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OMIC datasets have high dimensions, and the connection among OMIC features is very
complicated. It is difficult to establish linkages among these features and certain biological
traits of significance. The proposed ensemble swarm intelligence-based approaches can
identify key biomarkers and reduce feature dimension efficiently. It is an end-to-end
method that only relies on the rules of the algorithm itself, without presets such as the
number of filtering features. Additionally, this method achieves good classification
accuracy without excessive consumption of computing resources.
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1 INTRODUCTION

The OMIC data includes genomes, transcriptomes, metabolomes, and proteomes. (Karczewski and
Snyder 2018). Its quantity and quality have been improved significantly during the rapid
development and continuous innovation of high-throughput sequencing and mass spectrum
technologies (Margolis et al., 2014). Generally, biomedical data has the characteristics of “large p
and small n,” that is, the species of features is far larger than the species of samples (Liao and Chin
2007). Thus, it is necessary for biomedical dataset dimension reduction to protect against potential
dimension disaster.

Feature selection has been proven with excellent performance in data preprocessing, especially for
high dimensional data (Dash and Liu 1997; Bolón-Canedo, Sánchez-Maroño, and Alonso-Betanzos
2015). Its goals consist of cleaning out understandable and analyzable data, constructing simple and
efficient models, and improving the efficiency of data mining (Li et al., 2017). It has achieved
prominent results in the bioinformation field (Fu et al., 2018; Qiu, Ching, and Zou 2021). Swarm
intelligence (SI) is the decentralized self-organizing collective behavior at the collective level (Hu
et al., 2021b). It usually consists of a group of simple agents that interact with each other locally and
with their environment. The agents follow very simple rules, and there is no centralized control
structure to specify the behavior of a single agent. However, the interaction among these agents will
lead to the emergence of “intelligent” global behavior (Hu et al., 2021a). Therefore, the whole
problem-solving process will not be affected by the failure of one or several agents, so this method has
good robustness and potential global search ability. Additionally, SI can transmit and coordinate
information through indirect communication. With the increase in the number of individuals, the
increase in communication overhead is small. Thus, it also has good scalability. Because of these
advantages, SI is widely used in feature selection; its combination with machine learning has
especially proven to be able to obtain outstanding results. Through the research and development of

Edited by:
Lin Hua,

Capital Medical University, China

Reviewed by:
Yushan Qiu,

Shenzhen University, China
Collins Leke,

University of Johannesburg, South
Africa

Nebojsa Bacanin,
Singidunum University, Serbia

*Correspondence:
Zhiguo Wang

wangzhiguo5778@163.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 12 October 2021
Accepted: 22 December 2021

Published: 08 March 2022

Citation:
Yao Z, Zhu G, Too J, Duan M and
Wang Z (2022) Feature Selection of

OMIC Data by Ensemble Swarm
Intelligence Based Approaches.

Front. Genet. 12:793629.
doi: 10.3389/fgene.2021.793629

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 12 | Article 7936291

ORIGINAL RESEARCH
published: 08 March 2022

doi: 10.3389/fgene.2021.793629

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.793629&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.793629/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangzhiguo5778@163.com
https://doi.org/10.3389/fgene.2021.793629
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.793629


the genetic algorithm (Malakar et al., 2019) and the firefly
algorithm (Bacanin et al., 2021), the features extracted from
each handwritten word image have been significantly
optimized so that the performance of the handwritten word
recognition technique has been increased visibly.

Various computational feature selection models have been
proposed to reduce the dimension of OMIC datasets (Ge et al.,
2016; Liu et al., 2017; Yuanyuan, Lan, and Fengfeng 2021).
However, these algorithms need to design the number of
features in advance as an intervention. Meanwhile, the heuristic
rules applied are almost mathematical principles. Thus, this study
was intended to investigate the performance of the features screened
based on biological or natural rules, instead of traditional
mathematical principles, and manually specify the number.

