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Abstract: The number of aged individuals is increasing worldwide, rendering essential the com-
prehension of pathophysiological mechanisms of age-related alterations, which could facilitate the
development of interventions contributing to “successful aging” and improving quality of life. Cardio-
vascular diseases (CVD) include pathologies affecting the heart or blood vessels, such as hypertension,
peripheral artery disease and coronary heart disease. Indeed, age-associated modifications in body
composition, hormonal, nutritional and metabolic factors, as well as a decline in physical activity
are all involved in the increased risk of developing atherogenic alterations that raise the risk of
CVD development. Several factors have been reported to play a role in the alterations observed in
muscle and endothelial cells and that lead to increased CVD, such as genetic pattern, smoking and
unhealthy lifestyle. Moreover, a difference in the risk of these diseases in women and men has been
reported. Interestingly, in the past decades attention has been focused on a potential role of several
pollutants that disrupt human health by interfering with hormonal pathways, and more specifically
in non-communicable diseases such as obesity, diabetes and CVD. This review will focus on the
potential alteration induced by Endocrine Disruptors (Eds) in the attempt to characterize a potential
role in the cellular and molecular mechanisms involved in the atheromatous degeneration process
and CVD progression.

Keywords: endocrine disruptors; women; atherosclerosis; cadmium; bisphenol A; inflammatory
cytokines; cardiovascular diseases

1. Introduction

As the number of older individuals continues to increase, it is important to under-
stand the pathophysiological mechanisms of age-related pathologies in order to develop
interventions that can be easily implemented and contribute to “successful aging” and
prevention of chronic diseases.

Age-related changes in body composition, metabolic factors, and hormonal levels,
accompanied by a decline in physical activity, might all provide mechanisms responsible
for the tendency to lose muscle mass, gain fat mass and develop cardiovascular diseases [1].
Indeed, cardiovascular diseases (CVD) are important widespread health problems that lead
to a high prevalence of both mortality and morbidity, and during the past decades they
have become a major health threat around the world [1–3].

Ageing also increases the risk of muscle mass reduction with a corresponding increase
of fat mass and inflammation which, in association with hormonal imbalance and altered
nutritional pattern [4], might synergistically increase CVD [3,5]. Of note, these age-related
alterations are often sex-related as well [6–8].
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Obesity, caused by an imbalance in which energy intake exceeds energy expenditure
over a prolonged period, has always been recognized as a risk factor for metabolic dis-
orders and CVD [9]. In particular, obese postmenopausal women are often affected by
hypertension, dyslipidemia, diabetes mellitus and CVD, presenting an even higher risk
compared to men [10].

In men, the condition of late-onset hypogonadism, frequently observed in the elderly,
correlates with changes in body composition and increased cardiovascular risk [6,8,11,12].
Furthermore, recent epidemiological studies indicate that reduced androgen levels are
correlated with high blood pressure, left ventricular mass and increased cardiovascular
mortality in men [13].

Moreover, recent data indicate that some environmental pollutants, such as Cadmium
(Cd) and Bisphenol A (BPA), which are widespread in the environment and can be intro-
duced in the human organism in different ways, can cause significant alterations in human
health, acting as endocrine disruptors (Eds). In particular, recent data suggest that the
cardiovascular system might be a target of both of the pollutants Cd and BPA [14].

Thus, the aim of this review is to evaluate data on Eds, focusing on mechanisms of
endothelial cell homeostasis disruption potentially leading to an increased risk of cardio-
vascular diseases, and addressing, when possible, sex-dependent differences.

2. Search Strategy

A systematic review of the literature was conducted using the following keywords:
“Endocrine disruptors”, “Cardiovascular risk”, “Cadmium”, “Bisphenol A”, “Endothelium
damage” and “Atherosclerosis” on the search engines “PubMed” and “Scopus”. Articles
that were not related to the aim of this review and/or reported results using inappropriate
cell models or a small number of patients were excluded. Two researchers, evaluating inde-
pendently the titles and abstracts of the identified articles, performed the initial screening.
A third evaluator was consulted when agreement between the two researchers could not
be reached. The initial literature search identified a total of 1400 articles, and a manual
screening of titles and keywords removed 610 records. After reviewing abstracts and full-
text manuscripts, 100 papers fulfilling the above-mentioned search criteria were included.
Figure 1 depicts the PRISMA flow diagram and the number of records included in the
different phases of the review.Biomolecules 2022, 11, x FOR PEER REVIEW 3 of 15 
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3. Pro-Inflammatory Cytokines Effects on Cardiovascular System

