$
�
nvjt

�þ v

vz

�
nvjz

�¼ 0; ð3Þ

V�B¼ 4p
c
j: ð4Þ

Eqs. (1) and (2) are equation of motion for ion and electron fluid respectively, Eq. (3)

is continuity equation for jth specie, where j (¼e and i) represents e for electron and i

for ion, whereas Eq. (4) is Ampere’s law. To close system of equations use equation

of state pe ¼ neTe and electron density for thermal and non-thermal electron distri-

butions as,

ne ¼ n0expðfÞ; ð5Þ

ne ¼ n0
�
1� qfþ qf2

�
expðfÞ; ð6Þ

ne ¼ n0ð1�f=kÞ�kþ1=2
; ð7Þ

where f ¼ e4=Te, Eq. (5) is for thermal distribution whereas Eqs. (6) and (7) are

for non-thermal distributions (Cairns and kappa respectively), n0 is equilibrium
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density of electrons and q is given by 4G=ð1þ 3GÞ, here G is parameter which de-

termines the population of non-thermal electrons and k is real parameter giving de-

viation from thermal distribution.
3. Calculation

Considering quasi-neutrality condition i.e. ne0 ¼ ni0 ¼ n0 and applying drift-

approximation jv=vtj.uic.uecð ¼ eB0=mjc), where ujc is the cyclotron-

frequency, e is the magnitude of electronic charge, mj is mass of specie and c is

the speed of light, from Eqs. (1) and (2) linearized perpendicular (to equilibrium

magnetic field) component of ion and electron fluid velocity is,

vi1t ¼ c
B0

ðbz�VtfÞ �mic
eB2

0

�
v

vt
Vtf

�
; ð8Þ

ve1t ¼ c
B0

ðbz�VtfÞ � Tec
en0B0

ðbz�Vtne1Þ: ð9Þ

Ion total drift velocity is composed of ExB drift and polarization drift as given in Eq.

(8) while electron drift composed of total drift velocity due to ExB drift and diamag-

netic drift as given in Eq. (9), electric field used in term of scaler potential f as E ¼
� Vf� 1=cðvAz=vtÞ, where Az is vector potential exist along z-direction. The

equilibrium or zero order quantities are labeled by the subscripts zero while first or-

der perturbed quantities are represented by the subscripts 1 as given in Eqs. (8) and

(9).

After linearization and doing simple algebraic steps by putting linearized perpendic-

ular and parallel components of electron and ion velocities into continuity Eq. (3) for

each respective specie and assuming quasi-neutrality condition ne1 ¼ ni1, obtain,

�
v

vt
þ Tec
enoB0

dno
dx

v

vy

��
Tec
en0B0

dn0
dx

þ Tecmi

e2B2
0

v2

vt2
V2

t þ Te

mi

v2

vz2
þ Tec

mi

v

vz
vAz

vt

�
ne1

� Tec
enoB0

v

vt
dno
dx

v

vy
fþ Te

n0e2h
v2

vz2
v2f

vt2
þ Te

cn0e2h
v

vz
vAz

vt
v2f

vt2
¼ 0:

ð10Þ

Electrons are assumed to be inertia-less to get above relation (10). Using magnetic

field in terms of vector potential Eq. (4) yields,

V2
tAz ¼�4p

c
ðenvi1z � enve1zÞ; ð11Þ

putting z-components of velocities in above equation give,
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�
V2

t � 4pe2no
mic2

� 4p
c2h

v

vt

�
vAz

vt
¼
�
4pe2n0
mic

þ 4p
c2h

v

vt

�
vf

vz
; ð12Þ

combining Eqs. (11) and (12),

�
v

vt
þ vn*e

v

vy

�0@r2s
v2

vt2
V2
t þ c2s

v2

vz2
þ
0
@c2s d

4
i

v2

vz2
þ c2s

d2i v v2

Dm vt vz2

d2i V
2
t � 1� d2i v

Dm vt

1
A
1
Ane1

þ c2s
d2i
Dm

v2

vz2
v2

vt2
fþ

0
@c2s

d2i v2v2

Dm vz2 vt2
þ c2s

d 4
i v3 v2

D2
m vt3 vz2

d2i V
2
t � 1� d2i v

Dm vt

1
Af ¼ 0;

ð13Þ

where defining plasma parameters as vn*e ¼ ðTec=B0en0Þdn0=dx is diamagnetic drift

velocity of electron, di ¼ c=upi is ion skin depth (here c is speed of light

and, upi ¼ ð4pn0e2=miÞ1=2 is plasma frequency of ion), b ¼ 4pn0Te=B
2
0 is plasma