This article is organized as follows: details of the datasets and
overview of the methods are described in Section 2. Experimental
results and a corresponding analysis of these results are presented
in Section 3. Finally, a brief conclusion is drawn in Section 4.

2 MATERIALS AND METHODS

As shown in Figure 1, this study involved six major stages:
Dataset curation, data preprocessing, feature selection, model
training and validation, feature intersection and union
combination, and prediction. First, a large number of OMIC
datasets are collected, including transcriptome datasets (Dataset
1) and methylation datasets (Dataset 2). Then, all the features
with missing values in the collected datasets will be deleted. Next,
all the transcriptome datasets will have features extracted by
twelve advanced swarm intelligent algorithms, and then these
features will be input into five different representative classifiers
and finally classification performance will be obtained. According

to these results, the best classifier and the top three algorithms
that use this classifier to get the best results will be selected to
apply to methylation datasets. Later, these subsets will generate
different combinations through union and intersection. Finally,
the classification performance of these combinations will be
evaluated by the best classifiers. The details of each process are
described in the following sections.

2.1 Summary of Datasets
This study concentrated on binary classification and analyzed the
relevant publicly available OMIC databases. As shown in
Supplementary Table S1, these data include 17 transcriptome
datasets and 10 methylation datasets. Methylation is an
important modification of proteins and nucleic acids; it reveals
the influence of genetic and environmental factors on the
occurrence and development of complex diseases (Barros and
Offenbacher 2009). Compared with transcriptome data,
methylation data usually have more feature dimension and are
more challenging in classification.

First, all transcriptome datasets (Dataset 1) were used to test
the performance of the algorithm. As shown in Supplementary
Table S1, they were DLBCL (Shipp et al., 2002), Pros (Aalinkeel
et al., 2004), Colon (Alon et al., 1999), Leuk (Golub et al., 1999),
Mye (Tian et al., 2003), All (All1/All2/All3/All4) (Chiaretti et al.,
2004), CNS (Pomeroy et al., 2002), Lym (Alizadeh et al., 2000),
Adeno (Notterman et al., 2001), Gas (Wu et al., 2013), Gas1/Gas2
(Wang et al., 2013) , T1D (Levy et al., 2012), and Stroke (Krug
et al., 2012). These datasets were obtained and preprocessed as
similar in Mctwo (Ge et al., 2016).

Additionally, tenmethylation datasets (Dataset 2) were used to
demonstrate the binary classification performances, as shown in
Supplementary Table S1. The dataset GSE74845 profiled 110
Fimbria and 106 proximal tubal DNA samples of fallopian tube

FIGURE 1 | Overview of the proposed methodology.
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fimbriae in BRCA mutation carriers (Bartlett et al., 2016). The
dataset GSE80970 provided the methylomes of 148 Alzheimer’s
disease samples and 138 controls (Smith et al., 2018). The dataset
GSE103186 illustrated 130 gastric light or mild intestinal
metaplasia and 61 gastric normal samples (Huang et al., 2017).
The dataset GSE139032 investigated 77 lung adenocarcinomas and
77 matched non-malignant lung samples (Enfield et al., 2019). The
dataset GSE139404 compared 40 low-grade adenoma and high-
grade adenoma in colorectal and 20 normal tissues (Fan et al.,
2020). The dataset GSE144910 collected a total of 88 genomic DNA
samples taken from the postmortem superior temporal gyrus of the
human brain with 44 schizophrenia and paired non-psychiatric
controls (Mckinney et al., 2020). The dataset GSE164269 generated
33 discovery and 46 independent validation cohorts of malignant
pleural mesothelioma samples (Bertero et al., 2021). The dataset
GSE166787 contrasted DNA methylation data throughout human
muscle cell differentiation in 28 individuals with type 2 diabetes
and 28 controls (Davegårdh et al., 2021). The dataset GSE173330
supplied DNA methylation data from several tissues in toothed
whales (N = 254) and dolphin (N = 291) (Robeck et al., 2021). The
last dataset GSE174613 analyzed samples of non-malignancy
obtained from prostatectomy specimens (n = 12) and of bone
metastasis tissue samples obtained from separate prostate cancer
patients (n = 70) (Ylitalo et al., 2021).