Atherosclerotic plaque can be considered the main expression of atherosclerosis, the
main cause of CVD and the first cause of death among the population in industrialized
countries. The atherosclerotic process starts from the endothelial cells, which are capable
of processing many active substances and modulating the biological activity of the vari-
ous vessel-wall structures, blood cells and proteins of the coagulation system, normally
in contact with the surface of the endothelium [15]. When endothelium homeostasis is
compromised by risk factors such as smoking, hypertension, obesity, diabetes and envi-
ronmental stressors [16,17], this event might lead to upregulation of adhesion molecules,
secretion of cytokines and chemokines and alteration of adhesion molecules [15].

Pro-inflammatory cytokines, which include several adipokines, are involved in many
pathological processes, including inflammation, endothelial damage, atherosclerosis and
hypertension. Their dysregulation is a strong contributing factor of the low-grade inflam-
matory state, which leads to a cascade of metabolic alterations inducing an increased risk
of cardiovascular complications [18,19].

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine that plays impor-
tant regulatory effects on lipid metabolism, adipocyte function and insulin signaling [20]. In
obese rats, TNF-α produced by periarteriolar fat alters endothelium-dependent vasodilata-
tion, likely by inhibiting the insulin-mediated release of nitric oxide (NO) [21]. Moreover,
recent results indicate that TNF-α upregulates the release of the adhesion molecules in-
tercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1)
in endothelial cells, facilitating leukocytes adhesion to vessel walls [22]. Thus, TNF-α
may play an important role in vascular disease, confirming a pivotal role of this pro-
inflammatory cytokine in the pathogenesis of atherosclerosis, endothelial damage and
heart-cell remodelling toward higher disease severity [23].

Interleukin-6 (IL-6) is a cytokine that has a wide range of actions, including promotion
of coagulation and immune/inflammatory reaction [24]. This cytokine is produced by
different cell types, including endothelial cells; its levels can significantly increase, for
instance, after menopause and with the decades of life, determining, along with increased
levels of other cytokines, a subclinical chronic inflammatory status [25–27]. Interestingly,
IL-6 has also been demonstrated to be an important correlation factor between inflam-
mation and atherosclerosis since TNF-α can stimulate IL-6, which in turn can modulate
C-reactive protein (CRP, an inflammatory biomarker of cardiovascular risk) production
in smooth muscle cells, negatively affecting the expression of adhesion molecules and
endothelial function [28]. Moreover, cohort studies have shown that increasing levels of
this pro-inflammatory cytokine appear to be correlated with an increased risk (2-fold) of
cardiovascular and all-cause mortality in healthy aged people, also having a significant
prognostic value in subjects affected by unstable angina [29].

Angiotensin (AT), predominantly produced by the liver and adipose tissue, is the
precursor of the vasoactive peptide angiotensin II and it appears correlated to higher blood
pressure [30].

Plasminogen activating inhibitor (PAI-1), produced by liver and adipose tissue, inhibits
the activity of tissue-plasminogen activator favouring thrombus formation over ruptured
atherosclerotic plaques. PAI-1 expression is elevated in visceral obesity, insulin resistance
(IR) and hypertriglyceridemia, and its levels appears to predict risk for future development
of both type 2 diabetes (T2D) and CVD [31].

Leptin, the first identified adipose tissue-derived factor, is secreted by adipocytes
in proportion to body fat tissue. Interestingly, hyperleptinemia, often present in subjects
affected by overweight or obesity, has been widely recognized as an independent cardio-
vascular risk factor [32,33]. Several data suggest that hyperleptinemia might play a pivotal
role in the pathogenesis of endothelial dysfunction and atherogenesis, likely stimulating
the release of oxygen reactive species (ROS) as well as the recruitment of monocytes [33].
Leptin induces macrophage cholesterol ester synthesis, contributing to foam cell formation
in vitro [34] with high glucose levels, also inducing the expression of CRP [35].
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Resistin is produced by macrophages and visceral adipocytes, and its name derives
from the induction of IR [36]. Resistin modulates insulin sensitivity in both skeletal muscle
and liver, and positively correlates with IR and glucose tolerance in both human and
animal models [37]. Resistin is believed to be a marker of inflammation, contributing to
atherogenesis. Indeed, in vitro data obtained in human endothelial cells show that resistin
induces a dose-dependent proliferation of smooth muscle cells and increases endothelin-I
release, VCAM and ICAM-1 [38,39]. In addition, resistin appears to be a good predictor
marker of coronary artery calcification [40], being also associated with arterial stiffness [41],
while it seems inversely associated to left ventricular fractional shortening, biomarker of left
ventricular systolic function [42]. Recent evidence indicates how resistin is independently
linked with an increase in the risk of both myocardial infarction and ischemic stroke [43].
Table 1 summarises the cytokines involved in cardiovascular disorders.