beta (ration of kinetic pressure to magnetic pressure), c2s ¼ Te=mi is the speed of

sound, rs ¼
ffiffiffi
b

p
di ion-sound radius and Dm ¼ hc2=4p is the resistive diffusion co-

efficient in terms of resistivity h.
4. Results & discussion

To get the local linear dispersion relation for Maxwellian distributed electrons, using

linearize Boltzmann distribution into Eq. (13). Furthermore, assuming that the scalar

potential f is proportional to exp½ � iðut� k:rÞ�, where u is the angular frequency

of wave, k is the wave-vector. The dimensionless form of dispersion relations can be

written as,

�
~u

�
~uþ ibk2t

S

�
� ~un

*e

�
~uþ ibk2t

S

���
r2s k

2
t~u2

�
~uþ ibk2t

S

�
� k2z

�
~uþ ibk2t

S

�

þ ibk2t
S

þ bk2z ~u

�
þ bk2z ~u

2

�
~uþ ibk2t

S

�
¼ 0:

ð14Þ

Dispersion relations for non-Maxwellian distributed electrons i.e. Cairn distribution

can be obtained by using linearize form of Eq. (6) into Eq. (13), and get,

�
~u

�
~uþ ibk2t

S

�
� ~un

*e

�
~uþ ibk2t

S

���
r2s k

2
t~u2

�
~uþ ibk2t

S

�

� k2z

�
~uþ ibk2t

S

�
þ ibk2t

S
þ bk2z ~u

�
ð1� qÞ þ bk2z ~u

2
�
~uþ ibk2t

S

�
¼ 0;

ð15Þ

and similarly, dispersion relation for kappa distributed electrons can be obtained by

using linearize form of Eq. (7) into Eq. (13),
on.2018.e01096
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�
~u

�
~uþ ibk2t

S

�
� ~un

*e

�
~uþ ibk2t

S

���
r2s k

2
t~u2

�
~uþ ibk2t

S

�
� k2z

�
~uþ ibk2t

S

�

þ ibk2t
S

þ bk2z ~u
��

k� 1
2

k

�
þ bk2z ~u

2
�
~uþ ibk2t

S

�
¼ 0;

ð16Þ

where dimensionless variables, ~u ¼ utA , S ¼ th=tA, b ¼ c2s=v
2
A and

~un
*e ¼ bdikt=Ln are used, here Ln/Ln=L is the dimensionless density gradient

scale length and di/di=L is dimensionless ion skin depth, while th ¼ L=Dm

and tA are resistive diffusion and Alfven time scales respectively.
Eqs. (14), (15), and (16) are resistive drift mode for thermal, Cairns and kappa

distributed electrons respectively. The term ð1� qÞ determines the effect of Cairns

distribution of electrons on mode and the term ððk� 1=2Þ=kÞ expresses the effect of
kappa distributed electrons on linear propagation of drift mode. In the limit S/N

and considering the electrostatic perturbation (~u.kzL) case as discussed in Ref. [1,

2, 3], well know electrostatic drift mode can be retrieve for Maxwellian distributed

electrons [2, 28], Further assumption to the uniform plasma with ~un
*e ¼ 0 yields

basic modes of uniform plasma as discussed in Ref. [28].

By choosing typical physical parameters found in space plasma, some numerical re-

sults are presented for Maxwellian as well as non-Maxwellian plasma. Fig. 1 dem-

onstrates the comparison of imaginary part of the mode for Eqs. (14) and (15) and

Eq. (16) i.e. Maxwellian, Cairns and kappa distributed electrons respectively against

the parallel wave with Lindquist number S ¼ 107;di ¼ 0:1; b ¼ 0:5; Te ¼ 105eV;

Ln=L ¼ 2 and di=L ¼ 0:1.

Fig. 1 shows the highest unstable mode of the spectrum for all distributions occur at

same fixed kz and the growth rate is highest for Maxwellian, Intermediate for kappa

and lowest for Cairns distributions.
Fig. 1. Variation of the normalized growth rate vs normalized parallel wave number for different distri-

bution of electrons.
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4.1. Resistive drift mode for Maxwellian distribution

Maxwellian distribution of electron can be defined as fMðveÞ ¼ ðne=p3=2v3eTÞexpð�
v2e=v

2
eTÞ, where veT ¼ ðTe=meÞ1=2 is the thermal speed of electron and temperature

use in energy units which is usual in plasma jargon. Fig. 2 represents the plot of this

distribution. It is most probable distribution for electrons under the thermal

equilibrium.