2.2 Data Preprocessing
Due to various experimental reasons, gene expression data
universally suffer from the missing value problem. The features
withmissing values can adversely affect the classifiers (Varsha et al.,
2016). Considering the number of features with missing values in
the datasets accounts for less than 0.1% of the total number of
features, direct removal also has little impact on the overall
datasets. Thus, these features affected by missing values are
removed directly. For example, for a feature X, the value of X is
missing in only one sample, but there is a definite value in all other
samples. The X must be removed from all samples.

2.3 Summary of Swarm Intelligence
Methods in Feature Selection
Twelve swarm intelligence methods are used in the study,
including ten state-of-the-art methods from the last 2 years and
two classic methods. The methods are briefly described below.

2.3.1 Marine Predators Algorithm
Marine predator algorithm (MPA) is a natural heuristic
optimization algorithm. It follows the rule of natural
dominance in the optimal foraging strategy and encounters
the rate strategy between predator and prey in the marine
ecosystem. This algorithm is inspired by the predator–prey
strategy in nature and considers that the top predator has the
greatest search ability, that is, the decision of a top predator is a
solution of the problem (Faramarzi et al., 2020a).

2.3.2 Generalized Normal Distribution Optimization
Generalized normal distribution optimization (GNDO) is a novel
metaheuristic algorithm inspired by normal distribution theory.

It can solve optimization problems by natural phenomenon
distribution and fitting minimum standard variance of the
positions of all individuals. Generally speaking, GNDO
consists of two main strategies: local exploitation and global
exploration. The former focuses on building the generalized
distribution model while the latter explores the search region
based on three randomly selected individuals (Zhang et al., 2020).

2.3.3 Slime Mould Algorithm
Slime mould algorithm (SMA) is based on the diffusion and
foraging behavior of slime mould in nature. It calculates the
optimal path by simulating the relationship between
morphological changes and contraction patterns of slime
mould during foraging. SMA performs the search relying on
three stages: Find approach, wrap food, and oscillation (Li et al.,
2020).

2.3.4 Manta Ray Foraging Optimization
Manta ray foraging optimization (MRFO) mathematically
models and mimics three unique foraging strategies of manta
rays, including chain foraging, cyclone foraging, and somersault
foraging, for solving global optimization problems. In chain
foraging, the manta rays update their solutions by following
the best solution and the solution in front of it. For cyclone
foraging, the manta rays move toward the global optima along a
spiral path. Last, in somersault foraging, the manta rays tend to
update their position around the best solution in the population
(Zhao et al., 2020).

2.3.5 Equilibrium Optimizer
Equilibrium optimizer (EO) is inspired by a physical phenomenon
of controlling volume mass balance. It simulates the physical
process of mass entering, leaving, and generating in the control
volume to finally reach the equilibrium state as optimal results. In
EO, there is an equilibrium pool that used to store the current four
best-so-far solutions. Iteratively, these stored solutions will be
applied to enhance the quality of solutions in the population.
Additionally, EO integrates the particle memory saving to benefit
the exploitation capability (Faramarzi et al., 2020b).

2.3.6 Atom Search Optimization
Atom search optimization (ASO) is a novel algorithm based on a
basic molecular dynamics model. In a molecular system, there are
interaction forces between neighboring atoms, and the globally
optimal atoms constrain other atoms. Gravitation makes atoms
explore the whole search space extensively, and repulsion makes
them develop the potential region effectively. It simulates this
phenomenon to find the global optimal solution (Zhao et al.,
2019).