Table 1. Cytokines involved in cardiovascular disorders.

Cytokines

Reference Name Type Effect

[20–23] TNF-α pro-inflammatory cytokine decrease of insulin-mediated release of NO
increase VCAM1 and ICAM1

[25–29] IL6 pro-inflammatory cytokine promotion of coagulation
immune/inflammatory reaction

[30] AT precursor of vasoactive
peptide angiotensin II increase of blood pressure

[31] PAI-1 serine-protease inhibitor favouring thrombus formation over ruptured
atherosclerotic plaques

[32–35] Leptin Adipokine
stimulation of endothelial dysfunction,

atherogenesis. Induction of macrophage
cholesterol ester synthesis

[38–40] Resistin Adipokine proliferation of smooth muscle cells, increase of
endothelin-I, VCAM, ICAM-1

Legend. NO: nitric oxide; ICAM-1: intercellular adhesion molecule 1; VCAM-1: vascular cell adhesion protein 1;
TNF-α: Tumor necrosis factor-α; IL-6: Interleukin-6; AT: Angiotensin; PAI-1: Plasminogen activating inhibitor.

4. Endocrine Disruptors

The term endocrine disruptors (Eds) implies several chemicals, with a particular effect
on the endocrine system, since they interfere with specific receptor-mediated hormone
activity [44]. Due to this characteristic, Eds can alter cellular metabolism with potential long-
term and harmful effects. Eds are molecules of either natural origin or man-made products,
which include over 300 synthetic compounds that includes chemicals such as the plasticizers
polybrominateddiphenyl ethers (PBDEs) and polychlorinated biphenyl (PCB); insecticides
(i.e., dichlorodiphenyltrichloroethane DDT and metabolites, pyrethroids); herbicides (i.e.,
atrazine, nitrofen); fungicides (i.e., zineb, ziram); pharmacological agents (i.e., bisphenol
A—(BPA)) [45–50]; dioxins; dioxin-like compounds; phthalates; and heavy metals such as
lead, mercury and cadmium (Cd) [45]. Due to this distinctiveness, there is a rising concern
about how the endocrine or cardiovascular systems are affected by Eds, such as Cd or BPA,
since it has been demonstrated that these molecules might mimic the activity of natural
hormones such as estrogens and androgens, leading to the activation of specific signaling
pathways [51]. Of note, Eds can block the interaction of these hormones with their natural
receptors [52,53] or enhance the levels of proinflammatory cytokines [54].

5. Endocrine Disruptors and Cardiovascular System

As already mentioned above, CVDs are disorders that affect the blood vessels and
heart, representing one of the leading causes of both morbidity and mortality worldwide.
Risk factors for CVD include unhealthy diet [11], sedentary lifestyle, alcohol abuse, smoke
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and pollution [55]. For instance, some pollutants acting as Eds have been correlated to an
increased risk of developing CVD due to a direct and specific alteration in pro-inflammatory
cytokine levels and endothelium damage, leading to atherosclerotic lesions. Cd and BPA,
two Eds that have been highly correlated with CVD, will be further described.

5.1. Cadmium and Cardiovascular Effect

Cd is a toxic heavy metal, found in soil, contaminated water and food, that is used
in various industrial activities, and a non-occupational source is represented by cigarette
smoking, as Cd accumulates in tobacco leaves. Several studies indicate a negative effect
of this Ed on CVD. The molecular mechanisms by which Cd exerts the negative effects
on the cardiovascular tissues are linked to the induction of oxidative stress, since it might
disrupt endogenous antioxidant defence such as glutathione peroxidase (GPx), catalase
(CAT) and superoxide dismutase (SOD). In addition, Cd induces ROS generation [56],
harms the mitochondrial electron chain transport and decreases the antioxidant scavengers
such as glutathione (GSH), leading to an imbalance in the cellular redox state and, so far,
triggering the production of ROS [57–59].