By using linear dispersion relation for Maxwell distributed electrons i.e. Eq. (14), it

is explored that the real part of the unstable mode follows the Alfven wave disper-

sion relation ~u ¼ kz, the mode is electromagnetic as shown in Fig. 3 (a). The vari-

ation of the normalized imaginary part of the mode against normalized parallel wave
a b

c

Fig. 3. Plot of dispersion relation (14) for increasing normalized parallel wave number (a) variation of

the normalized real part of the mode (b) normalized imaginary part of the mode (c) variation of normal-

ized growth rate for different values of Lundquist number S.
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number is demonstrated in Fig. 3 (b), whereas Fig. 3 (c) depicted the dependence of

the normalized growth rate on normalized parallel wave number for different values

of Lundquist number S (usually observed in space plasmas) at rskyw1.

Fig. 4 is the contour plot of the mode representing the dependence of the normalized

growth rate of resistive drift mode on normalized parallel wave number and normal-

ized perpendicular wave number for thermal plasma case.
4.2. Resistive drift mode for Cairns distribution

Cairns distribution of electron can be defined as fCðveÞ ¼ ðne=q1p3=2v3eTÞð1þ qðv4e=
v4eTÞÞexpð� v2e=v

2
eTÞ, where q1 ¼ 1þ 3q and q estimates the number of thermal
Fig. 5. Plot of Cairns distribution function of electrons.
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electrons. This is the highly non-Maxwellian distribution profile proposed by Cairns

et al. [15] which exhibits nonmonotonic attitude in supra-thermal components Fig. 5

represents the plot of this distribution.

Fig. 6 explores the variation of the normalized growth rate of resistive drift mode

obtained from linearized Cairns distributed electrons i.e. Eq. (15) for increasing

normalized parallel wave number with different values of G. It is found that increase

the value of G decrease the growth rate of the mode hence stabilizing effect on the

unstable mode. Furthermore, the growth rate of mode is found lower then Maxwel-

lian distribution case.
Fig. 7. Contour plot from dispersion relation (15) with parameters S ¼ 107; di ¼ 0:1; b ¼ 0:5; Te ¼
105eV; Ln=L ¼ 2 and di=L ¼ 0:1.
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Fig. 7 illustrates the contour plot of the mode represents the dependence of the

normalized growth rate of resistive drift mode on normalized parallel wave number

and normalized perpendicular wave number for non-thermal i.e. Cairns distributed

electron.

Fig. 8. Plot of kappa distribution function of electrons.
4.3. Resistive drift mode for kappa distribution

The kappa distribution of electron can be defined as fkðveÞ ¼
ðnegk=p

3=2k21v
3
eTÞð1þ ðv2e=kk21v2eTÞÞ�ð1þkÞ, where gk ¼ gð1þ kÞ=k2=3Gðk� 1=2Þ,

here g is the gamma function. This is the commonly used distribution for plasmas

that are removed from Maxwellian distribution profile. The kappa distribution has

the form of power law and deviates moderately from Maxwellian profile. Fig. 8 rep-

resents the kappa distribution profile.

Fig. 9 shows the variation of the normalized growth rate of resistive drift mode obtained

from linearized kappa distributed electrons i.e. Eq. (16) for increasing normalized par-

allel wave number with all other parameters same as Fig. It is found the increasing the

spectral index k for kappa distribution have destabilizing effect on the mode.

Finally, the contour plot for the normalized growth rate against normalized parallel

and perpendicular wave number is demonstrated in Fig. 10 by solving Eq. (16)
Fig. 9. Variation of the normalized growth rate vs normalized parallel wave vector for kappa distributed

electrons at different values of k.
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numerically. Keeping all parameter fixed. It is observed that growth rate is little

lower then Maxwellian plasma case.

To summarize, resistive drift instabilities are investigated for thermal as well as non-

thermal plasma by using linearize Maxwell-Boltzmann, Cairns and kappa distribu-

tion functions. Three dispersion relations for three distributions have been derived.

The dispersion relations are then analyzed numerically for typical parameters of

space plasma. The growth rate of the unstable mode for thermal and non-thermal

plasma is demonstrated. It has been found that increasing values of G (which esti-

mate population of non-thermal electrons) for Cairn distributed electrons are able

to stabilize the mode. Furthermore, increasing the values of k (which is spectral in-

dex) for the kappa distributed electrons have destabilizing effects on the mode. The

present work might be fruitful to understand resistive drift instabilities which are

extensively observed in space plasma system.
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