2.3.7 Henry Gas Solubility Optimization
Henry gas solubility optimization (HGSO) is a novel
metaheuristic algorithm; it imitates the huddling behavior of
gas described in Henry’s law to balance the exploitation ability
and the exploration ability of the algorithm for searching the
global optimum and avoid trapping into local optima (Hashim
et al., 2019).
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2.3.8 Harris Hawks Optimization
Harris hawks optimization (HHO) is a novel population-based,
natural heuristic optimization. Its main inspiration comes from
Harris’s eagle’s cooperative behavior and pursuit in nature. It is
unique because it has a unique cooperative foraging activity with
other family members in the group. Because of this, it is very
suitable to simulate the unique predatory behavior of Harris’s hawk
as a swarm intelligence optimization process (Heidari et al., 2019).

2.3.9 Path Finder Algorithm
Path finder algorithm (PFA) is inspired by the hunting behavior
of group animals. The algorithm realizes the optimization process
through the communication between pathfinder and follower
from the population in the process of the population searching for
food. Naturally, PFA stores the best-so-far solution (pathfinder),
in which the pathfinder is used to enhance the exploitation and
exploration capability (Yapici and Cetinkaya 2019).

2.3.10 Poor and Rich Optimization
Poor and rich optimization (PRO) is developed based on the real
social phenomenon, that is, the attempt of the rich and the poor to
improve their economic conditions. This social behavior can be
regarded as a solution for complex optimization problems. In PRO,
a mutation operator is designed to improve the compound
population. Even though PRO is a promising algorithm, it
suffers from the high computational complexity (Moosavi and
Bardsiri 2019).

2.3.11 Ant Colony Optimization
Ant colony algorithm is inspired by the foraging behavior of ants in
nature. In the process of ant foraging, an ant colony can always find
an optimal path between the ant nest and food source. This is
because the ants in the ant colony can transmit information through
some information mechanism. After further research, it is found
that ants will release a substance called “pheromone” on their path.
Ants in the ant colony have the ability to perceive the “pheromone.”
They will walk along the path with high concentration of
“pheromone,” and each passing ant will leave “pheromone” on
the road, which forms a mechanism similar to positive feedback; in
this way, after a period of time, the whole ant colony will reach the
food source along the shortest path (Dorigo et al., 2006).

2.3.12 Particle Swarm Optimization
Particle swarm optimization is inspired by the study of bird
predation behavior. Specifically, birds find the optimal
destination through collective information sharing. In PSO,
the potential solution of each optimization problem is a bird
in the search space, which is called a particle. All particles have a
fitness value determined by the optimized function, and each
particle also has a speed to determine their flying direction and
distance. Then the particles follow the current optimal particle to
search in the solution space (Kennedy and Eberhart 1995).

2.4 Model Training and Validation
2.4.1 Random 5-Fold Cross-Validation Strategy
K-fold cross-validation is one of themost commonly used evaluation
strategies. This experimental procedure is performed by the 5-fold

cross-validation, that is, the baseline dataset is randomly divided into
five equal parts (the number and distribution of samples are the
same) and the test processes are repeated five times; for each cross-
validation test, one subset is used for testing while the remains are
used for training the model. The final performance is represented by
the average of five experimental results.

2.4.2 Leave-One-Out Cross-Validation Strategy
Leave one method cross-validation is to treat each data sample as
an independent dataset, use one sample each time as the test set,
and use all the remaining samples as the training set. The result
obtained using this method is closest to the expected value of the
whole test set, but the computing cost is excessively expensive.

2.4.3 Performance Evaluation of Various Classifiers
Higher classification accuracy and fewer features are the
objectives of generating models; however, it is difficult to
achieve both at the same time. Here, the first consideration in
this study is the classification accuracy. For achieving a more
comprehensive and stable performance, five widely used
classifiers are applied to the models, that is, support vector
machine (SVM), K-Nearest Neighbor (KNN), discriminant
analysis (DA), ensemble of learners (EoL), and naive Bayes
(NB). This study evaluates a feature subset through the best
classification performance of multiple classifiers. Generally,
prediction accuracy is defined as follows:

ACC � TP + TN
TP + FP + TN + FN

where TP, FP, TN, and FN represent the value of true positives, false
positives, true negatives, and false negatives, respectively.