5.1.1. Clinical Studies

Clinical studies have indicated that this heavy metal acts as a pro-atherogenic factor
since its presence has been identified in carotid plaques, leading to a significant increase in
vulnerability of the plaques compared to plaques that do not fissure and rupture [60–62].
In detail, epidemiological studies showed that a high serum level of Cd was linked with
CVD mortality and carotid plaques’ prevalence in a Swedish population and was also
correlated with an increase in CVD risk in the Korean male population [63,64]. Moreover, a
follow-up study performed for almost 20 years on a Swedish population-based cohort of
over 4000 middle-aged subjects of both sexes demonstrated that Cd might play a pivotal
role in smoking-induced CVDs, by measuring the level of Cd in the blood [65].

Another interesting study demonstrated a correlation between high urine and blood
concentration of Cd and plaque formation in a female and male population over 60 years of
age [66], indicating that even if Cd likely acts by disrupting the estrogen receptor pathway,
both genders are affected by the pollutants’ negative action on cardiovascular health.

Interestingly, several studies reported that Cd accumulation correlates with increased
macrophages presence, a recognized hallmark of symptomatic and vulnerable carotid
plaques [67,68]. In detail, recently published data obtained from a Canadian population
indicated a correlation between pollutants and carotid intima-media thickness (CIMT) [69].
The hypothesis that Cd triggers the vulnerability of carotid plaques, likely by increasing
the risk of rupture and ischemic stroke, was supported by a recent study that showed that
Cd accumulation was linked to the incidence of ischemic stroke [62].

It is well known that cigarette smoke is a significant risk factor for CVD and a main
source of Cd, thus leading several studies to attempt to characterize the molecular mech-
anism(s) of the increased Cd-related CVD incidence [70–72]. Indeed, cigarette smoke,
therefore Cd as well, induces vascular damage by stimulating vascular plaque inflamma-
tion and vasomotor dysfunction [73]. Five cross-sectional studies, recently reported by the
National Health and Nutrition Examination Survey (NHANES) involving the U.S. popula-
tion, confirmed that subjects with higher levels of either blood or urinary Cd had increased
risks of peripheral artery disease, hypertension, heart failure, myocardial infarction and
stroke [74–77].

Table 2 lists all significant manuscripts reporting clinical studies investigating the
association of Cd, highlighting the above-discussed related findings.
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Table 2. Summary of clinical studies investigating the association between cadmium and
BPA exposure.

Cadmium

Reference Population Sample Outcome

[60] Healthy Young Females Serum involved in initial stages of
atherosclerosis

[61] ApoE–/– mice Vessel sections of
atherosclerotic plaques pro-atherogenic factor

[62] Screening population Blood promotion of vulnerability of
carotid plaques

[63] Korean male population Blood CVD mortality and carotid
plaques prevalence

[64] Swedish population Blood CVD mortality and carotid
plaques prevalence

[65] Swedish population Blood role in smoking-induced CVDs

[66] Swedish population Blood; urine involved in plaques formation

[67] patients undergoing carotid
endarterectomy Blood; FFPE tissue increased macrophages

presence

[68] patients undergoing carotid
endarterectomy Carotid plaque increased macrophages

presence

[69] Canadian population Blood increased the vulnerability of
carotid plaques

[72] Korean population Blood increased Cd-related CVD
incidence

[74] NHANES Urine increased risks of coronary
heart disease

[75–77] NHANES Blood; urine increased risks of peripheral
artery disease

BPA

[78] NHANES Urine

increased risk of self-reported
CVD (myocardial infarction,

angina, or coronary heart
disease)

[79] Norfolk UK Urine increased incident risk of
coronary artery disease

[80] NHANES Urine
increase hypertension,

independent of traditional risk
factors

[81] NHANES Urine positive association with CVD

[82] NHANES Urine no correlation with CVD

[83] Spanish population Urine no association with ischemic
heart disease

[84] Women population study Plasma; urine

increase of IL-6, increase
biomarkers of oxidative stress
(including indices of oxidative

DNA and lipid damage)

[85] Male Caucasian subjects Blood positive association with IL-6
levels
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5.1.2. In Vitro Studies

It is well known that the genesis of atheromatous degeneration is a complex mech-
anism, which has determined several players including endothelium permeability. In-
deed, in vitro studies characterize Cd as a pro-atherogenic factor with a cytotoxic effect in
macrophages. In particular, our research group has published data demonstrating that Cd
exposure can alter androgen receptor levels in Human Umbilical Vein Endothelial Cells
(HUVECs) and even more importantly can stimulate pro-inflammatory signaling, strongly
indicating a role for Cd in cell injury linked to endothelial damage and CVD [86]. Moreover,
as reported in Table 3, Cd can also cause endothelial cell dysfunction since it alters vascular
endothelial cells’ permeability, decreases nitric oxide (NO) production, inhibits endothelial
cell proliferation, induces upregulation of adhesion molecules such as VCAM-1 expression
level, triggers endothelial cells apoptosis and alters proinflammatory cytokines levels [87].