2.5 Feature Intersection and Union
Combination
Intersection and union combination approaches were employed
to ensemble the selected features. As shown in Figure 2, two or
three different feature selection results were combined into eight
subsets for performance comparison.

3 RESULTS AND DISCUSSIONS

3.1 The Result on Transcriptome Datasets
This study used these transcriptome datasets for testing the
performance of baseline swarm intelligence algorithms and
classifiers. Enough iterations are used to satisfy the fitness value.
Here, the random 5-fold cross-validation and leave-one-out cross-
validation are used to evaluate the performance, respectively. The
results are shown in Supplementary Tables S2, S3. Both of the
tables show that KNN can make most datasets achieve the best
classification effect in most algorithms. Additionally, in the other
three algorithms, where KNN cannot achieve the best results, the
gap between KNN and the best classifier in the number of datasets
for best performance is small, only one to three datasets.

Through the information combination of two tables, when
using KNN, the number of best results obtained by PFA and SMA
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is 12 and 8, respectively, ranking first and second. ASO, GNDO,
PSO, and HGSO all get 7 best results, and the number is equal. As
shown in Supplementary Table S4, considering the average
number of features used on each dataset, HGSO is chosen as
the last algorithm to be applied to the next stage.

Because there is little performance difference between 5-fold
cross-validation and leave-one-out cross-validation in these
transcriptome datasets and the computing cost of leave-one-
out cross-validation is relatively high, the subsequent
evaluation is only based on the random 5-fold cross-validation.

3.2 Convergence of Top Three Swarm
Intelligence Algorithms
In the FS phase, a fitness function is adopted to evaluate the
quality of the initial and newly generated solutions. This study
evaluates the solutions by considering the minimum
classification error and minimum size of features (Emary
et al., 2016a). Mathematically, the fitness function is defined
as follows:

Fit � βER + (1 − β)( |SF|
|AF|)

where ER is the classification error rate computed by the
k-nearest neighbor classifier (KNN, k-value = 5), |SF| is the
number of the selected features, |AF| is the total number of
features, and β is the weight factor between 0 and 1. This study
adopts β = 0.99 since the classification performance is the most
importance measurement (Emary, Zawbaa, and Hassanien
2016b; Mafarja et al., 2019). In the fitness evaluation stage,
the dataset is partitioned into training and validation sets using
the k-fold cross-validation method. Consequently, the dataset is
divided into 5 folds, in which k-1 folds are used to build the
training set while the rest is kept for accessing the selected
features.

The T1D dataset is used as an example to show the
convergence of the top three algorithms. As shown in

Figure 3, PFA and HGSO converge in about 22 iterations,
while SMA converges faster, and the convergence can be
completed in about 10 iterations.

3.3 The Result of Top Three Swarm
Intelligence Algorithms on Methylation
Datasets
This section evaluated the performance of SMA, PFA, and HGSO
on the methylation datasets, and the classifier is KNN.

Although methylome datasets may be a challenge for many
feature selection algorithms, the swarm intelligence algorithm has
achieved good results on many datasets. As shown in Figure 4,
PFA achieves more than 90% accuracy on four datasets.
Meanwhile, SMA obtains about 90% accuracy on the
GSE139032 and GSE139404, where PFA does not get good
results. In addition, the consumption of computing resources
and time is also within an acceptable range; the average time
consumption (CPU: i9-11900H) of SMA, PFA, and HGSO are
101.83, 415.21, and 312.31 s, respectively.

3.4 Other Evaluation Indexes of Top Three
Swarm Intelligence Algorithms on
Methylation Datasets
Besides accuracy, other evaluation indicators are also very
important. They can reveal the characteristics of the algorithm
in other aspects. Therefore, another four commonly used
indicators for classification evaluation (precision, recall, F1-
score, and AUC ROC) have also been tested, and the results
are shown in the Supplementary Table S5. It can be seen from
the results that there is little difference between precision and
recall of most models. However, the precision of PFA reaches
100% but the corresponding recall just obtains about 12% on
GSE164269. It may be caused by the insensitivity of the dataset to
the algorithm, that is, the algorithm cannot filter the core features
of the dataset. Thus, many positive samples are identified as
negative samples.

FIGURE 2 | Feature subsets combination. M1, M2, and M3 represent the feature subsets extracted by three different methods, respectively. The green part and
yellow part represent the combination results obtained by intersection and union.
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3.5 Statistical Tests of Obtained Results
Statistical tests on the results obtained using the three methods
were performed. The statistics are described in Table 1. The
result of Wilcoxon signed ranks test are shown in Table 2.
Through the nonparametric test of paired samples, the p-values
are greater than the significance level, indicating that there is no
difference in the measurement accuracy of these 10 samples
after three methods. Additionally, the Friedman test was also
applied, and the chi-squared, df, and p-value are 0.2, 2, and
0.906, respectively. It also proved that there was no significant
difference in accuracy.

3.6 The Result of Feature Intersection and
Union Combination on Methylation
Datasets
Generally, for a given dataset, the feature subsets for different
feature selection are individually somewhat different due to the
different theories. So, their different combinations will be more
diverse. These subsets are evaluated in this section. What is more,
there is no duplicate selection of the same features by different
methods.

Figure 5 shows the classification performance obtained
by intersection and union combination-based feature subset

FIGURE 3 | The convergence speed of top three swarm intelligence algorithms on T1D.

FIGURE 4 | Performance of three swarm intelligence algorithms on methylation datasets.
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ensemble methods. In some feature subset combinations, no
classification accuracy is available because there is no repeat
selection of the same features by the applied methods. As we
can see, the performance of the union combination method with
PFA is not obvious. The reason may be that PFA selects too many
features, which is over 2000 times that of SMA and about
200 times that of HGSO. Additionally, the performance of
union combination between SMA and HGSO is always better
than just using HGSO but not always better than just using SMA.
The reason may be that the number of features used by HGSO is
ten times than that of SMA. Therefore, the characteristics of SMA
can only be used for auxiliary adjustment. What is more, the
performance of some intersection methods does not decrease so
much. This may be because the features selected by all these
algorithms are the core features of the datasets.

3.7 The Feature Selection Rates on
Methylation Datasets
Table 3 shows the feature selection rates of single and different
combination swarm intelligence methods on methylation
datasets. Note that the feature selection rate is the percentage
of the features that are extracted from the original features.

As we can see, SMA produces the lowest feature reduction
rate in a single model, that is, the average is 0.0238%. This
means that applying SMA as the embedded feature selection
method may cause “over selection,” with too many informative
features filtered out. On the other hand, PFA not only allows
selection of the most informative features but also avoids the
risk of over selection. However, using the intersection
combination with HGSO and PFA not only can reduce the
number of features further but also not reduce the accuracy in
many datasets. The results indicate that intersection
combination method-based ensemble feature selection is
likely to play a positive role in filtering out information
redundancy among the feature selection methods that retain
too much information after use.

In addition, using the combination among feature subsets with
widely different feature numbers will not lead to excessive
changes in classification performance, and most of the
classification results will be the result of the feature subset

with the highest number of features, because its feature
distribution has not changed.

3.8 The Results of Multi-Classification on
GSE103186
The internal metaplasia samples contained in GSE103186 can
also be more finely divided into classic and mild. Therefore,
GSE103186 is regarded as a three-category dataset for testing the
multi-classification performance. The performance of SMA, PFA,
and HGSO is 81.69, 80.63, and 83.78%, respectively. Although the
proposed method mainly focuses on binary classification
problems, the results show that it still has the potential to be
used in multi-classification problems.