Table 3. Summary of in vitro studies investigating the association between cadmium and
BPA exposure.

Cadmium

Reference Cell Line/Tissue Effects

[86] HUVEC stimulate pro-inflammatory signaling

BPA

[88] HUVEC mRNA expressions increase of VEGFR-2,
VEGF-A, eNOS, Cx43, stimulation of NO

[89] GT1-7 hypothalamic
neurons increased levels of oxidative stress markers

[90]
A549 (lung cells);

MDA-MB-231 (breast
cancer cells)

induced COX-2, TNF-α and IL-6 mRNA
expression, activation of MAPK

[91] whole hearts (ex vivo from
adult female rats)

induced a slowing of cardiac electrical
conduction

Legend. Vascular endothelial growth factor receptor 2 (VEGFR-2); vascular endothelial growth factor A (VEGF-
A); endothelial nitric-oxide synthase (eNOS); connexin 43 (Cx43); nitrix oxide (NO); mitogen-activated protein
kinase (MAPK).

5.2. BPA and Cardiovascular Effect

Bisphenol A (BPA) is a synthetic organic compound with two phenolic groups. Since
the 1960s of the past century, it is largely used for the production of polycarbonate plastics
(popular for their properties including transparency, and thermal and mechanical resis-
tance), for preparation of food containers, and for epoxy resins employed for internal
protective coating of food and beverage cans. It is one of the highest-volume chemicals
produced worldwide. Studies of the past two decades have, however, revealed that BPA
acts as an Ed, interfering as other molecules and pollutants with hormonal pathways.

5.2.1. Clinical Studies

Epidemiological studies have documented an increased risk of coronary artery disease
in a healthy population exposed to BPA [78,79,92]. Further, urinary BPA levels significantly
correlated with peripheral arterial alterations, independently of other known CVD risk
factors [80]. An interesting meta-analysis reported that urinary levels of BPA normally
found in the general population correlated with increased prevalence of hypertension,
diabetes and obesity [93]. NHANES in 2003 and 2004 [78], documented that a higher con-
centration of urinary BPA was linked to an increased risk of self-reported CVD (myocardial
infarction, angina or coronary heart disease), but not of stroke. While similar data were
subsequently reported by other authors who demonstrated similar associations [81], and
Casey et al. showed significant correlation between urinary BPA and coronary heart disease
in another survey, results were not confirmed in subsequent evaluations [82]. Moreover, the
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prospective study within the EPIC–Norfolk cohort depicted a positive correlation between
urinary BPA concentrations and the occurrence of coronary artery disease [79]. These
data demonstrated that several cross-sectional epidemiological studies found a positive
correlation between levels of urinary BPA and CVD risk factors, such as hypertension and
hypercholesterolemia [94]. On the other hand, a recently published study [83] performed in
a subcohort of the Spanish European Prospective Investigation into Cancer and Nutrition
(EPIC) did not find a significant correlation between urinary BPA levels and the risk of
incident ischemic heart diseases (IHD). The apparent contradictory results of these studies
and surveys might be due most likely to different experimental designs, timing of exposure
and other bias, as they might be uncontrolled or residual confounding factors, such as
route of administration of these pollutants, degradation time of BPA or different exposure
doses evaluated in the studies [95–97]. Table 2 reports all significant manuscripts reporting
clinical studies investigating the association of BPA, highlighting the above-discussed
related findings.

Moreover, several epidemiologic studies indicated positive associations of urinary
BPA level with serum IL-6 levels in both pregnant women and adult males [84,85]. Finally,
several in vivo studies showed that BPA exposure increases pro-inflammatory cytokines
TNF-α and IL-6, but decreases the anti-inflammatory cytokines IL-10 and transforming
growth factor-β (TGF-β) in human macrophages, strongly suggesting that BPA can trigger
inflammation status likely increasing the risk of CVD (Table 1).