3.9 Biological Function Analysis of Selected
Features on GSE144910
The dataset GSE144910 collected DNA samples from the superior
temporal gyrus of the human brain for researching schizophrenia.
The features detected by the union combination of SMA and
HGSO as the classification biomarkers and these methylation
features are related to 18 genes, which are C1orf168, CAMLG,
SMOX, KCNIP4, MIR658, CENPA, ASRGL1, PISD, HNRNPL,
EEF2K, GMDS, MPPED1, ANKRD54, PLEK2, ADA, RNF121,
KRT6A, and EPHA2. In order to explore the biological functions
of the selected genes, pathway analysis was conducted. Figure 6
showed the mainly obtained four biological process pathways
(GO: 0033627, 072657, 00488872, and 0044089). We found that
schizophrenia may be related to the function of cell adhesion.

4 CONCLUSION

This study focuses on examining the binary classification
performance of swarm intelligence algorithms on OMIC
datasets. The experimental results suggest that swarm
intelligence algorithms can achieve high accuracy on the
collected OMIC datasets, significantly reduce feature
dimensions, and identify key features. Meanwhile, this study
finds some rules to improve ensemble feature subset
performance through intersection and union combination
methods. However, there are still some limitations in the
proposed study. For example, the methodology framework has
not been improved, and there is no methodological fusion of
different swarm intelligence algorithms. Our future research will
focus on combining machine learning and swarm intelligence
approaches for reducing the feature dimension and improve the
accuracy further in OMIC data and other biological data.

TABLE 1 | Descriptive statistics of the results on methylation datasets.

Methods Sample number Average (%) Standard deviation Min (%) Max (%)

SMA 10 80.44 11.62 65.91 98.72
PFA 10 80.30 15.98 60.13 100.00
HGSO 10 81.55 14.17 56.73 98.90

TABLE 2 | Wilcoxon signed ranks test.

Comparison R+ R− p-value

PFA versus SMA 4 6 0.721
HGSO versus SMA 5 5 0.959
HGSO versus PFA 5 5 0.878
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TABLE 3 | Feature selection rates of all used feature subsets on methylation datasets.

Data Solo Intersection Union

SMA (%) PFA (%) HGSO
(%)

SMA and
PFA

SMA and
HGSO

PFA and
HGSO
(%)

SMA and
PFA and
HGSO

SMA and
PFA (%)

SMA and
HGSO
(%)

PFA and
HGSO
(%)

SMA and
PFA and
HGSO
(%)

GSE103186 0.0338 49.7048 0.6381 0.0154% 0.0002% 0.3184 0.0002% 49.7232 0.6716 50.0245 50.0428
GSE139032 0.0218 49.8948 0.0181 0.0145% — 0.0109 — 49.9021 0.0399 49.9021 49.9093
GSE139404 0.0009 49.7509 0.0328 0.0004% — 0.0149 — 49.7513 0.0336 49.7688 49.7692
GSE144910 0.0004 49.9814 0.0046 0.0001% — 0.0018 — 49.9816 0.0049 49.9841 49.9844
GSE164269 0.0044 49.9655 0.7131 0.0022% — 0.3630 — 49.9677 0.7175 50.3156 50.3178
GSE166787 0.0017 49.6841 0.0111 0.0009% — 0.0059 — 49.6849 0.0129 49.6893 49.6902
GSE173330 0.0160 48.7964 0.3728 0.0107% — 0.1651 — 48.8017 0.3888 49.0041 49.0094
GSE174613 0.0008 49.4005 0.0066 — — 0.0049 — 49.4014 0.0074 49.4022 49.4030
GSE74845 0.0023 49.9412 0.1849 0.0011% — 0.0933 — 49.9425 0.1873 50.0328 50.0341
GSE80970 0.1564 49.9624 0.6070 0.0871% 0.0007% 0.3080 0.0005% 50.0317 0.7626 50.2614 50.3304
Average 0.0238 49.7082 0.2589 0.0147% 0.0005% 0.1286 0.0004% 49.7188 0.2827 49.8385 49.8491

FIGURE 5 | Performance of feature intersection and union combination on methylation datasets.

FIGURE 6 | Performance of feature intersection and union combination on methylation datasets.
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