5.2.2. In Vitro Studies

A rising number of studies indicate that exposure to environmentally significant levels
of BPA might increase the susceptibility for cancer in the reproductive organs and increase
body weight [98,99], but also, as mentioned earlier, increase the risk of CVD [78,81]. Thus,
several in vitro studies, summarized in Table 3, focused on the characterization of the
mechanism(s) by which this molecule could affect endothelial cells. One of the first studies
to evaluate the potential mechanism of action of BPA on endothelial cells was conducted
by Andersson and colleagues, who demonstrated that BPA increased mRNA expression
of vascular endothelial growth factor receptor 2 (VEGFR-2), vascular endothelial growth
factor A (VEGF-A), endothelial nitric-oxide synthase (eNOS) and connexin 43 (Cx43), and
also stimulated NO production in HUVEC cells, a well-known human in vitro model of
endothelial cells [88]. Furthermore, they showed that BPA also stimulated expression of
phosphorylated eNOS and endothelial tube formation in HUVEC, suggesting that relevant
levels of BPA might lead to proangiogenic effects in human primary endothelial cells [88].

Another study, as shown in Table 3, attempted to further characterize the molecular
alterations induced by BPA exposure in vitro [89]. The authors evaluated markers of cellular
oxidative stress in an experimental in vitro model of hypothalamic neurons exposed to BPA,
demonstrating that BPA increased, in a time- and dose-dependent manner, the production
of intracellular peroxides and mitochondrial superoxide [89]. The results of this study
confirmed emerging evidence indicating that a non-institutionalized human population
has higher levels of urinary BPA and high levels of oxidative stress markers leading to
higher risk of CVD as well as other metabolic chronic diseases.

To further demonstrate an enhancement of inflammation induced by BPA, Song et al.
demonstrated in two different experimental cellular models that BPA induced COX-2
mRNA expression, along with induction of promoter activity, suggesting a direct effect
on increased transcription. Moreover, BPA treatment also increased mRNA levels of the
proinflammatory cytokines TNF-α and IL-6 [90].

Since clinical findings suggested that BPA might increase the risk of ischemic heart
attack and also heart-function alterations, another interesting experimental study evaluated
the potential effect of BPA on electrical conduction in excised hearts. Results showed that
acute BPA exposure slowed electrical conduction, highlighting a potential interfering role
of BPA in heart electrophysiology and therefore suggesting that an in vivo exposure could
cause or exacerbate conduction abnormalities in high-risk subjects [91].
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6. Therapies in the Context of Eds Exposure

The damage induced by Eds leads to new opportunities in terms of pharmacological
intervention but also of potential interference of Eds on the efficacy of pharmacological
therapy used to decrease cardiovascular risk. In particular, these molecules can play a role
as a risk factor in a gender-independent manner; however, data suggest a potential role
also in term of gender specificity. As previously discussed elsewhere [100], sex steroids
can significantly influence cardiovascular risk in a gender-specific manner. Thus, potential
exposure to Eds will have to be taken into consideration when factor risks for CVD are
analysed. Moreover, Eds might influence and interfere with positive effects of estrogen
replacement therapy, which will need further evaluation.

7. Conclusions

In conclusion, the published studies summarized here strongly indicate that Eds can
trigger human health problems by interfering with hormonal pathways, inflammatory
status and immune responses in both sexes. Since it is known that sex hormones might
significantly alter the immune and inflammatory responses during the atherosclerosis
process, causing different disease phenotypes according to sex, present data lead to the
hypothesis that Eds might interfere with cardiovascular homeostasis by interfering with
these processes (see Figure 2). For instance, women respond to infection and damage by an
increase in both antibody and autoantibody responses, while men respond by an increase
in innate immune activation, suggesting that, despite a well-known sexual dimorphism
in the incidence and complications of atherosclerosis there are few data explaining the
potential mechanisms underlying gender difference as a biological variable in CVD.
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A limit of this review manuscript is the lack of a larger body of evidence regarding the
underlying molecular and cellular mechanisms of the complex relationship among Eds,
such as Cd and BPA, and clinical conditions such as CVD. The review of the literature has
indicated that further research is needed to develop valuable and beneficial intervention for
preventing ageing processes often accelerated by stress factors such as pollutants and specif-
ically Eds. Future research needs to develop further in vitro and in vivo model systems,
including arterial endothelial cells from micro- and macrovascular bed. New studies are
required to fully characterize all the mechanism(s) involved in the process in both genders
in order to attempt to develop proper prevention strategies in a sex-dependent manner.
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